# Random Networks Complex Networks, Course 303A, Spring, 2009

## Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont



Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

## Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 1/89

## Outline Basics

Definitions How to build Some visual examples

## Structure

Clustering Degree distributions Configuration model Largest component

# **Generating Functions**

Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

## Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 2/89

লি ৩৫৫

## Outline Basics

## Definitions

How to build Some visual examples

## Structure

Clustering Degree distributions Configuration model Largest component

# **Generating Functions**

Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

## Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 3/89

P

୬ବ୍ଦ

## Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = randomly chosen network from this set.
- ▶ To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 4/89

## Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 4/89

ା ୬ବ୍ଦ

## Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size References

Frame 4/89

ା ୬ବ୍ଙ

## Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size References

Frame 4/89

ା ୬ବ୍ଙ

## Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 4/89

৸৵ঀ৻৾৽

## Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

## Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size References

Frame 4/89

ৢৢ৶৻৻৽

# Some features:

Number of possible edges:

$$0 \le m \le \binom{N}{2} = rac{N(N-1)}{2}$$

- Given *m* edges, there are 
   <sup>N</sup>
   <sup>(N)</sup>
   <sup>(N)</sup>
- Crazy factorial explosion for  $1 \ll m \ll \binom{N}{2}$ .
- Limit of m = 0: empty graph.
- Limit of  $m = \binom{N}{2}$ : complete or fully-connected graph.
- Real world: links are usually costly so real networks are almost always sparse.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

Frame 5/89

# Some features:

Number of possible edges:

$$0 \le m \le \binom{N}{2} = rac{N(N-1)}{2}$$

- Given *m* edges, there are 
   <sup>N</sup>
   <sup>N</sup>
- Crazy factorial explosion for  $1 \ll m \ll \binom{N}{2}$ .
- Limit of m = 0: empty graph.
- Limit of  $m = \binom{N}{2}$ : complete or fully-connected graph.
- Real world: links are usually costly so real networks are almost always sparse.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

# Some features:

Number of possible edges:

$$0 \le m \le \binom{N}{2} = rac{N(N-1)}{2}$$

- Given *m* edges, there are 
   <sup>N</sup>
   <sup>(N)</sup>
   <sup>(N)</sup>
- Crazy factorial explosion for  $1 \ll m \ll \binom{N}{2}$ .
- Limit of m = 0: empty graph.
- Limit of  $m = \binom{N}{2}$ : complete or fully-connected graph.
- Real world: links are usually costly so real networks are almost always sparse.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 5/89

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

# Some features:

Number of possible edges:

$$0 \le m \le \binom{N}{2} = rac{N(N-1)}{2}$$

- Given *m* edges, there are 
   <sup>(N)</sup>
   <sup>(N)</sup>
- Crazy factorial explosion for  $1 \ll m \ll \binom{N}{2}$ .
- Limit of m = 0: empty graph.
- Limit of  $m = \binom{N}{2}$ : complete or fully-connected graph.
- Real world: links are usually costly so real networks are almost always sparse.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

Frame 5/89

# Some features:

Number of possible edges:

$$0 \le m \le \binom{N}{2} = rac{N(N-1)}{2}$$

- Given *m* edges, there are 
   <sup>(N)</sup>
   <sup>(N)</sup>
- Crazy factorial explosion for  $1 \ll m \ll \binom{N}{2}$ .
- Limit of m = 0: empty graph.
- Limit of  $m = \binom{N}{2}$ : complete or fully-connected graph.
- Real world: links are usually costly so real networks are almost always sparse.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 5/89 බ - ඉද ල

# Some features:

Number of possible edges:

$$0 \le m \le \binom{N}{2} = rac{N(N-1)}{2}$$

- Given *m* edges, there are 
   <sup>N</sup>
   <sup>(N)</sup>
   <sup>(N)</sup>
- Crazy factorial explosion for  $1 \ll m \ll \binom{N}{2}$ .
- Limit of m = 0: empty graph.
- Limit of  $m = \binom{N}{2}$ : complete or fully-connected graph.
- Real world: links are usually costly so real networks are almost always sparse.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 5/89

୍ର୍ବ୍ର୍

## Outline Basics

# Definitions

## How to build

Some visual examples

## Structure

Clustering Degree distributions Configuration model Largest component

## **Generating Functions**

Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

## Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 6/89

লি ৩৫৫

# How to build standard random networks:

## Given N and m.

- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the  $\binom{N}{2}$  pairs with appropriate probability *p*.
  - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
  - Algorithm: Randomly choose a pair of nodes i and j, i ≠ j, and connect if unconnected; repeat until all m edges are allocated.
  - Best for adding small numbers of links (most cases).
  - 1 and 2 are effectively equivalent for large N

## Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## How to build standard random networks:

- ▶ Given *N* and *m*.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the  $\binom{N}{2}$  pairs with appropriate probability *p*.
  - Useful for theoretical work.
- Take N nodes and add exactly m links by selecting edges without replacement.
  - Algorithm: Randomly choose a pair of nodes i and j, i ≠ j, and connect if unconnected; repeat until all m edges are allocated.
  - Best for adding small numbers of links (most cases).
  - 1 and 2 are effectively equivalent for large N.

### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

# How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the  $\binom{N}{2}$  pairs with appropriate probability *p*.
  - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
  - Algorithm: Randomly choose a pair of nodes i and j, i ≠ j, and connect if unconnected; repeat until all m edges are allocated.
  - Best for adding small numbers of links (most cases).
  - 1 and 2 are effectively equivalent for large N

### Random Networks

### Basics Definitions How to build Some visual examples

### Structure Clustering Degree distributions Configuration model

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the  $\binom{N}{2}$  pairs with appropriate probability *p*.
  - Useful for theoretical work.
- Take N nodes and add exactly m links by selecting edges without replacement.
  - Algorithm: Randomly choose a pair of nodes i and j, i ≠ j, and connect if unconnected; repeat until all m edges are allocated.
  - Best for adding small numbers of links (most cases).
  - 1 and 2 are effectively equivalent for large N

### Random Networks

### Basics Definitions How to build Some visual examples

### Structure Clustering Degree distributions Configuration model

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

# How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the  $\binom{N}{2}$  pairs with appropriate probability *p*.
  - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
  - ► Algorithm: Randomly choose a pair of nodes *i* and *j*, *i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.
  - Best for adding small numbers of links (most cases).
  - ▶ 1 and 2 are effectively equivalent for large *N*.

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

# How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the  $\binom{N}{2}$  pairs with appropriate probability *p*.
  - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
  - ► Algorithm: Randomly choose a pair of nodes *i* and *j*, *i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.
  - Best for adding small numbers of links (most cases).
  - ▶ 1 and 2 are effectively equivalent for large *N*.

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

# How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the  $\binom{N}{2}$  pairs with appropriate probability *p*.
  - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
  - ► Algorithm: Randomly choose a pair of nodes *i* and *j*, *i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.
  - Best for adding small numbers of links (most cases).
  - ▶ 1 and 2 are effectively equivalent for large *N*.

### Random Networks

### Basics Definitions How to build Some visual examples

## Structure Clustering Degree distributions Configuration model

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 7/89 බ - ඉදල

# How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the  $\binom{N}{2}$  pairs with appropriate probability *p*.
  - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
  - ► Algorithm: Randomly choose a pair of nodes *i* and *j*, *i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.
  - Best for adding small numbers of links (most cases).
  - ▶ 1 and 2 are effectively equivalent for large *N*.

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 7/89 බ - ඉද ල

# How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the  $\binom{N}{2}$  pairs with appropriate probability *p*.
  - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
  - ► Algorithm: Randomly choose a pair of nodes *i* and *j*, *i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.
  - Best for adding small numbers of links (most cases).
  - 1 and 2 are effectively equivalent for large N.

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 7/89

# A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{N}p\frac{1}{2}N(N-1)=p(N-1).$$

- Which is what it should be...
- If we keep  $\langle k \rangle$  constant then  $p \propto 1/N \to 0$  as  $N \to \infty$ .

## Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Jenerating Junctions Definitions Basic Properties Stant Component Condition Component sizes Jaeful results Size of the Giant Component Average Component Size

References

Frame 8/89

SQC2

# A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$= \frac{2}{N} p \frac{1}{2} N(N-1) = \frac{2}{N} p \frac{1}{2} N(N-1) = p(N-1).$$

- Which is what it should be...
- If we keep  $\langle k \rangle$  constant then  $p \propto 1/N \to 0$  as  $N \to \infty$ .

## Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model. Largest component

Jenerating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

Frame 8/89

SQC2

# A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{N}p\frac{1}{2}N(N-1)=p(N-1).$$

- Which is what it should be...
- If we keep  $\langle k \rangle$  constant then  $p \propto 1/N \to 0$  as  $N \to \infty$ .

## Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model. Largest component

Jenerating Jounctions Definitions Basic Properties Stant Component Condition Component sizes Jseful results Size of the Giant Component Average Component Size

References

# A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{N}p\frac{1}{2}N(N-1)=p(N-1).$$

- Which is what it should be...
- If we keep  $\langle k \rangle$  constant then  $p \propto 1/N \to 0$  as  $N \to \infty$ .

## Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Jenerating Jounctions Definitions Basic Properties Stant Component Condition Component sizes Jseful results Size of the Giant Component Average Component Size

References

# A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$= \frac{2}{N} p \frac{1}{2} N(N-1) = \frac{2}{N} p \frac{1}{2} N(N-1) = p(N-1).$$

- Which is what it should be...
- If we keep  $\langle k \rangle$  constant then  $p \propto 1/N \rightarrow 0$  as  $N \rightarrow \infty$ .

## Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model. Largest component

> Jenerating Jounctions Definitions Basic Properties Stant Component Condition Component sizes Jeeful results Size of the Giant Component Average Component Size

References

# A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{N}p\frac{1}{2}N(N-1)=p(N-1).$$

- Which is what it should be...
- If we keep  $\langle k \rangle$  constant then  $p \propto 1/N \rightarrow 0$  as  $N \rightarrow \infty$ .

## Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Jenerating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Avorage Component Size

References

# A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{N}p\frac{1}{2}N(N-1)=p(N-1).$$

## Which is what it should be...

• If we keep  $\langle k \rangle$  constant then  $p \propto 1/N \to 0$  as  $N \to \infty$ .

## Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

# A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{N}p\frac{1}{2}N(N-1)=p(N-1).$$

- Which is what it should be...
- If we keep  $\langle k \rangle$  constant then  $p \propto 1/N \to 0$  as  $N \to \infty$ .

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Jenerating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 8/89

A ~ ~

## Outline Basics

## Definitions How to build Some visual examples

## Structure

Clustering Degree distributions Configuration model Largest component

# **Generating Functions**

Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

## Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 9/89

লি ৩৫৫

# Random networks: examples

## Next slides: Example realizations of random networks

- ► *N* = 500
- ▶ Vary *m*, the number of edges from 100 to 1000.
- Average degree  $\langle k \rangle$  runs from 0.4 to 4.
- Look at full network plus the largest component.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 10/89

# Random networks: examples

## Next slides: Example realizations of random networks

- ► *N* = 500
- ▶ Vary *m*, the number of edges from 100 to 1000.
- Average degree  $\langle k \rangle$  runs from 0.4 to 4.
- Look at full network plus the largest component.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Contracting Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 10/89

### Next slides:

Example realizations of random networks

- ► *N* = 500
- ▶ Vary *m*, the number of edges from 100 to 1000.
- Average degree  $\langle k \rangle$  runs from 0.4 to 4.
- Look at full network plus the largest component.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 10/89

### Next slides:

Example realizations of random networks

- ► *N* = 500
- ▶ Vary *m*, the number of edges from 100 to 1000.
- Average degree  $\langle k \rangle$  runs from 0.4 to 4.
- Look at full network plus the largest component.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 10/89

### Next slides:

Example realizations of random networks

- ► *N* = 500
- ▶ Vary *m*, the number of edges from 100 to 1000.
- Average degree  $\langle k \rangle$  runs from 0.4 to 4.
- Look at full network plus the largest component.

#### Random Networks

#### Basics Definitions How to build Some visual examples

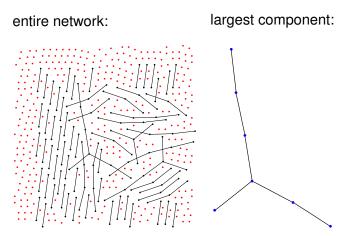
Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 10/89

 $\neg \land \land \land$ 



N = 500, number of edges m = 100average degree  $\langle k \rangle = 0.4$ 

### Random Networks

Basics Definitions How to build Some visual examples

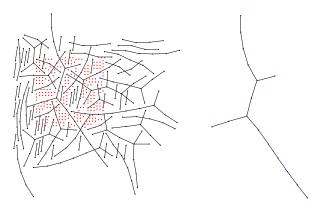
Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 11/89

entire network:



N = 500, number of edges m = 200average degree  $\langle k \rangle = 0.8$ 

largest component:

### Random Networks

Basics Definitions How to build Some visual examples

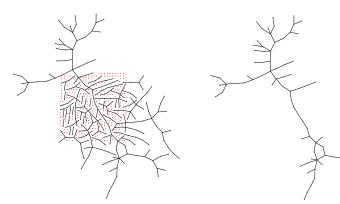
Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 12/89

entire network:



N = 500, number of edges m = 230average degree  $\langle k \rangle = 0.92$ 

largest component:

### Random Networks

Basics Definitions How to build Some visual examples

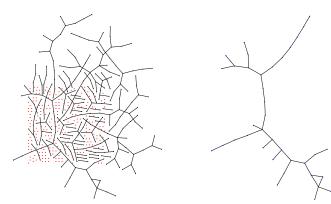
Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 13/89

entire network:



N = 500, number of edges m = 240average degree  $\langle k \rangle = 0.96$ 

largest component:

### Random Networks

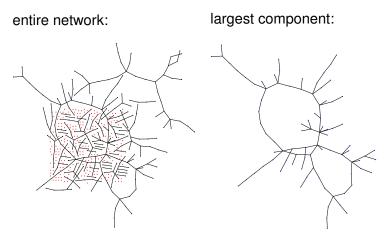
Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 14/89



N = 500, number of edges m = 250average degree  $\langle k \rangle = 1$ 

### Random Networks

Basics Definitions How to build Some visual examples

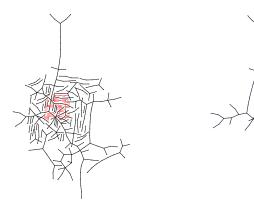
Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 15/89

entire network:



N = 500, number of edges m = 260average degree  $\langle k \rangle = 1.04$ 

largest component:

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

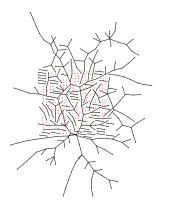
References

Frame 16/89

P

୬ବ୍ଦ

entire network:



largest component:

N = 500, number of edges m = 280average degree  $\langle k \rangle = 1.12$ 

### Random Networks

Basics Definitions How to build Some visual examples

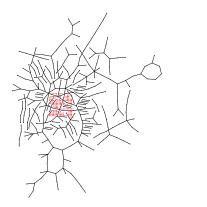
Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

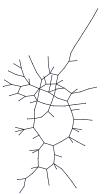
References

Frame 17/89

entire network:



largest component:



N = 500, number of edges m = 300average degree  $\langle k \rangle = 1.2$  Random Networks

Basics Definitions How to build Some visual examples

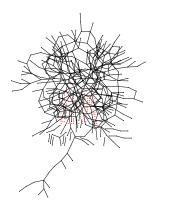
Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Dedinitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 18/89

entire network:



largest component:

N = 500, number of edges m = 500average degree  $\langle k \rangle = 2$ 

### Random Networks

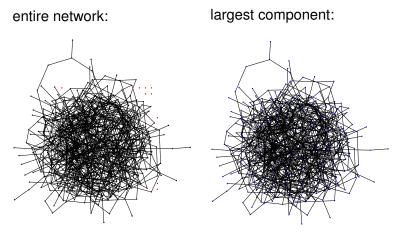
Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 19/89



N = 500, number of edges m = 1000average degree  $\langle k \rangle = 4$ 

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 20/89

୍ର୍ର୍ର୍

### Random networks: examples for N=500









*m* = 250  $\langle k \rangle = 1$ 



Some visual examples

Basics

Frame 21/89 Sac





m = 230 $\langle k \rangle = 0.92$ 







m = 260 $\langle k \rangle = 1.04$ 

m = 280 $\langle k \rangle = 1.12$ 



m = 300

 $\langle k \rangle = 1.2$ 



m = 500 $\langle k \rangle = 2$ 

m = 1000 $\langle k \rangle = 4$ 

### Random Networks

### Random networks: largest components



m = 100 $\langle k \rangle = 0.4$ 



m = 200 $\langle k \rangle = 0.8$ 





m = 240 $\langle k \rangle = 0.96$ 

m = 250 $\langle k \rangle = 1$ 



 $\begin{array}{l}m=1000\\\langle k\rangle=4\end{array}$ 

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Senerating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 22/89



m = 260 $\langle k \rangle = 1.04$ 

m = 280 $\langle k \rangle = 1.12$ 

\_

m = 300 $\langle k \rangle = 1.2$ 

m = 500

 $\langle k \rangle = 2$ 

### Random networks: examples for N=500







m = 250

 $\langle k \rangle = 1$ 

m = 250 $\langle k \rangle = 1$ 

m = 250

 $\langle k \rangle = 1$ 



m = 250 $\langle k \rangle = 1$ 

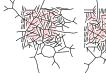


m = 250 $\langle k \rangle = 1$  m = 250 $\langle k \rangle = 1$ 





m = 250 $\langle k \rangle = 1$ 



*m* = 250

 $\langle k \rangle = 1$ 

m = 250 $\langle k \rangle = 1$ 

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 23/89

### Random networks: largest components





m = 250 $\langle k \rangle = 1$  m = 250 $\langle k \rangle = 1$ 





m = 250 $\langle k \rangle = 1$ 

*m* = 250

 $\langle k \rangle = 1$ 







 $\langle k \rangle = 1$ 

m = 250 $\langle k \rangle = 1$ 



m = 250 $\langle k \rangle = 1$ 



m = 250 $\langle k \rangle = 1$ 

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Size of the Giant Component Average Component Size Deformance

# Outline

Definitions How to build Some visual examples

### Structure

### Clustering

Degree distributions Configuration model Largest component

### **Generating Functions**

Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration mode Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 25/89

P

୶ୡ୲ୖ

### Clustering:

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient (Newman<sup>[1]</sup>):

 $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$ 

- Recall: C<sub>2</sub> = probability that two nodes are connected given they have a friend in common.
- For standard random networks, we have simply that

 $C_2 = p$ 

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering

> Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 26/89

### **Clustering:**

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient (Newman<sup>[1]</sup>):

 $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$ 

- Recall: C<sub>2</sub> = probability that two nodes are connected given they have a friend in common.
- For standard random networks, we have simply that

 $C_2 = p$ 

### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 26/89

### Clustering:

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient (Newman<sup>[1]</sup>):

 $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$ 

Recall: C<sub>2</sub> = probability that two nodes are connected given they have a friend in common.

For standard random networks, we have simply that

 $C_2 = p$ 

### Random Networks

Basics Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 26/89

### Clustering:

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient (Newman<sup>[1]</sup>):

 $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$ 

- Recall: C<sub>2</sub> = probability that two nodes are connected given they have a friend in common.
- For standard random networks, we have simply that

 $C_2 = p.$ 

### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 26/89

 $\neg \land \land \land$ 

### **Clustering:**

- So for large random networks (N → ∞), clustering drops to zero.
- Key structural feature of random networks is that they locally look like branching networks (no loops).

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration mode Largest component

Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 27/89

### **Clustering:**

- So for large random networks (N → ∞), clustering drops to zero.
- Key structural feature of random networks is that they locally look like branching networks (no loops).

