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More on building random networks

I Problem: How much of a real network’s structure is
non-random?

I Key elephant in the room: the degree distribution Pk .
I First observe departure of Pk from a Poisson

distribution.
I Next: measure the departure of a real network with a

degree frequency Nk from a random network with the
same degree frequency.

I Degree frequency Nk = observed frequency of
degrees for a real network.

I What we now need to do: Create an ensemble of
random networks with degree frequency Nk and then
compare.
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Building random networks: Stubs

Phase 1:
I Idea: start with a soup of unconnected nodes with

stubs (half-edges):

I Randomly select stubs
(not nodes!) and
connect them.

I Must have an even
number of stubs.

I Initially allow self- and
repeat connections.
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Building random networks: First rewiring

Phase 2:
I Now find any (A) self-loops and (B) repeat edges and

randomly rewire them.

(A) (B)
I Being careful: we can’t change the degree of any

node, so we can’t simply move links around.
I Simplest solution: randomly rewire two edges at a

time.
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General random rewiring algorithm

1
1

i3
i4

i2

e2

ei
I Randomly choose two edges.

(Or choose problem edge and
a random edge)

I Check to make sure edges
are disjoint.

i3
i4

i2

1
e’2

i

e’

1 I Rewire one end of each edge.
I Node degrees do not change.
I Works if e1 is a self-loop or

repeated edge.
I Same as finding on/off/on/off

4-cycles. and rotating them.
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Sampling random networks

Phase 2:
I Use rewiring algorithm to remove all self and repeat

loops.

Phase 3:
I Randomize network wiring by applying rewiring

algorithm liberally.
I Rule of thumb: # Rewirings ' 10 × # edges [?].
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Random sampling

I Problem with only joining up stubs is failure to
randomly sample from all possible networks.

I Example from Milo et al. (2003) [?]: 3
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FIG. 2: Uniformity tests of the three algorithms on a toy net-
work. Panels (a) and (b) depict the two types of topologies of
the 91 random networks studied, one of them like (a) and 90
like (b). Panel (c) shows the frequency with which each con-
figuration is sampled by our three algorithms. 100 000 graphs
were generated with each algorithm, and the figure shows the
fraction of graphs of each type generated. If sampling were
uniform, each should appear with probability 1

91
, which is

indicated by the dotted lines. The go-with-the-winners and
switching algorithms sample uniformly within sampling er-
ror, passing both the Kolmogorov–Smirnoff and Lillie Gaus-
sian tests. The matching algorithm under-samples the unique
configuration (a).

network. The network consists of an out-hub with ten
outgoing edges, an in-hub with ten incoming edges, and
ten nodes with one incoming edge and one outgoing edge
each. Given this degree sequence, there are just two dis-
tinct network topologies with no multiple edges, as shown
in Fig. 2a and 2b. There is only a single way to form the
network in 2a, but there are 90 different ways to form 2b.

We generated 100 000 random networks using each of
the 3 methods described here and the results are sum-
marized in Fig. 2c. As the figure shows, the matching
algorithm introduces a bias, undersampling the configu-
ration of Fig. 2a. This is a result of the dynamics of the
algorithm, which favors the creation of edges between
hubs. The switching and go-with-the-winners algorithms
on the other hand sample the configurations uniformly,
generating each graph an equal number of times within
the measurement error on our calculations. The go-with-
the-winners algorithm truly samples the ensemble uni-
formly but is far less efficient than the two other meth-
ods. The results given here indicate that the switching
algorithm produces essentially identical results while be-
ing a good deal faster. The matching algorithm is faster
still but samples in a measurably biased way.

Now consider the study of network motifs. We are in-
terested in knowing when particular subgraphs or motifs
appear significantly more or less often in a real-world net-
work than would be expected on the basis of chance, and
we can answer this question by comparing motif counts
to random graphs. Some results for the case of the “feed-
forward loop” motif [16, 17] are given in Table I. In this
case the densities of motifs in the real-world networks
are many standard deviations away from random, which
suggests that any of the present algorithms is adequate
for generating suitable random graphs to act as a null
model, although the go-with-the-winners and switching
algorithms, while slower, are clearly more satisfactory
theoretically. The matching algorithm was measurably
nonuniform for our toy example above, but seems to give
better results on the real-world problem.

