Applications of Random Networks Complex Networks, Course 303A, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Outline

Applications of Random Networks

networks

How to build revisited

Motifs

References

Analysis of real networks How to build revisited Motifs

References

Frame 2/17

Problem: How much of a real network's structure is non-random?

- ▶ Key elephant in the room: the degree distribution P_k .
- First observe departure of P_k from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- ▶ Degree frequency N_K = observed frequency of degrees for a real network.
- What we now need to do: Create an ensemble of random networks with degree frequency N_k and then compare.

Analysis of real networks How to build revisited

References

- Problem: How much of a real network's structure is non-random?
- ▶ Key elephant in the room: the degree distribution P_k .
- First observe departure of P_k from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- ▶ Degree frequency N_K = observed frequency of degrees for a real network.
- ► What we now need to do: Create an ensemble of random networks with degree frequency N_k and then compare.

lotifs

References

- Problem: How much of a real network's structure is non-random?
- ▶ Key elephant in the room: the degree distribution P_k .
- First observe departure of P_k from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- ▶ Degree frequency N_k = observed frequency of degrees for a real network.
- ► What we now need to do: Create an ensemble of random networks with degree frequency N_k and then compare.

References

- Problem: How much of a real network's structure is non-random?
- ▶ Key elephant in the room: the degree distribution P_k .
- First observe departure of P_k from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- ▶ Degree frequency N_K = observed frequency of degrees for a real network.
- What we now need to do: Create an ensemble of random networks with degree frequency N_k and then compare.

References

- Problem: How much of a real network's structure is non-random?
- ▶ Key elephant in the room: the degree distribution P_k .
- ► First observe departure of *P_k* from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- ▶ Degree frequency N_k = observed frequency of degrees for a real network.
- ▶ What we now need to do: Create an ensemble of random networks with degree frequency N_k and then compare.

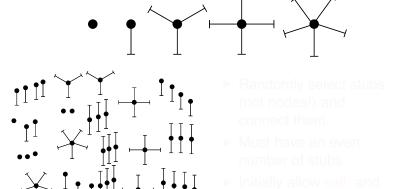
References

- Problem: How much of a real network's structure is non-random?
- ▶ Key elephant in the room: the degree distribution P_k .
- First observe departure of P_k from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- ▶ Degree frequency N_k = observed frequency of degrees for a real network.
- ▶ What we now need to do: Create an ensemble of random networks with degree frequency *N_k* and then compare.

References

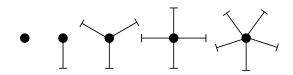
References

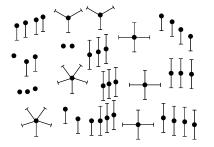
Analysis of real networks How to build revisited Motifs


Frame 4/17

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):


Analysis of real networks How to build revisited

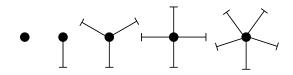

References

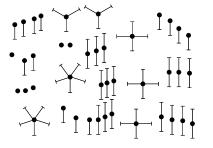
Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):

- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.

Analysis of real networks How to build revisited


References

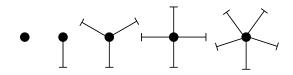


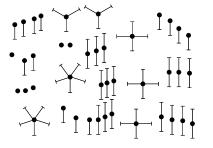
Building random networks: Stubs

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):

- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.

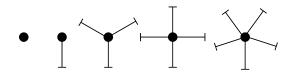

Analysis of real networks How to build revisited Motifs

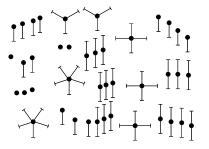

References

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):

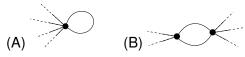
- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.


Analysis of real networks How to build revisited


References

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):

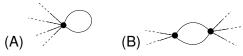

- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.

Analysis of real networks How to build revisited Motifs

References

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.

- ▶ Being careful: we can't change the degree of any node, so we can't simply move links around.
- ► Simplest solution: randomly rewire two edges at a time.