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

Frame 27/89

# Outline

Definitions How to build Some visual examples

### Structure

Clustering

### Degree distributions

Configuration model Largest component

### **Generating Functions**

Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 28/89

P

୬ଏ୯

### Degree distribution:

- Recall p<sub>k</sub> = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N − 1 choose k' ways the node can be connected to k of the other N − 1 nodes.
- ► Each connection occurs with probability *p*, each non-connection with probability (1 *p*).
- Therefore have a binomial distribution:

$$P(k;p,N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}.$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Degree distribution:

- Recall p<sub>k</sub> = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N − 1 choose k' ways the node can be connected to k of the other N − 1 nodes.
- ► Each connection occurs with probability *p*, each non-connection with probability (1 *p*).
- Therefore have a binomial distribution:

$$P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Degree distribution:

- Recall p<sub>k</sub> = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N − 1 choose k' ways the node can be connected to k of the other N − 1 nodes.
- ► Each connection occurs with probability p, each non-connection with probability (1 - p).
- Therefore have a binomial distribution:

$$P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}.$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 29/89

Degree distribution:

- Recall p<sub>k</sub> = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N − 1 choose k' ways the node can be connected to k of the other N − 1 nodes.
- ► Each connection occurs with probability p, each non-connection with probability (1 - p).
- Therefore have a binomial distribution:

$$P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$$

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 29/89

Degree distribution:

- Recall p<sub>k</sub> = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N 1 choose k' ways the node can be connected to k of the other N 1 nodes.
- ► Each connection occurs with probability *p*, each non-connection with probability (1 − *p*).
- Therefore have a binomial distribution:

$$P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}.$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 29/89

### Limiting form of P(k; p, N):

- Our degree distribution:  $P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}$
- What happens as  $N \to \infty$ ?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree ⟨k⟩ ≃ pN → ∞.
- But we want to keep  $\langle k \rangle$  fixed...
- ▶ So examine limit of P(k; p, N) when  $p \to 0$  and  $N \to \infty$  with  $\langle k \rangle = p(N-1) = \text{constant}$ .

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

### Limiting form of P(k; p, N):

- Our degree distribution:  $P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$
- What happens as  $N \to \infty$ ?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree ⟨k⟩ ≃ pN → ∞.
- But we want to keep  $\langle k \rangle$  fixed...
- ▶ So examine limit of P(k; p, N) when  $p \to 0$  and  $N \to \infty$  with  $\langle k \rangle = p(N-1) = \text{constant}$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

### Limiting form of P(k; p, N):

- Our degree distribution:  $P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$
- What happens as  $N \to \infty$ ?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree ⟨k⟩ ≃ pN → ∞.
- But we want to keep  $\langle k \rangle$  fixed...
- ▶ So examine limit of P(k; p, N) when  $p \to 0$  and  $N \to \infty$  with  $\langle k \rangle = p(N-1) = \text{constant}$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

### Limiting form of P(k; p, N):

- Our degree distribution:  $P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$
- What happens as  $N \to \infty$ ?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree ⟨k⟩ ≃ pN → ∞.
- But we want to keep  $\langle k \rangle$  fixed...
- ▶ So examine limit of P(k; p, N) when  $p \rightarrow 0$  and  $N \rightarrow \infty$  with  $\langle k \rangle = p(N-1) = \text{constant}$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

### Limiting form of P(k; p, N):

- Our degree distribution:  $P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$
- What happens as  $N \to \infty$ ?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree ⟨k⟩ ≃ pN → ∞.
- But we want to keep  $\langle k \rangle$  fixed...
- ▶ So examine limit of P(k; p, N) when  $p \to 0$  and  $N \to \infty$  with  $\langle k \rangle = p(N-1) = \text{constant}$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

helefices

Frame 30/89

୍ର୍ର୍ବ୍

### Limiting form of P(k; p, N):

- Our degree distribution:  $P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$
- What happens as  $N \to \infty$ ?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree ⟨k⟩ ≃ pN → ∞.
- But we want to keep  $\langle k \rangle$  fixed...
- ► So examine limit of P(k; p, N) when  $p \to 0$  and  $N \to \infty$  with  $\langle k \rangle = p(N-1) = \text{constant.}$

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

Frame 30/89

ା ୬ବ୍ଦ

Substitute  $p = \frac{\langle k \rangle}{N-1}$  into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)(N-2)\cdots(N-k)}{k!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component sizes Useful results Size of the Glant Component Average Component Size

References

Substitute  $p = \frac{\langle k \rangle}{N-1}$  into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)(N-2)\cdots(N-k)}{k!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

Substitute  $p = \frac{\langle k \rangle}{N-1}$  into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)(N-2)\cdots(N-k)}{k!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 31/89

P

୬ବଙ

Substitute  $p = \frac{\langle k \rangle}{N-1}$  into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)(N-2)\cdots(N-k)}{k!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{N^{k}(1-\frac{1}{N})\cdots(1-\frac{k}{N})}{k!N^{k}}\frac{\langle k\rangle^{k}}{(1-\frac{1}{N})^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating "Unctions Definitions Basic Properties Giant Component sizes Useful results Size of the Giant Component Average Component Size

References

Substitute  $p = \frac{\langle k \rangle}{N-1}$  into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)(N-2)\cdots(N-k)}{k!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{\cancel{k}}{\cancel{k!}}\frac{(1-\frac{1}{N})\cdots(1-\frac{k}{N})}{\cancel{k!}}\frac{\langle k\rangle^{k}}{(1-\frac{1}{N})^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

Substitute  $p = \frac{\langle k \rangle}{N-1}$  into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)(N-2)\cdots(N-k)}{k!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$\simeq \frac{\mathcal{M}^{k}(1-\frac{1}{N})\cdots(1-\frac{k}{N})}{k!\mathcal{M}^{k}}\frac{\langle k\rangle^{k}}{(1-\frac{1}{N})^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

We are now here:

$$P(k; p, N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

Now use the excellent result:

$$\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$$

(Use l'Hôpital's rule to prove.)

ldentifying n = N - 1 and  $x = -\langle k \rangle$ :

$$P(k;\langle k\rangle) \simeq \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle} \left(1 - \frac{\langle k\rangle}{N-1}\right)^{-k} \to \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle}$$

▶ This is a Poisson distribution ( $\boxplus$ ) with mean  $\langle k \rangle$ .

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

We are now here:

$$P(k; p, N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

Now use the excellent result:

$$\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$$

(Use l'Hôpital's rule to prove.)

• Identifying n = N - 1 and  $x = -\langle k \rangle$ :

$$P(k;\langle k\rangle) \simeq \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle} \left(1 - \frac{\langle k\rangle}{N-1}\right)^{-k} \to \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle}$$

▶ This is a Poisson distribution ( $\boxplus$ ) with mean  $\langle k \rangle$ .

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

We are now here:

$$P(k; p, N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

Now use the excellent result:

$$\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$$

(Use l'Hôpital's rule to prove.)

• Identifying n = N - 1 and  $x = -\langle k \rangle$ :

r

$$P(k;\langle k\rangle) \simeq \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle} \left(1 - \frac{\langle k\rangle}{N-1}\right)^{-k} \rightarrow \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle}$$

▶ This is a Poisson distribution (⊞) with mean  $\langle k \rangle$ .

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

We are now here:

$$P(k; p, N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

Now use the excellent result:

$$\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$$

(Use l'Hôpital's rule to prove.)

• Identifying n = N - 1 and  $x = -\langle k \rangle$ :

$$P(k;\langle k\rangle) \simeq \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle} \left(1 - \frac{\langle k\rangle}{N-1}\right)^{-k} \rightarrow \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle}$$

▶ This is a Poisson distribution ( $\boxplus$ ) with mean  $\langle k \rangle$ .

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 32/89

# Outline

Definitions How to build Some visual examples

## Structure

Clustering Degree distributions Configuration model

Largest component

## **Generating Functions**

Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 33/89

P

୶ୡ୕ଡ଼

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution  $P_k$ .
- Also known as the configuration model<sup>[1]</sup>.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P<sub>w</sub> and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j.$ 

- But we'll be more interested in
  - Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
  - Examining mechanisms that lead to networks with certain degree distributions.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution  $P_k$ .
- Also known as the configuration model<sup>[1]</sup>
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P<sub>w</sub> and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j.$ 

- But we'll be more interested in
  - Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
  - Examining mechanisms that lead to networks with certain degree distributions.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution  $P_k$ .
- Also known as the configuration model<sup>[1]</sup>.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P<sub>w</sub> and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j.$ 

- But we'll be more interested in
  - Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
  - Examining mechanisms that lead to networks with certain degree distributions.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution  $P_k$ .
- Also known as the configuration model<sup>[1]</sup>.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P<sub>w</sub> and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j.$ 

- But we'll be more interested in
  - Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
  - Examining mechanisms that lead to networks with certain degree distributions.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component tizes Useful results Size of the Giant Component Average Component Size

References

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution  $P_k$ .
- Also known as the configuration model<sup>[1]</sup>.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P<sub>w</sub> and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j$ .

- But we'll be more interested in
  - Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
  - Examining mechanisms that lead to networks with certain degree distributions.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution  $P_k$ .
- Also known as the configuration model<sup>[1]</sup>.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P<sub>w</sub> and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_i$ .

- But we'll be more interested in
  - 1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
  - 2. Examining mechanisms that lead to networks with certain degree distributions.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 34/89

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution  $P_k$ .
- Also known as the configuration model<sup>[1]</sup>.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P<sub>w</sub> and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_i$ .

- But we'll be more interested in
  - 1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
  - 2. Examining mechanisms that lead to networks with certain degree distributions.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 34/89

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution  $P_k$ .
- Also known as the configuration model<sup>[1]</sup>.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P<sub>w</sub> and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_i$ .