Overall, our results appear to argue in favor of us-
ing the switching method, with the go-with-the-winners
method finding limited use as a check on the accuracy of
sampling. Accuracy checks are also supplied by analyti-
cal estimates for subgraph numbers [11].

IV. CONCLUSIONS

In this paper we have compared three algorithms for
generating random graphs with prescribed degree se-
quences and no multiple edges or self-edges. Two of the
three have been used previously, but suffer from nonuni-
formity in their sampling properties, while the third, a
method based on the “go with the winners” Monte Carlo
procedure, is new and provably samples uniformly but
is quite slow. Of the two older algorithms, we show
that one, which we call the “matching” algorithm, has
measurable deviations from uniformity when compared
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FIG. 2: Uniformity tests of the three algorithms on a toy net-
work. Panels (a) and (b) depict the two types of topologies of
the 91 random networks studied, one of them like (a) and 90
like (b). Panel (c) shows the frequency with which each con-
figuration is sampled by our three algorithms. 100 000 graphs
were generated with each algorithm, and the figure shows the
fraction of graphs of each type generated. If sampling were
uniform, each should appear with probability 1

91
, which is

indicated by the dotted lines. The go-with-the-winners and
switching algorithms sample uniformly within sampling er-
ror, passing both the Kolmogorov–Smirnoff and Lillie Gaus-
sian tests. The matching algorithm under-samples the unique
configuration (a).

network. The network consists of an out-hub with ten
outgoing edges, an in-hub with ten incoming edges, and
ten nodes with one incoming edge and one outgoing edge
each. Given this degree sequence, there are just two dis-
tinct network topologies with no multiple edges, as shown
in Fig. 2a and 2b. There is only a single way to form the
network in 2a, but there are 90 different ways to form 2b.

We generated 100 000 random networks using each of
the 3 methods described here and the results are sum-
marized in Fig. 2c. As the figure shows, the matching
algorithm introduces a bias, undersampling the configu-
ration of Fig. 2a. This is a result of the dynamics of the
algorithm, which favors the creation of edges between
hubs. The switching and go-with-the-winners algorithms
on the other hand sample the configurations uniformly,
generating each graph an equal number of times within
the measurement error on our calculations. The go-with-
the-winners algorithm truly samples the ensemble uni-
formly but is far less efficient than the two other meth-
ods. The results given here indicate that the switching
algorithm produces essentially identical results while be-
ing a good deal faster. The matching algorithm is faster
still but samples in a measurably biased way.

Now consider the study of network motifs. We are in-
terested in knowing when particular subgraphs or motifs
appear significantly more or less often in a real-world net-
work than would be expected on the basis of chance, and
we can answer this question by comparing motif counts
to random graphs. Some results for the case of the “feed-
forward loop” motif [16, 17] are given in Table I. In this
case the densities of motifs in the real-world networks
are many standard deviations away from random, which
suggests that any of the present algorithms is adequate
for generating suitable random graphs to act as a null
model, although the go-with-the-winners and switching
algorithms, while slower, are clearly more satisfactory
theoretically. The matching algorithm was measurably
nonuniform for our toy example above, but seems to give
better results on the real-world problem.

Overall, our results appear to argue in favor of us-
ing the switching method, with the go-with-the-winners
method finding limited use as a check on the accuracy of
sampling. Accuracy checks are also supplied by analyti-
cal estimates for subgraph numbers [11].

IV. CONCLUSIONS

In this paper we have compared three algorithms for
generating random graphs with prescribed degree se-
quences and no multiple edges or self-edges. Two of the
three have been used previously, but suffer from nonuni-
formity in their sampling properties, while the third, a
method based on the “go with the winners” Monte Carlo
procedure, is new and provably samples uniformly but
is quite slow. Of the two older algorithms, we show
that one, which we call the “matching” algorithm, has
measurable deviations from uniformity when compared
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Sampling random networks

I What if we have Pk instead of Nk?
I Must now create nodes before start of the

construction algorithm.
I Generate N nodes by sampling from degree

distribution Pk .
I Easy to do exactly numerically since k is discrete.
I Note: not all Pk will always give nodes that can be

wired together.
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Network motifs

I Idea of motifs [?] introduced by Shen-Orr, Alon et al.
in 2002.