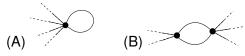

Analysis of real networks How to build revisited Motifs

References

Frame 6/17

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.

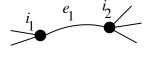
- ▶ Being careful: we can't change the degree of any node, so we can't simply move links around.
- ► Simplest solution: randomly rewire two edges at a time.

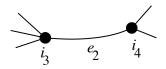

Analysis of real networks How to build revisited Motifs

References

Frame 6/17

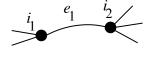
Now find any (A) self-loops and (B) repeat edges and randomly rewire them.

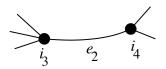

- Being careful: we can't change the degree of any node, so we can't simply move links around.
- Simplest solution: randomly rewire two edges at a time.


Analysis of real networks How to build revisited Motifs

References

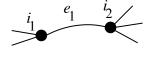
Frame 6/17

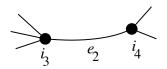



- Randomly choose two edges.
 (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off4-cycles. and rotating them.

References

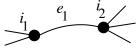

- Randomly choose two edges.
 (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

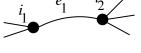

- Rewire one end of each edge
- ► Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off4-cycles. and rotating them.

Analysis of real networks How to build revisited

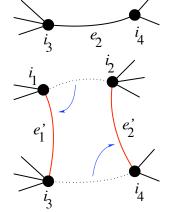
References

- Randomly choose two edges.
 (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.


- Rewire one end of each edge.
- ▶ Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.

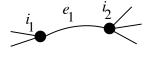

Applications of Random Networks

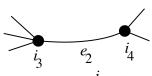
Analysis of real networks How to build revisited

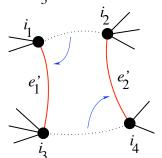

References

- Randomly choose two edges. (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- Node degrees do not change.
- \triangleright Works if e_1 is a self-loop or
- Same as finding on/off/on/off


Analysis of real networks How to build revisited


References

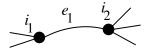


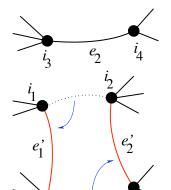
Applications of Random Networks

General random rewiring algorithm

- Randomly choose two edges.
 (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off
 4-cycles. and rotating them.


Analysis of real networks How to build revisited Motifs


References

Applications of Random Networks

General random rewiring algorithm

- Randomly choose two edges.
 (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.

Analysis of real networks How to build revisited Motifs

References

References

Phase 2:

Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

- Randomize network wiring by applying rewiring algorithm liberally.
- ▶ Rule of thumb: # Rewirings ~ 10 × # edges [1].

Frame 8/17

Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

- Randomize network wiring by applying rewiring algorithm liberally.
- ▶ Rule of thumb: # Rewirings ≈ 10 × # edges [1].

Frame 8/17

Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

- Randomize network wiring by applying rewiring algorithm liberally.
- ▶ Rule of thumb: # Rewirings $\simeq 10 \times \text{# edges}^{[1]}$.

Analysis of real networks How to build revisited Motifs

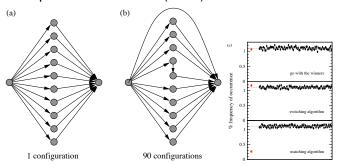
References

Frame 8/17

Random sampling

- Problem with only joining up stubs is failure to randomly sample from all possible networks.
- ► Example from Milo et al. (2003) [1]:

Applications of Random Networks


Analysis of real networks How to build revisited

References

Frame 9/17

► Example from Milo et al. (2003) [1]:

Analysis of real networks How to build revisited

References

Frame 9/17

- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- ► Easy to do exactly numerically since *k* is discrete.
- Note: not all P_k will always give nodes that can be wired together.

References

- ▶ What if we have P_k instead of N_k ?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- ► Easy to do exactly numerically since *k* is discrete.
- Note: not all P_k will always give nodes that can be wired together.