- But we'll be more interested in
  - 1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
  - 2. Examining mechanisms that lead to networks with certain degree distributions.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 34/89

## Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$  for  $k \ge 1$ .
- Set  $P_0 = 0$  (no isolated nodes).
- Vary exponent  $\gamma$  between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

## Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$  for  $k \ge 1$ .
- Set  $P_0 = 0$  (no isolated nodes).
- Vary exponent  $\gamma$  between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$  for  $k \ge 1$ .
- Set  $P_0 = 0$  (no isolated nodes).
- Vary exponent  $\gamma$  between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$  for  $k \ge 1$ .
- Set  $P_0 = 0$  (no isolated nodes).
- Vary exponent  $\gamma$  between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$  for  $k \ge 1$ .
- Set  $P_0 = 0$  (no isolated nodes).
- Vary exponent  $\gamma$  between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

## Coming up:

Example realizations of random networks with power law degree distributions:

- ▶ *N* = 1000.
- $P_k \propto k^{-\gamma}$  for  $k \ge 1$ .
- Set  $P_0 = 0$  (no isolated nodes).
- Vary exponent  $\gamma$  between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$  for  $k \ge 1$ .
- Set  $P_0 = 0$  (no isolated nodes).
- Vary exponent  $\gamma$  between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

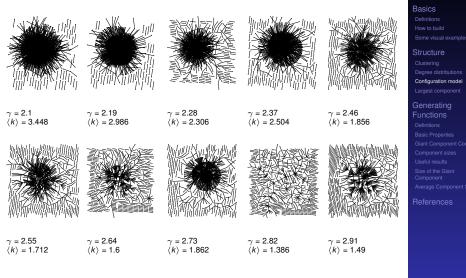
### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

# Random networks: examples for N=1000



Frame 36/89

### Random Networks

# Random networks: largest components











 $\gamma = 2.1$  $\langle k \rangle = 3.448$ 

 $\gamma = 2.55$ 

(k) = 1.712

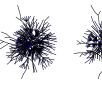
 $\gamma = 2.19$  $\langle k \rangle = 2.986$ 

 $\gamma = 2.64$ 

 $\langle k \rangle = 1.6$ 

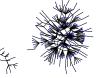


 $\gamma = 2.37$  $\langle k \rangle = 2.504$   $\begin{array}{l} \gamma = 2.46 \\ \langle k \rangle = 1.856 \end{array}$ 









 $\gamma = 2.73$  $\langle k \rangle = 1.862$   $\gamma = 2.82$  $\langle k \rangle = 1.386$   $\gamma = 2.91$  $\langle k \rangle = 1.49$ 

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

► Checking:

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$=e^{-\langle k
angle}\sum_{k=0}^{\infty}rac{\langle k
angle^k}{k!}$$

$$=e^{-\langle k
angle}e^{\langle k
angle}=1\sqrt{k}$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

Checking:

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$=e^{-\langle k
angle}\sum_{k=0}^{\infty}rac{\langle k
angle^k}{k!}$$

Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

Checking:

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$=e^{-\langle k
angle}\sum_{k=0}^{\infty}rac{\langle k
angle^k}{k!}$$

$$=e^{-\langle k
angle}e^{\langle k
angle}=1\sqrt{2}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

Checking:

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$=e^{-\langle k
angle}\sum_{k=0}^{\infty}rac{\langle k
angle^k}{k!}$$

$$=e^{-\langle k
angle}e^{\langle k
angle}=1\sqrt{2}$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Source Component sizes Useful results Size of the Giant Component Average Component Size

References

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

Checking:

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!}$$

$$=e^{-\langle k\rangle}e^{\langle k\rangle}=1$$

Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k P(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$=e^{-\langle k\rangle}\sum_{k=1}^{\infty}rac{\langle k
angle^k}{(k-1)!}$$

$$=\langle k 
angle e^{-\langle k 
angle} \sum_{k=1}^{\infty} \frac{\langle k 
angle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^{i}}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

We'll get to a better way of doing this...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Datinitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 39/89

- ~ ~ ~

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k P(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$=e^{-\langle k\rangle}\sum_{k=1}^{\infty}\frac{\langle k\rangle^k}{(k-1)!}$$

$$=\langle k 
angle e^{-\langle k 
angle} \sum_{k=1}^{\infty} \frac{\langle k 
angle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^i}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

We'll get to a better way of doing this...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 39/89

- ~ ~ ~

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k P(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle \mathbf{k} \rangle e^{-\langle \mathbf{k} \rangle} \sum_{k=1}^{\infty} \frac{\langle \mathbf{k} \rangle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^{i}}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

We'll get to a better way of doing this...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 39/89

- ~ ~ ~

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k P(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle \boldsymbol{k} \rangle \boldsymbol{e}^{-\langle \boldsymbol{k} \rangle} \sum_{k=1}^{\infty} \frac{\langle \boldsymbol{k} \rangle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^{i}}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

We'll get to a better way of doing this...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

Frame 39/89

- ~ ~ ~

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k P(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle \boldsymbol{k} \rangle \boldsymbol{e}^{-\langle \boldsymbol{k} \rangle} \sum_{k=1}^{\infty} \frac{\langle \boldsymbol{k} \rangle^{\boldsymbol{k}-1}}{(\boldsymbol{k}-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^i}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

We'll get to a better way of doing this...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 39/89

- ~ ~ ~

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k P(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle \boldsymbol{k} \rangle \boldsymbol{e}^{-\langle \boldsymbol{k} \rangle} \sum_{k=1}^{\infty} \frac{\langle \boldsymbol{k} \rangle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^i}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

We'll get to a better way of doing this...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Stores Component sizes Useful results Size of the Glant Component Average Component Size

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k P(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle \boldsymbol{k} \rangle \boldsymbol{e}^{-\langle \boldsymbol{k} \rangle} \sum_{k=1}^{\infty} \frac{\langle \boldsymbol{k} \rangle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^i}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

We'll get to a better way of doing this...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Stores Component sizes Useful results Size of the Glant Component Average Component Size

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k P(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle \boldsymbol{k} \rangle \boldsymbol{e}^{-\langle \boldsymbol{k} \rangle} \sum_{k=1}^{\infty} \frac{\langle \boldsymbol{k} \rangle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^i}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

We'll get to a better way of doing this...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Stores Component sizes Useful results Size of the Glant Component Average Component Size

References

Frame 39/89

A 200

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

 $\sigma^{2} = \langle \boldsymbol{k}^{2} \rangle - \langle \boldsymbol{k} \rangle^{2} = \langle \boldsymbol{k} \rangle^{2} + \langle \boldsymbol{k} \rangle - \langle \boldsymbol{k} \rangle^{2} = \langle \boldsymbol{k} \rangle.$ 

- So standard deviation  $\sigma$  is equal to  $\sqrt{\langle k \rangle}$ .
- Note: This is a special property of Poisson distribution and can trip us up...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

Frame 40/89

₽ ∽ � �

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle \mathbf{k}^2 \rangle = \langle \mathbf{k} \rangle^2 + \langle \mathbf{k} \rangle.$$

Variance is then

 $\sigma^{2} = \langle k^{2} \rangle - \langle k \rangle^{2} = \langle k \rangle^{2} + \langle k \rangle - \langle k \rangle^{2} = \langle k \rangle.$ 

- So standard deviation  $\sigma$  is equal to  $\sqrt{\langle k \rangle}$ .
- Note: This is a special property of Poisson distribution and can trip us up...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

Frame 40/89

୭ ୬ ୦ ୯

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle \mathbf{k}^2 \rangle = \langle \mathbf{k} \rangle^2 + \langle \mathbf{k} \rangle.$$

Variance is then

 $\sigma^{2} = \langle k^{2} \rangle - \langle k \rangle^{2} = \langle k \rangle^{2} + \langle k \rangle - \langle k \rangle^{2} = \langle k \rangle.$ 

- So standard deviation  $\sigma$  is equal to  $\sqrt{\langle k \rangle}$ .
- Note: This is a special property of Poisson distribution and can trip us up...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

Frame 40/89

ନ ୬୦୯

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

$$\sigma^{2} = \langle \mathbf{k}^{2} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle^{2} + \langle \mathbf{k} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle.$$

- So standard deviation  $\sigma$  is equal to  $\sqrt{\langle k \rangle}$ .
- Note: This is a special property of Poisson distribution and can trip us up...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

Frame 40/89

୭ ୬ ୯ ୯

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

$$\sigma^{2} = \langle \mathbf{k}^{2} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle^{2} + \langle \mathbf{k} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle.$$

- So standard deviation  $\sigma$  is equal to  $\sqrt{\langle k \rangle}$ .
- Note: This is a special property of Poisson distribution and can trip us up...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Size of the Giant Component Average Component Size

Frame 40/89

া ৩৫৫

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle \mathbf{k}^2 \rangle = \langle \mathbf{k} \rangle^2 + \langle \mathbf{k} \rangle.$$

Variance is then

$$\sigma^{2} = \langle \mathbf{k}^{2} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle^{2} + \langle \mathbf{k} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle.$$

- So standard deviation  $\sigma$  is equal to  $\sqrt{\langle k \rangle}$ .
- Note: This is a special property of Poisson distribution and can trip us up...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

Frame 40/89

৽৵৽৻৽

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle \mathbf{k}^2 \rangle = \langle \mathbf{k} \rangle^2 + \langle \mathbf{k} \rangle.$$

Variance is then

$$\sigma^{2} = \langle \mathbf{k}^{2} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle^{2} + \langle \mathbf{k} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle.$$

- So standard deviation  $\sigma$  is equal to  $\sqrt{\langle \mathbf{k} \rangle}$ .
- Note: This is a special property of Poisson distribution and can trip us up...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Scatter Useful results Size of the Giant Component Average Component Size

Frame 40/89

ା ୬ବ୍ଙ

- The degree distribution P<sub>k</sub> is fundamental for our description of many complex networks
- Again:  $P_k$  is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes
- ▶ Define Q<sub>k</sub> to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):



### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 41/89

- The degree distribution P<sub>k</sub> is fundamental for our description of many complex networks
- Again:  $P_k$  is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes
- ▶ Define Q<sub>k</sub> to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):



### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 41/89

- The degree distribution P<sub>k</sub> is fundamental for our description of many complex networks
- Again:  $P_k$  is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes
- Define Q<sub>k</sub> to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):



### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 41/89

- The degree distribution P<sub>k</sub> is fundamental for our description of many complex networks
- Again:  $P_k$  is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q<sub>k</sub> to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

Normalized form:

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

- The degree distribution P<sub>k</sub> is fundamental for our description of many complex networks
- Again:  $P_k$  is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q<sub>k</sub> to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):



### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Glant Component Scot Component sizes Useful results Size of the Glant Component Average Component Size

References

- The degree distribution P<sub>k</sub> is fundamental for our description of many complex networks
- Again:  $P_k$  is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q<sub>k</sub> to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):



Normalized form:

### Random Networks

Basics Definitions How to build Some visual examples

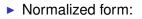
Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

Frame 41/89

୭ ୬ ୦ ୯

- The degree distribution P<sub>k</sub> is fundamental for our description of many complex networks
- Again:  $P_k$  is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q<sub>k</sub> to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):



 $Q_k = \frac{kP_k}{\sum_{k'=0}^{\infty} k'P_{k'}} = \frac{kP_k}{\langle k \rangle}.$ 

 $Q_k \propto k P_k$ 

### Random Networks

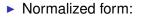
Basics Definitions How to build Some visual examples

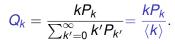
Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

- The degree distribution P<sub>k</sub> is fundamental for our description of many complex networks
- Again:  $P_k$  is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q<sub>k</sub> to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):





 $Q_k \propto k P_k$ 

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 41/89

୬ବ୍ଦ

- For random networks, Q<sub>k</sub> is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on  $Q_k$ :

 $R_k$  = probability that a friend of a random node has k other friends.

$$R_{k} = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- Equivalent to friend having degree k + 1.
- Natural question: what's the expected number of other friends that one friend has?