I Looked at gene expression within full context of
transcriptional regulation networks.

I Specific example of Escherichia coli.
I Directed network with 577 interactions (edges) and

424 operons (nodes).
I Used network randomization to produce ensemble of

alternate networks with same degree frequency Nk .
I Looked for certain subnetworks (motifs) that

appeared more or less often than expected

Applications of
Random Networks

Analysis of real
networks
How to build revisited

Motifs

References

Frame 13/17

Network motifs

letter

64 nature genetics • volume 31 • may 2002

Network motifs in the transcriptional regulation
network of Escherichia coli

Shai S. Shen-Orr1, Ron Milo2, Shmoolik Mangan1 & Uri Alon1,2

1Department of Molecular Cell Biology, 2Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel. Correspondence
should be addressed to U.A. (e-mail: urialon@wisemail.weizmann.ac.il).

Little is known about the design principles1–10 of transcrip-
tional regulation networks that control gene expression in
cells. Recent advances in data collection and analysis2,11,12,
however, are generating unprecedented amounts of informa-
tion about gene regulation networks. To understand these
complex wiring diagrams1–10,13, we sought to break down such
networks into basic building blocks2. We generalize the notion
of motifs, widely used for sequence analysis, to the level of
networks. We define ‘network motifs’ as patterns of intercon-
nections that recur in many different parts of a network at fre-
quencies much higher than those found in randomized
networks. We applied new algorithms for systematically
detecting network motifs to one of the best-characterized reg-
ulation networks, that of direct transcriptional interactions in
Escherichia coli3,6. We find that much of the network is com-
posed of repeated appearances of three highly significant
motifs. Each network motif has a specific function in determin-
ing gene expression, such as generating temporal expression
programs and governing the responses to fluctuating external
signals. The motif structure also allows an easily interpretable
view of the entire known transcriptional network of the organ-
ism. This approach may help define the basic computational
elements of other biological networks.
We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transcribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)3,14. We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive !-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed
graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed
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Fig. 1 Network motifs found in the E. coli transcriptional regulation network.
Symbols representing the motifs are also shown. a, Feedforward loop: a tran-
scription factor X regulates a second transcription factor Y, and both jointly
regulate one or more operons Z1...Zn. b, Example of a feedforward loop (L-ara-
binose utilization). c, SIM motif: a single transcription factor, X, regulates a set
of operons Z1...Zn. X is usually autoregulatory. All regulations are of the same
sign. No other transcription factor regulates the operons. d, Example of a SIM
system (arginine biosynthesis). e, DOR motif: a set of operons Z1...Zm are each
regulated by a combination of a set of input transcription factors, X1...Xn.
DORs are defined by an algorithm that detects dense regions of connections,
with a high ratio of connections to transcription factors. f, Example of a DOR
(stationary phase response).
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from X and a delayed one through Y. If the activation of X is tran-
sient, Y cannot reach the level needed to significantly activate Z,
and the input signal is not transduced through the circuit. Only
when X signals for a long enough time so that Y levels can build
up will Z be activated (Fig. 2a). Once X is deactivated, Z shuts
down rapidly. This kind of behavior can be useful for making
decisions based on fluctuating external signals.

The SIM motif is found in systems of genes that function sto-
chiometrically to form a protein assembly (such as flagella) or a
metabolic pathway (such as amino-acid biosynthesis). In these
cases, it is useful that the activities of the operons are determined
by a single transcription factor, so that their proportions at
steady state can be fixed. In addition, mathematical analysis sug-
gests that SIMs can show a detailed temporal program of expres-
sion resulting from differences in the activation thresholds of the
different genes (Fig. 2b). Built into this design is a pattern in
which the first gene activated is the last one to be deactivated.
Such temporal ordering can be useful in processes that require
several stages to complete. This type of mechanism may explain
the experimentally observed temporal program in the expression
of flagella biosynthesis genes18.