References

- ▶ What if we have P_k instead of N_k ?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- ► Easy to do exactly numerically since *k* is discrete.
- Note: not all P_k will always give nodes that can be wired together.

- ▶ What if we have P_k instead of N_k ?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- ► Easy to do exactly numerically since *k* is discrete.
- Note: not all P_k will always give nodes that can be wired together.

- ▶ What if we have $\frac{P_k}{P_k}$ instead of $\frac{N_k}{P_k}$?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- ► Easy to do exactly numerically since *k* is discrete.
- Note: not all P_k will always give nodes that can be wired together.

References

Outline

Applications of Random Networks

networks Motifs

References

Analysis of real networks

Motifs

Frame 11/17

- ► Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- ▶ Used network randomization to produce ensemble of alternate networks with same degree frequency N_k.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

References

Frame 12/17

- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- ▶ Used network randomization to produce ensemble of alternate networks with same degree frequency N_k.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

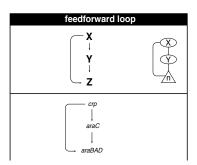
References

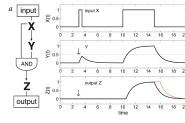
Frame 12/17

- ► Idea of motifs [2] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- ▶ Used network randomization to produce ensemble of alternate networks with same degree frequency N_k.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

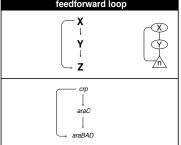
- ► Idea of motifs [2] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- ▶ Used network randomization to produce ensemble of alternate networks with same degree frequency N_k.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

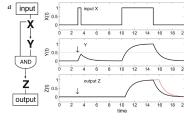
- ► Idea of motifs [2] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- ▶ Directed network with 577 interactions (edges) and 424 operons (nodes).
- Used network randomization to produce ensemble of alternate networks with same degree frequency N_k.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected



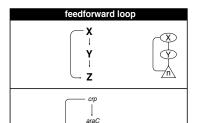

- ► Idea of motifs [2] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- Used network randomization to produce ensemble of alternate networks with same degree frequency N_k.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

References

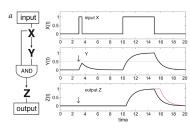



- Z only turns on in response to sustained activity in X.
- ► Turning off *X* rapidly turns off *Z*.
- Analogy to elevator doors.

Frame 13/17



- Z only turns on in response to sustained activity in X.
- ► Turning off X rapidly turns off Z.
- Analogy to elevator doors.

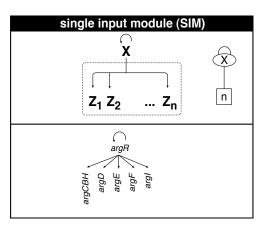

Analysis of real

Frame 13/17

araBAD

- Z only turns on in response to sustained activity in X.
- ► Turning off *X* rapidly turns off *Z*.
- Analogy to elevator doors.

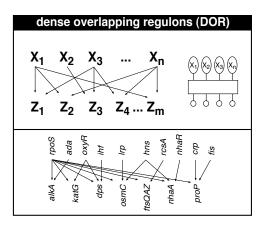
Analysis of real networks How to build revisited Motifs


References

Frame 13/17

networks
How to build revisited

References



Master switch.

Frame 14/17

Network motifs

Analysis of real networks How to build revisited Motifs

References

Frame 15/17

- Note: selection of motifs to test is reasonable but nevertheless ad-hoc.
- ► For more, see work carried out by Wiggins et al. at Columbia.

Frame 16/17

- Note: selection of motifs to test is reasonable but nevertheless ad-hoc.
- ► For more, see work carried out by Wiggins et al. at Columbia.

Frame 16/17

References

[1] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon.

On the uniform generation of random graphs with prescribed degree sequences, 2003. pdf (\boxplus)

[2] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of *Escherichia coli*.

Nature Genetics, pages 64–68, 2002. pdf (⊞)

Frame 17/17