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

Frame 42/89

- For random networks, Q<sub>k</sub> is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on Q<sub>k</sub>:

 $R_k$  = probability that a friend of a random node has *k* other friends.

$$R_{k} = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- Equivalent to friend having degree k + 1.
- Natural question: what's the expected number of other friends that one friend has?

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 42/89

SQC2

- For random networks, Q<sub>k</sub> is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on Q<sub>k</sub>:

 $R_k$  = probability that a friend of a random node has *k* other friends.

$$R_{k} = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- Equivalent to friend having degree k + 1.
- Natural question: what's the expected number of other friends that one friend has?

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 42/89

SAR

- For random networks, Q<sub>k</sub> is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on Q<sub>k</sub>:

 $R_k$  = probability that a friend of a random node has *k* other friends.

$$R_{k} = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- Equivalent to friend having degree k + 1.
- Natural question: what's the expected number of other friends that one friend has?

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

Frame 42/89

- For random networks, Q<sub>k</sub> is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on Q<sub>k</sub>:

 $R_k$  = probability that a friend of a random node has *k* other friends.

$$R_{k} = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- Equivalent to friend having degree k + 1.
- Natural question: what's the expected number of other friends that one friend has?

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

Frame 42/89

- For random networks, Q<sub>k</sub> is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on Q<sub>k</sub>:

 $R_k$  = probability that a friend of a random node has *k* other friends.

$$R_{k} = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- Equivalent to friend having degree k + 1.
- Natural question: what's the expected number of other friends that one friend has?

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size Baferences

Frame 42/89

୭ ୬ ୦ ୦

Given R<sub>k</sub> is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle \mathbf{k} \rangle_{\mathbf{R}} = \sum_{\mathbf{k}=0}^{\infty} \mathbf{k} \mathbf{R}_{\mathbf{k}} = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k-1}}{\langle k \rangle}$$
$$= \frac{1}{\langle k \rangle} \sum_{k=1}^{\infty} k(k+1)P_{k+1}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{\infty}\left((k+1)^2-(k+1)\right)P_{k+1}$$

(where we have sneakily matched up indices)

$$=rac{1}{\langle k
angle}\sum_{j=0}^{\infty}(j^2-j)P_j$$
 (using j = k+1)

$$=rac{1}{\langle k
angle}\left(\langle k^2
angle-\langle k
angle
ight)$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

Given R<sub>k</sub> is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_{R} = \sum_{k=0}^{\infty} k R_{k} = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k+1}}{\langle k \rangle}$$
$$= \frac{1}{\langle k \rangle} \sum_{k=1}^{\infty} k(k+1)P_{k+1}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{\infty}\left((k+1)^2-(k+1)\right)P_{k+1}$$

(where we have sneakily matched up indices)

$$=rac{1}{\langle k
angle}\sum_{j=0}^{\infty}(j^2-j)P_j$$
 (using j = k+1)

$$=rac{1}{\langle k
angle}\left(\langle k^2
angle-\langle k
angle
ight)$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

Given R<sub>k</sub> is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_{R} = \sum_{k=0}^{\infty} kR_{k} = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k+1}}{\langle k \rangle}$$
$$= \frac{1}{\langle k \rangle} \sum_{k=1}^{\infty} k(k+1)P_{k+1}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{\infty}\left((k+1)^2-(k+1)\right)P_{k+1}$$

(where we have sneakily matched up indices)

$$=rac{1}{\langle k
angle}\sum_{j=0}^{\infty}(j^2-j)P_j$$
 (using j = k+1)

$$=\frac{1}{\langle k\rangle}\left(\langle k^{2}\rangle-\langle k\rangle\right)$$

Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

Given R<sub>k</sub> is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_{R} = \sum_{k=0}^{\infty} kR_{k} = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k+1}}{\langle k \rangle}$$
$$= \frac{1}{\langle k \rangle} \sum_{k=1}^{\infty} k(k+1)P_{k+1}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{\infty}\left((k+1)^2-(k+1)\right)P_{k+1}$$

(where we have sneakily matched up indices)

$$= \frac{1}{\langle k \rangle} \sum_{j=0}^{\infty} (j^2 - j) P_j \quad \text{(using j = k+1)}$$

$$=rac{1}{\langle k
angle}\left(\langle k^2
angle-\langle k
angle
ight)$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

Given R<sub>k</sub> is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_{R} = \sum_{k=0}^{\infty} kR_{k} = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k+1}}{\langle k \rangle}$$
$$= \frac{1}{\langle k \rangle} \sum_{k=1}^{\infty} k(k+1)P_{k+1}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{\infty}\left((k+1)^2-(k+1)\right)P_{k+1}$$

(where we have sneakily matched up indices)

$$=rac{1}{\langle k
angle}\sum_{j=0}^{\infty}(j^2-j)P_j$$
 (using j = k+1)

$$=\frac{1}{\langle k\rangle}\left(\langle k^2\rangle-\langle k\rangle\right)$$

Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

Given R<sub>k</sub> is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_{R} = \sum_{k=0}^{\infty} kR_{k} = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k+1}}{\langle k \rangle}$$
$$= \frac{1}{\langle k \rangle} \sum_{k=1}^{\infty} k(k+1)P_{k+1}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{\infty}\left((k+1)^2-(k+1)\right)P_{k+1}$$

(where we have sneakily matched up indices)

$$= \frac{1}{\langle k \rangle} \sum_{j=0}^{\infty} (j^2 - j) P_j \quad \text{(using j = k+1)}$$

$$=rac{1}{\langle k
angle}\left(\langle k^2
angle-\langle k
angle
ight)$$

Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

- ► Note: our result, \langle k \rangle\_R = \frac{1}{\langle k \rangle} \left( \langle k^2 \rangle \langle k \rangle \right), is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

► Therefore:

$$\langle k \rangle_R = \frac{1}{\langle k \rangle} \left( \langle k \rangle^2 + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neatness of results is a special property of the Poisson distribution.
- So friends on average have  $\langle k \rangle$  other friends, and  $\langle k \rangle + 1$  total friends...

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

- ► Note: our result, \langle k \rangle\_R = \frac{1}{\langle k \rangle} \left( \langle k^2 \rangle \langle k \rangle \right), is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

► Therefore:

$$\langle k \rangle_R = \frac{1}{\langle k \rangle} \left( \langle k \rangle^2 + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neatness of results is a special property of the Poisson distribution.
- So friends on average have  $\langle k \rangle$  other friends, and  $\langle k \rangle + 1$  total friends...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

- ► Note: our result, \langle k \rangle\_R = \frac{1}{\langle k \rangle} \left( \langle k^2 \rangle \langle k \rangle \right), is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Therefore:

$$\langle k \rangle_{R} = \frac{1}{\langle k \rangle} \left( \langle k \rangle^{2} + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neatness of results is a special property of the Poisson distribution.
- So friends on average have  $\langle k \rangle$  other friends, and  $\langle k \rangle + 1$  total friends...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

- ► Note: our result, \langle k \rangle\_R = \frac{1}{\langle k \rangle} \left( \langle k^2 \rangle \langle k \rangle \right), is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Therefore:

$$\langle k \rangle_{R} = \frac{1}{\langle k \rangle} \left( \langle k \rangle^{2} + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neatness of results is a special property of the Poisson distribution.
- So friends on average have  $\langle k \rangle$  other friends, and  $\langle k \rangle + 1$  total friends...

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Score Useful results Size of the Giant Component Size of the Giant Average Component Size

## The edge-degree distribution:

- ► Note: our result, \langle k \rangle\_R = \frac{1}{\langle k \rangle} \left( \langle k^2 \rangle \langle k \rangle \right), is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Therefore:

$$\langle k \rangle_{R} = \frac{1}{\langle k \rangle} \left( \langle k \rangle^{2} + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neatness of results is a special property of the Poisson distribution.
- So friends on average have  $\langle k \rangle$  other friends, and  $\langle k \rangle + 1$  total friends...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

## The edge-degree distribution:

- ► Note: our result, \langle k \rangle\_R = \frac{1}{\langle k \rangle} \left( \langle k^2 \rangle \langle k \rangle \right), is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Therefore:

$$\langle k \rangle_{R} = \frac{1}{\langle k \rangle} \left( \langle k \rangle^{2} + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neatness of results is a special property of the Poisson distribution.
- So friends on average have  $\langle k \rangle$  other friends, and  $\langle k \rangle + 1$  total friends...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size Beferences

Frame 44/89

## Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_{\mathbf{R}} = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left( \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P<sub>k</sub> and not just the 1st moment.
- ► Three peculiarities:
  - 1. We might guess  $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$  but it's actually  $\langle k(k-1) \rangle$ .
  - 2. If  $P_k$  has a large second moment, then  $\langle k_2 \rangle$  will be big.
    - (e.g., in the case of a power-law distribution)
  - 3. Your friends are different to you...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 45/89

୶ୡୡ

## Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_{\mathbf{R}} = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left( \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P<sub>k</sub> and not just the 1st moment.
- ► Three peculiarities:
  - 1. We might guess  $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$  but it's actually  $\langle k(k-1) \rangle$ .
  - 2. If  $P_k$  has a large second moment, then  $\langle k_2 \rangle$  will be big.
    - (e.g., in the case of a power-law distribution)
  - 3. Your friends are different to you...