The motifs allow a representation of the E. coli transcriptional
network (Fig. 3) in a compact, modular form (for an image of the
full network, see Web Fig. A online). By using symbols to represent
the different motifs (Fig. 1), the network is broken down to its
basic building blocks. A single layer of DORs connects most of the
transcription factors to their effector operons. Feedforward loops
and SIMs often occur at the outputs of these DORs. The DORs are
interconnected by the global transcription factors, which typically
control many genes in one DOR and few genes in several DORs.
An important step in visualizing the network was to allow each
global transcription factor to appear multiple times, whenever it is
an input to a structure. This reduces the complexity of the inter-
connections while preserving all the information. There are few

long cascades3, usually involving !-factors, such as cas-
cades of depth 5 in the flagella and nitrogen systems. Over
70% of the operons are connected to the DORs; the rest of
the operons are in small disjoint systems. Most disjoint
systems have only 1 to 3 operons. The remaining disjoint
systems have up to 25 operons and show many SIMs and
feedforward loops. A notable feature of the overall organi-
zation is the large degree of overlap within DORs between
the short cascades that control most operons. The layer of
DORs may therefore represent the core of the computa-
tion carried out by the transcriptional network.

Cycles such as feedback loops are an important feature
of regulatory networks. Transcriptional feedback loops
occur in various organisms, such as the genetic switch in
"-phage5. In the E. coli data set, there are no examples of
feedback loops of direct transcriptional interactions,
except for auto-regulatory loops3. However, the absence

of feedback loops is not statistically significant, as over 80% of
the randomized networks also have no feedback loops (Table 1).
The many regulatory feedbacks loops in the organism are carried
out at the post-transcriptional level.

We considered only transcription interactions specifically
manifested by transcription factors that bind regulatory sites3,14.
This transcriptional network can be thought of as the ‘slow’ part
of the cellular regulation network (time scale of minutes). An
additional layer of faster interactions, which include interactions
between proteins (often subsecond timescale), contributes to the
full regulatory behavior and will probably introduce additional
network motifs. Characterization of additional transcriptional
interactions may change the present motif assignment for spe-
cific systems. However, our conclusions regarding the high fre-
quencies of feedforward loops, SIMs and overlapping regulation
compared with randomized networks are insensitive to the addi-
tion or removal of interactions from the data set. These features
are still highly significant, even when 25% of the connections in
the E. coli network are removed or rearranged at random.

The concept of homology between genes based on sequence
motifs has been crucial for understanding the function of
uncharacterized genes. Likewise, the notion of similarity
between connectivity patterns in networks, based on network
motifs, may be helpful in gaining insight into the dynamic
behavior of newly identified gene circuits. The present analysis
may serve as a guideline for experimental study of the functions
of the motifs. It would be useful to determine whether the net-
work motifs found in E. coli can characterize the transcriptional
networks of other cell types. In higher eukaryotes, for example,
there will be many more regulators affecting each gene, and addi-
tional types of circuits may be found. The findings presented
here also raise the possibility that motifs can be defined in other
biological networks7, such as signal transduction, metabolic19

and neuron connectivity networks.

letter

66 nature genetics • volume 31 • may 2002

Fig. 2 Dynamic features of the coherent feedforward loop and SIM
motifs. a, Consider a coherent feedforward loop circuit with an ‘AND-
gate’–like control of the output operon Z. This circuit can reject rapid
variations in the activity of the input X, and respond only to persistent
activation profiles. This is because Y needs to integrate the input X
over time to pass the activation threshold for Z (thin line). A similar
rejection of rapid fluctuations can be achieved by a cascade, X#Y#Z;
however, the cascade has a slower shut-down than the feedforward
loop (thin red line in the Z dynamics panel). b, Dynamics of the SIM
motif. This motif can show a temporal program of expression accord-
ing to a hierarchy of activation thresholds of the genes. When the
activity of X, the master activator, rises and falls with time, the genes
with the lowest threshold are activated earliest and deactivated lat-
est. Time is in units of protein lifetimes, or of cell cycles in the case of
long-lived proteins.
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I Z only turns on in response to sustained activity in X .
I Turning of X rapidly turns of Z .
I Analogy to elevator doors.
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Network motifs in the transcriptional regulation
network of Escherichia coli

Shai S. Shen-Orr1, Ron Milo2, Shmoolik Mangan1 & Uri Alon1,2

1Department of Molecular Cell Biology, 2Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel. Correspondence
should be addressed to U.A. (e-mail: urialon@wisemail.weizmann.ac.il).

Little is known about the design principles1–10 of transcrip-
tional regulation networks that control gene expression in
cells. Recent advances in data collection and analysis2,11,12,
however, are generating unprecedented amounts of informa-
tion about gene regulation networks. To understand these
complex wiring diagrams1–10,13, we sought to break down such
networks into basic building blocks2. We generalize the notion
of motifs, widely used for sequence analysis, to the level of
networks. We define ‘network motifs’ as patterns of intercon-
nections that recur in many different parts of a network at fre-
quencies much higher than those found in randomized
networks. We applied new algorithms for systematically
detecting network motifs to one of the best-characterized reg-
ulation networks, that of direct transcriptional interactions in
Escherichia coli3,6. We find that much of the network is com-
posed of repeated appearances of three highly significant
motifs. Each network motif has a specific function in determin-
ing gene expression, such as generating temporal expression
programs and governing the responses to fluctuating external
signals. The motif structure also allows an easily interpretable
view of the entire known transcriptional network of the organ-
ism. This approach may help define the basic computational
elements of other biological networks.
We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transcribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)3,14. We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive !-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed
graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed
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Fig. 1 Network motifs found in the E. coli transcriptional regulation network.
Symbols representing the motifs are also shown. a, Feedforward loop: a tran-
scription factor X regulates a second transcription factor Y, and both jointly
regulate one or more operons Z1...Zn. b, Example of a feedforward loop (L-ara-
binose utilization). c, SIM motif: a single transcription factor, X, regulates a set
of operons Z1...Zn. X is usually autoregulatory. All regulations are of the same
sign. No other transcription factor regulates the operons. d, Example of a SIM
system (arginine biosynthesis). e, DOR motif: a set of operons Z1...Zm are each
regulated by a combination of a set of input transcription factors, X1...Xn.
DORs are defined by an algorithm that detects dense regions of connections,
with a high ratio of connections to transcription factors. f, Example of a DOR
(stationary phase response).
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I Master switch.
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Network motifs in the transcriptional regulation
network of Escherichia coli

Shai S. Shen-Orr1, Ron Milo2, Shmoolik Mangan1 & Uri Alon1,2

1Department of Molecular Cell Biology, 2Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel. Correspondence
should be addressed to U.A. (e-mail: urialon@wisemail.weizmann.ac.il).

Little is known about the design principles1–10 of transcrip-
tional regulation networks that control gene expression in
cells. Recent advances in data collection and analysis2,11,12,
however, are generating unprecedented amounts of informa-
tion about gene regulation networks. To understand these
complex wiring diagrams1–10,13, we sought to break down such
networks into basic building blocks2. We generalize the notion
of motifs, widely used for sequence analysis, to the level of
networks. We define ‘network motifs’ as patterns of intercon-
nections that recur in many different parts of a network at fre-
quencies much higher than those found in randomized
networks. We applied new algorithms for systematically
detecting network motifs to one of the best-characterized reg-
ulation networks, that of direct transcriptional interactions in
Escherichia coli3,6. We find that much of the network is com-
posed of repeated appearances of three highly significant
motifs. Each network motif has a specific function in determin-
ing gene expression, such as generating temporal expression
programs and governing the responses to fluctuating external
signals. The motif structure also allows an easily interpretable
view of the entire known transcriptional network of the organ-
ism. This approach may help define the basic computational
elements of other biological networks.
We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transcribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)3,14. We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive !-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed
graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed
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Fig. 1 Network motifs found in the E. coli transcriptional regulation network.
Symbols representing the motifs are also shown. a, Feedforward loop: a tran-
scription factor X regulates a second transcription factor Y, and both jointly
regulate one or more operons Z1...Zn. b, Example of a feedforward loop (L-ara-
binose utilization). c, SIM motif: a single transcription factor, X, regulates a set
of operons Z1...Zn. X is usually autoregulatory. All regulations are of the same
sign. No other transcription factor regulates the operons. d, Example of a SIM
system (arginine biosynthesis). e, DOR motif: a set of operons Z1...Zm are each
regulated by a combination of a set of input transcription factors, X1...Xn.
DORs are defined by an algorithm that detects dense regions of connections,
with a high ratio of connections to transcription factors. f, Example of a DOR
(stationary phase response).
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I Note: selection of motifs to test is reasonable but
nevertheless ad-hoc.

I For more, see work carried out by Wiggins et al. at
Columbia.
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