#### Random Networks

#### Basics Definitions How to build

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 45/89

୶ୡୡ

## Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_{\mathbf{R}} = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left( \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P<sub>k</sub> and not just the 1st moment.
- Three peculiarities:
  - 1. We might guess  $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$  but it's actually  $\langle k(k-1) \rangle$ .
  - 2. If  $P_k$  has a large second moment, then  $\langle k_2 \rangle$  will be big.
    - (e.g., in the case of a power-law distribution)
  - 3. Your friends are different to you...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 45/89

୍ର୍ର୍୍

### Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left( \langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P<sub>k</sub> and not just the 1st moment.
- Three peculiarities:
  - 1. We might guess  $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$  but it's actually  $\langle k(k-1) \rangle$ .
  - 2. If  $P_k$  has a large second moment, then  $\langle k_2 \rangle$  will be big.
    - (e.g., in the case of a power-law distribution)
  - 3. Your friends are different to you...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 45/89

୶ୡୡ

### Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left( \langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

Key: Average depends on the 1st and 2nd moments of P<sub>k</sub> and not just the 1st moment.

### Three peculiarities:

- 1. We might guess  $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$  but it's actually  $\langle k(k-1) \rangle$ .
- 2. If  $P_k$  has a large second moment, then  $\langle k_2 \rangle$  will be big.
  - (e.g., in the case of a power-law distribution)
- 3. Your friends are different to you...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 45/89

୶ୡୡ

## Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_{\mathbf{R}} = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left( \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P<sub>k</sub> and not just the 1st moment.
- Three peculiarities:
  - 1. We might guess  $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$  but it's actually  $\langle k(k-1) \rangle$ .
  - If P<sub>k</sub> has a large second moment, then ⟨k<sub>2</sub>⟩ will be big.
     (e.g., in the case of a power-law distribution
  - Your friends are different to you...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

Frame 45/89

ା ୬ବ୍ଦ

## Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_{\mathbf{R}} = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left( \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P<sub>k</sub> and not just the 1st moment.
- Three peculiarities:
  - 1. We might guess  $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$  but it's actually  $\langle k(k-1) \rangle$ .
  - 2. If  $P_k$  has a large second moment, then  $\langle k_2 \rangle$  will be big.

(e.g., in the case of a power-law distribution)

3. Your friends are different to you...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size Beferences

Frame 45/89

## Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_{\mathbf{R}} = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left( \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P<sub>k</sub> and not just the 1st moment.
- Three peculiarities:
  - 1. We might guess  $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$  but it's actually  $\langle k(k-1) \rangle$ .
  - If *P<sub>k</sub>* has a large second moment, then ⟨*k*<sub>2</sub>⟩ will be big. (e.g., in the case of a power-law distribution)
     Your friends are different to you

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size Beferences

Frame 45/89

## Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_{\mathbf{R}} = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left( \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P<sub>k</sub> and not just the 1st moment.
- Three peculiarities:
  - 1. We might guess  $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$  but it's actually  $\langle k(k-1) \rangle$ .
  - 2. If *P<sub>k</sub>* has a large second moment, then ⟨*k*<sub>2</sub>⟩ will be big.
    (e.g., in the case of a power-law distribution)
  - 3. Your friends are different to you...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Glant Component Social United Testing Size of the Glant Component Average Component Size Beferences

Frame 45/89

## More on peculiarity #3:

A node's average # of friends: (k)

- Friend's average # of friends:  $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- ► Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left( 1 + \frac{\sigma^2}{\langle k \rangle^2} \right)$$

- So only if everyone has the same degree (variance= σ<sup>2</sup> = 0) can a node be the same as if friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

## More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends:  $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

 $\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left( 1 + \frac{\sigma^2}{\langle k \rangle^2} \right)$ 

- So only if everyone has the same degree (variance= σ<sup>2</sup> = 0) can a node be the same as it friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends:  $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left( 1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \geq$$

- So only if everyone has the same degree (variance= σ<sup>2</sup> = 0) can a node be the same as it friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends:  $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle \mathbf{k}^{2} \rangle}{\langle \mathbf{k} \rangle} = \langle \mathbf{k} \rangle \frac{\langle \mathbf{k}^{2} \rangle}{\langle \mathbf{k} \rangle^{2}} = \langle \mathbf{k} \rangle \frac{\sigma^{2} + \langle \mathbf{k} \rangle^{2}}{\langle \mathbf{k} \rangle^{2}} = \langle \mathbf{k} \rangle \left( 1 + \frac{\sigma^{2}}{\langle \mathbf{k} \rangle^{2}} \right) \geq$$

- So only if everyone has the same degree (variance= σ<sup>2</sup> = 0) can a node be the same as its friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends:  $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle \boldsymbol{k}^2 \rangle}{\langle \boldsymbol{k} \rangle} = \langle \boldsymbol{k} \rangle \frac{\langle \boldsymbol{k}^2 \rangle}{\langle \boldsymbol{k} \rangle^2} = \langle \boldsymbol{k} \rangle \frac{\sigma^2 + \langle \boldsymbol{k} \rangle^2}{\langle \boldsymbol{k} \rangle^2} = \langle \boldsymbol{k} \rangle \left( 1 + \frac{\sigma^2}{\langle \boldsymbol{k} \rangle^2} \right) \geq$$

- So only if everyone has the same degree (variance= σ<sup>2</sup> = 0) can a node be the same as its friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends:  $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle \mathbf{k}^{2} \rangle}{\langle \mathbf{k} \rangle} = \langle \mathbf{k} \rangle \frac{\langle \mathbf{k}^{2} \rangle}{\langle \mathbf{k} \rangle^{2}} = \langle \mathbf{k} \rangle \frac{\sigma^{2} + \langle \mathbf{k} \rangle^{2}}{\langle \mathbf{k} \rangle^{2}} = \langle \mathbf{k} \rangle \left( 1 + \frac{\sigma^{2}}{\langle \mathbf{k} \rangle^{2}} \right) \geq \langle \mathbf{k} \rangle \left( 1 + \frac{\sigma^{2}}{\langle \mathbf{k} \rangle^{2}} \right) = \langle \mathbf{k} \rangle \left( 1 + \frac{\sigma^{2}}{\langle \mathbf{k} \rangle^{2}} \right)$$

- So only if everyone has the same degree (variance= σ<sup>2</sup> = 0) can a node be the same as its friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends:  $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left( 1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \ge \langle k \rangle \left( 1 + \frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left( 1 + \frac{\sigma^2}{\langle k \rangle^2} \right)$$

- So only if everyone has the same degree (variance= σ<sup>2</sup> = 0) can a node be the same as its friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends:  $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left( 1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \ge \langle k \rangle \left( 1 + \frac{\sigma^2}{\langle k \rangle^2} \right) = \langle k \rangle \left( 1 + \frac{\sigma^2}{\langle k \rangle^2} \right)$$

- So only if everyone has the same degree (variance= σ<sup>2</sup> = 0) can a node be the same as its friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 46/89

୍ର୍ବ୍ର୍

## (Big) Reason #2:

- ⟨k⟩<sub>R</sub> is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- ▶ Defn: Giant component = component that comprises a non-zero fraction of a network as  $N \rightarrow \infty$ .
- Note: Component = Cluster

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

## (Big) Reason #2:

- ⟨k⟩<sub>R</sub> is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- ▶ Defn: Giant component = component that comprises a non-zero fraction of a network as  $N \rightarrow \infty$ .
- Note: Component = Cluster

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Social Useful results Size of the Giant Component Average Component Size Baferences

## (Big) Reason #2:

- ⟨k⟩<sub>R</sub> is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- ▶ Defn: Giant component = component that comprises a non-zero fraction of a network as  $N \rightarrow \infty$ .
- Note: Component = Cluster

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size Baferences

## (Big) Reason #2:

- ⟨k⟩<sub>R</sub> is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- ▶ Defn: Giant component = component that comprises a non-zero fraction of a network as  $N \rightarrow \infty$ .
- Note: Component = Cluster

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## (Big) Reason #2:

- ⟨k⟩<sub>R</sub> is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- ▶ Defn: Giant component = component that comprises a non-zero fraction of a network as  $N \rightarrow \infty$ .

Note: Component = Cluster

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 47/89

## (Big) Reason #2:

- ⟨k⟩<sub>R</sub> is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- ▶ Defn: Giant component = component that comprises a non-zero fraction of a network as  $N \rightarrow \infty$ .
- Note: Component = Cluster

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 47/89

# Outline

Definitions How to build Some visual examples

## Structure

Clustering Degree distributions Configuration model

## Largest component

## Generating Functions

Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 48/89

৸৶৻৻৽

## Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring  $\langle k \rangle_R > 1$ .
- Giant component condition (or percolation condition):

$$\langle k \rangle_R = rac{\langle k^2 
angle - \langle k 
angle}{\langle k 
angle} > 1$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement:  $\langle k^2 \rangle > 2 \langle k \rangle$

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Size References

Frame 49/89

## Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring  $\langle k \rangle_R > 1$ .
- Giant component condition (or percolation condition):

$$\langle k 
angle_R = rac{\langle k^2 
angle - \langle k 
angle}{\langle k 
angle} > 1$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement:  $\langle k^2 \rangle > 2 \langle k \rangle$

#### Random Networks

#### Basics Definitions How to build Some visual examples

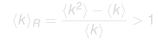
Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size Baferences

Frame 49/89

## Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring  $\langle k \rangle_R > 1$ .
- Giant component condition (or percolation condition):



- Again, see that the second moment is an essential part of the story.
- Equivalent statement:  $\langle k^2 \rangle > 2 \langle k \rangle$

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Scatt Useful results Size of the Giant Component Size Average Component Size References

Frame 49/89

## Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring  $\langle k \rangle_R > 1$ .
- Giant component condition (or percolation condition):

$$\langle k \rangle_R = rac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement:  $\langle k^2 \rangle > 2 \langle k \rangle$

#### Random Networks

#### Basics Definitions How to build Some visual examples

- Structure Clustering Degree distributions Configuration model Largest component
- Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Size References

## Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring  $\langle k \rangle_R > 1$ .
- Giant component condition (or percolation condition):

$$\langle k \rangle_R = rac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} >$$

 Again, see that the second moment is an essential part of the story.

• Equivalent statement:  $\langle k^2 \rangle > 2 \langle k \rangle$ 

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Size References

Frame 49/89

SQC2

## Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring  $\langle k \rangle_R > 1$ .
- Giant component condition (or percolation condition):

$$\langle k \rangle_R = rac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} >$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement: (k<sup>2</sup>) > 2(k)

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Size References

Frame 49/89

SQC2

## Standard random networks:

• Recall 
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- ► Therefore when ⟨k⟩ > 1, standard random networks have a giant component.
- When  $\langle k \rangle < 1$ , all components are finite.
- Fine example of a continuous phase transition  $(\boxplus)$ .
- We say  $\langle k \rangle = 1$  marks the critical point of the system.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

## Standard random networks:

• Recall 
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- ► Therefore when ⟨k⟩ > 1, standard random networks have a giant component.
- When  $\langle k \rangle < 1$ , all components are finite.
- Fine example of a continuous phase transition  $(\boxplus)$ .
- We say  $\langle k \rangle = 1$  marks the critical point of the system.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Scottion Component Sizes Useful results Size of the Giant Component Average Component Size References

## Standard random networks:

• Recall 
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- ► Therefore when ⟨k⟩ > 1, standard random networks have a giant component.
- When  $\langle k \rangle < 1$ , all components are finite.
- Fine example of a continuous phase transition  $(\boxplus)$ .
- We say  $\langle k \rangle = 1$  marks the critical point of the system.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

## Standard random networks:

• Recall 
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- ► Therefore when ⟨k⟩ > 1, standard random networks have a giant component.
- When  $\langle k \rangle < 1$ , all components are finite.
- Fine example of a continuous phase transition  $(\boxplus)$ .
- We say  $\langle k \rangle = 1$  marks the critical point of the system.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

Standard random networks:

• Recall 
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- Therefore when (k) > 1, standard random networks have a giant component.
- When  $\langle k \rangle < 1$ , all components are finite.
- Fine example of a continuous phase transition  $(\boxplus)$ .
- We say  $\langle k \rangle = 1$  marks the critical point of the system.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

Standard random networks:

• Recall 
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_{R} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^{2} + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- Therefore when (k) > 1, standard random networks have a giant component.
- When  $\langle k \rangle < 1$ , all components are finite.
- Fine example of a continuous phase transition (⊞).
- We say  $\langle k \rangle = 1$  marks the critical point of the system.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Scottion Component Sizes Useful results Size of the Giant Component Average Component Size References

Standard random networks:

• Recall 
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_{R} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^{2} + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- Therefore when (k) > 1, standard random networks have a giant component.
- When  $\langle k \rangle < 1$ , all components are finite.
- ► Fine example of a continuous phase transition (⊞).
- We say  $\langle k \rangle = 1$  marks the critical point of the system.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Social United Testing Size of the Glant Component Average Component Size Beferences

Frame 50/89

Standard random networks:

• Recall 
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_{R} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^{2} + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- Therefore when (k) > 1, standard random networks have a giant component.
- When  $\langle k \rangle < 1$ , all components are finite.
- ► Fine example of a continuous phase transition (⊞).
- We say  $\langle k \rangle = 1$  marks the critical point of the system.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Scottion Component Sizes Useful results Size of the Giant Component Average Component Size References

Frame 50/89

Random networks with skewed  $P_k$ :

• e.g, if  $P_k = ck^{-\gamma}$  with 2 <  $\gamma$  < 3 then

$$\langle k^2 
angle = c \sum_{k=0}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\Big|_{x=0}^{\infty} = \infty \quad (>\langle k \rangle).$$

- So giant component always exists for these kinds of networks.
- ► Cutoff scaling is k<sup>-3</sup>: if γ > 3 then we have to look harder at ⟨k⟩<sub>R</sub>.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating "unctions Definitions Basic Proporties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Random networks with skewed  $P_k$ :

• e.g, if  $P_k = ck^{-\gamma}$  with  $2 < \gamma < 3$  then

$$\langle k^2 
angle = c \sum_{k=0}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d}x$$
$$\propto x^{3-\gamma} \Big|_{x=0}^{\infty} \qquad (\sim (k)).$$

- So giant component always exists for these kinds of networks.
- ► Cutoff scaling is k<sup>-3</sup>: if γ > 3 then we have to look harder at ⟨k⟩<sub>R</sub>.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

Random networks with skewed  $P_k$ :

• e.g, if  $P_k = ck^{-\gamma}$  with  $2 < \gamma < 3$  then

$$\langle k^2 
angle = c \sum_{k=0}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d}x$$
$$\propto x^{3-\gamma} \Big|_{x=0}^{\infty} = \infty \quad (>\langle k \rangle).$$

- ----

► Cutoff scaling is k<sup>-3</sup>: if γ > 3 then we have to look harder at ⟨k⟩<sub>R</sub>.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Source Component sizes Useful results Size of the Glant Component Average Component Size

Random networks with skewed  $P_k$ :

• e.g, if  $P_k = ck^{-\gamma}$  with  $2 < \gamma < 3$  then

$$\langle k^2 
angle = c \sum_{k=0}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d}x$$
$$\propto x^{3-\gamma} \Big|_{x=0}^{\infty} = \infty \quad (>\langle k \rangle).$$

- ----

- So giant component always exists for these kinds of networks.
- ► Cutoff scaling is k<sup>-3</sup>: if γ > 3 then we have to look harder at ⟨k⟩<sub>R</sub>.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Unctions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Random networks with skewed  $P_k$ :

• e.g, if  $P_k = ck^{-\gamma}$  with 2 <  $\gamma$  < 3 then

$$\langle k^2 
angle = c \sum_{k=0}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d}x$$
$$\propto x^{3-\gamma} \Big|_{x=0}^{\infty} = \infty \quad (>\langle k \rangle).$$

- ----

► Cutoff scaling is k<sup>-3</sup>: if γ > 3 then we have to look harder at ⟨k⟩<sub>R</sub>.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

Random networks with skewed  $P_k$ :

C

• e.g, if  $P_k = ck^{-\gamma}$  with 2 <  $\gamma$  < 3 then

$$\langle k^2 
angle = c \sum_{k=0}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d}x$$
$$\propto x^{3-\gamma} \Big|_{x=0}^{\infty} = \infty \quad (> \langle k \rangle).$$

<u>~</u>

 So giant component always exists for these kinds of networks.

► Cutoff scaling is k<sup>-3</sup>: if γ > 3 then we have to look harder at ⟨k⟩<sub>R</sub>.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

Random networks with skewed  $P_k$ :

• e.g, if  $P_k = ck^{-\gamma}$  with 2 <  $\gamma$  < 3 then

$$\langle k^2 
angle = c \sum_{k=0}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d}x$$
$$\propto x^{3-\gamma} \Big|_{x=0}^{\infty} = \infty \quad (> \langle k \rangle)$$

- ----

- So giant component always exists for these kinds of networks.
- ► Cutoff scaling is k<sup>-3</sup>: if γ > 3 then we have to look harder at ⟨k⟩<sub>R</sub>.

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

### And how big is the largest component?

- Define S<sub>1</sub> as the size of the largest component.
- Consider an infinite ER random network with average degree (k).
- ▶ Let's find S<sub>1</sub> with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection:  $\delta = 1 S_1$ .
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- ► So

$$\delta = \sum_{k=0}^{\infty} \boldsymbol{P}_k \delta^k$$

Substitute in Poisson distribution...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

### And how big is the largest component?

- Define S<sub>1</sub> as the size of the largest component.
- Consider an infinite ER random network with average degree (k).
- ▶ Let's find *S*<sub>1</sub> with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection:  $\delta = 1 S_1$ .
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- ► So

$$\delta = \sum_{k=0}^{\infty} \boldsymbol{P}_k \delta^k$$

Substitute in Poisson distribution...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 52/89

SAR

And how big is the largest component?

- Define S<sub>1</sub> as the size of the largest component.
- ► Consider an infinite ER random network with average degree (k).
- ▶ Let's find S<sub>1</sub> with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection:  $\delta = 1 S_1$ .
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- ► So

$$\delta = \sum_{k=0}^{\infty} \boldsymbol{P}_k \delta^k$$

Substitute in Poisson distribution...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 52/89

SQC2

And how big is the largest component?

- Define S<sub>1</sub> as the size of the largest component.
- ► Consider an infinite ER random network with average degree (k).
- ▶ Let's find S<sub>1</sub> with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection:  $\delta = 1 S_1$ .
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- ► So

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Substitute in Poisson distribution...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 52/89

 $\neg \land \land \land$ 

And how big is the largest component?

- Define S<sub>1</sub> as the size of the largest component.
- ► Consider an infinite ER random network with average degree (k).
- Let's find S<sub>1</sub> with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection:  $\delta = 1 S_1$ .
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Substitute in Poisson distribution...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

▶ So

And how big is the largest component?

- Define S<sub>1</sub> as the size of the largest component.
- ► Consider an infinite ER random network with average degree (k).
- Let's find S<sub>1</sub> with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection:  $\delta = 1 S_1$ .
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.



Substitute in Poisson distribution...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

And how big is the largest component?

- Define S<sub>1</sub> as the size of the largest component.
- ► Consider an infinite ER random network with average degree (k).
- Let's find S<sub>1</sub> with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection:  $\delta = 1 S_1$ .
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Substitute in Poisson distribution...

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

And how big is the largest component?

- Define S<sub>1</sub> as the size of the largest component.
- ► Consider an infinite ER random network with average degree (k).
- Let's find S<sub>1</sub> with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection:  $\delta = 1 S_1$ .
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Substitute in Poisson distribution...

### Random Networks

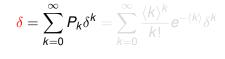
Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Carrying on:



$$=e^{-\langle k
angle}\sum_{k=0}^{\infty}rac{(\langle k
angle\delta)^k}{k!}$$

$$= e^{-\langle k 
angle} e^{\langle k 
angle \delta} = e^{-\langle k 
angle (1-\delta)}$$

▶ Now substitute in  $\delta = 1 - S_1$  and rearrange to obtain:

$$S_1 = 1 - e^{-\langle k \rangle S_1}$$

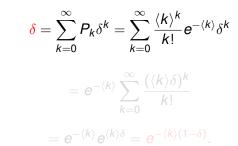
#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Unctions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size Deforcement

Carrying on:



▶ Now substitute in  $\delta = 1 - S_1$  and rearrange to obtain:

$$S_1 = 1 - e^{-\langle k \rangle S_1}$$

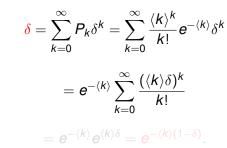
#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

Carrying on:



▶ Now substitute in  $\delta = 1 - S_1$  and rearrange to obtain:

$$S_1 = 1 - e^{-\langle k \rangle S_1}$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component Jazes Useful results Size of the Giant Component Average Component Size

Carrying on:

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k$$

$$= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle \delta)^k}{k!}$$

$$= e^{-\langle k \rangle} e^{\langle k \rangle \delta} = e^{-\langle k \rangle (1-\delta)}$$

Now substitute in  $\delta = 1 - S_1$  and rearrange to obtain:

$$S_1 = 1 - e^{-\langle k 
angle S_1}$$
 .

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating "unctions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

Carrying on:

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k$$

$$=e^{-\langle k
angle}\sum_{k=0}^{\infty}rac{(\langle k
angle\delta)^k}{k!}$$

$$= e^{-\langle k \rangle} e^{\langle k \rangle \delta} = e^{-\langle k \rangle (1-\delta)}.$$

▶ Now substitute in  $\delta = 1 - S_1$  and rearrange to obtain:

$$S_1 = 1 - e^{-\langle k \rangle S_1}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

Carrying on:

$$\boldsymbol{\delta} = \sum_{k=0}^{\infty} \boldsymbol{P}_k \boldsymbol{\delta}^k = \sum_{k=0}^{\infty} \frac{\langle \boldsymbol{k} \rangle^k}{k!} \boldsymbol{e}^{-\langle \boldsymbol{k} \rangle} \boldsymbol{\delta}^k$$

$$= e^{-\langle k 
angle} \sum_{k=0}^{\infty} rac{(\langle k 
angle \delta)^k}{k!}$$

$$= e^{-\langle k \rangle} e^{\langle k \rangle \delta} = e^{-\langle k \rangle (1-\delta)}.$$

Now substitute in  $\delta = 1 - S_1$  and rearrange to obtain:

$$S_1 = 1 - e^{-\langle k 
angle S_1}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

Frame 53/89

We can figure out some limits and details for S<sub>1</sub> = 1 − e<sup>-⟨k⟩S<sub>1</sub></sup>.

First, we can write  $\langle k \rangle$  in terms of  $S_1$ :

$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1 - S_1}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 \rightarrow 0$ .

• As 
$$\langle k \rangle \to \infty$$
,  $S_1 \to 1$ .

▶ Notice that at  $\langle k \rangle = 1$ , the critical point,  $S_1 = 0$ .

- Only solvable for S > 0 when  $\langle k \rangle > 1$
- Really a transcritical bifurcation<sup>[2]</sup>.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

• We can figure out some limits and details for  $S_1 = 1 - e^{-\langle k \rangle S_1}$ .

First, we can write  $\langle k \rangle$  in terms of  $S_1$ :

$$\langle k \rangle = rac{1}{S_1} \ln rac{1}{1-S_1}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 \rightarrow 0$ .

• As 
$$\langle k \rangle \to \infty$$
,  $S_1 \to 1$ .

- ▶ Notice that at  $\langle k \rangle = 1$ , the critical point,  $S_1 = 0$ .
- Only solvable for S > 0 when  $\langle k \rangle > 1$
- Really a transcritical bifurcation<sup>[2]</sup>.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

• We can figure out some limits and details for  $S_1 = 1 - e^{-\langle k \rangle S_1}$ .

First, we can write  $\langle k \rangle$  in terms of  $S_1$ :

$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1 - S_1}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 \rightarrow 0$ .

- As  $\langle k \rangle \to \infty$ ,  $S_1 \to 1$ .
- ▶ Notice that at  $\langle k \rangle = 1$ , the critical point,  $S_1 = 0$ .
- Only solvable for S > 0 when  $\langle k \rangle > 1$ .
- Really a transcritical bifurcation<sup>[2]</sup>.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

• We can figure out some limits and details for  $S_1 = 1 - e^{-\langle k \rangle S_1}$ .

First, we can write  $\langle k \rangle$  in terms of  $S_1$ :

$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1 - S_1}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 \rightarrow 0$ .

• As 
$$\langle k \rangle \to \infty$$
,  $S_1 \to 1$ .

▶ Notice that at  $\langle k \rangle = 1$ , the critical point,  $S_1 = 0$ .

• Only solvable for S > 0 when  $\langle k \rangle > 1$ 

Really a transcritical bifurcation<sup>[2]</sup>.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- We can figure out some limits and details for  $S_1 = 1 e^{-\langle k \rangle S_1}$ .
- First, we can write  $\langle k \rangle$  in terms of  $S_1$ :

$$\langle k \rangle = rac{1}{S_1} \ln rac{1}{1-S_1}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 \rightarrow 0$ .

- As  $\langle k \rangle \to \infty$ ,  $S_1 \to 1$ .
- Notice that at  $\langle k \rangle = 1$ , the critical point,  $S_1 = 0$ .
- Only solvable for S > 0 when  $\langle k \rangle > 1$
- Really a transcritical bifurcation<sup>[2]</sup>.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 54/89

୍ର୍ବ୍ର୍

• We can figure out some limits and details for  $S_1 = 1 - e^{-\langle k \rangle S_1}$ .

First, we can write  $\langle k \rangle$  in terms of  $S_1$ :

$$\langle k \rangle = rac{1}{S_1} \ln rac{1}{1-S_1}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 \rightarrow 0$ .

- As  $\langle k \rangle \to \infty$ ,  $S_1 \to 1$ .
- Notice that at  $\langle k \rangle = 1$ , the critical point,  $S_1 = 0$ .
- Only solvable for S > 0 when  $\langle k \rangle > 1$ .

Really a transcritical bifurcation<sup>[2]</sup>.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Largest component Generating Functions Definitions Basic Properties Giant Component clouditi Component sizes

Useful results Size of the Giant Component Average Component Size

References

Frame 54/89

୶ୡ୕ଡ଼

- We can figure out some limits and details for  $S_1 = 1 e^{-\langle k \rangle S_1}$ .
- First, we can write  $\langle k \rangle$  in terms of  $S_1$ :

$$\langle k \rangle = rac{1}{S_1} \ln rac{1}{1-S_1}$$

- As  $\langle k \rangle \rightarrow 0$ ,  $S_1 \rightarrow 0$ .
- As  $\langle k \rangle \to \infty$ ,  $S_1 \to 1$ .
- Notice that at  $\langle k \rangle = 1$ , the critical point,  $S_1 = 0$ .
- Only solvable for S > 0 when  $\langle k \rangle > 1$ .
- Really a transcritical bifurcation<sup>[2]</sup>.

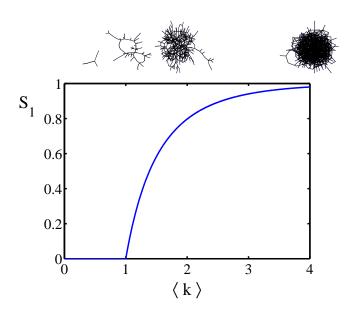
#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References



### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 55/89

### Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because  $\langle k \rangle = \langle k \rangle_R$ .
- We need a separate probability δ' for the chance that a node at the end of a random edge is part of the largest component.
- ▶ We can do this but we need to enhance our toolkit with Generatingfunctionology...<sup>[3]</sup>

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 56/89

### Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because  $\langle k \rangle = \langle k \rangle_R$ .
- We need a separate probability δ' for the chance that a node at the end of a random edge is part of the largest component.
- ▶ We can do this but we need to enhance our toolkit with Generatingfunctionology...<sup>[3]</sup>

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

### Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because  $\langle k \rangle = \langle k \rangle_R$ .
- We need a separate probability δ' for the chance that a node at the end of a random edge is part of the largest component.
- ▶ We can do this but we need to enhance our toolkit with Generatingfunctionology...<sup>[3]</sup>

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size References

### Giant component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because  $\langle k \rangle = \langle k \rangle_R$ .
- We need a separate probability δ' for the chance that a node at the end of a random edge is part of the largest component.
- ▶ We can do this but we need to enhance our toolkit with Generatingfunctionology...<sup>[3]</sup>

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Source Unsport Sizes Size of the Giant Component Average Component Size Beferences

### Giant component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because  $\langle k \rangle = \langle k \rangle_R$ .
- We need a separate probability δ' for the chance that a node at the end of a random edge is part of the largest component.
- We can do this but we need to enhance our toolkit with Generatingfunctionology...<sup>[3]</sup>

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Size References

Frame 56/89

### Giant component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because  $\langle k \rangle = \langle k \rangle_R$ .
- We need a separate probability δ' for the chance that a node at the end of a random edge is part of the largest component.
- ► We can do this but we need to enhance our toolkit with Generatingfunctionology...<sup>[3]</sup>

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 56/89

# Outline

Definitions How to build Some visual examples

### Structure

Clustering Degree distributions Configuration model Largest component

### Generating Functions

### Definitions

Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size ferences

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating

Functions Definitions Basic Properties Giant Component Conditio Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 57/89

- Idea: Given a sequence a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>,..., associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

### Definition:

• The generating function (g.f.) for a sequence  $\{a_n\}$  is

$$F(x) = \sum_{n=0}^{\infty} a_n x^n.$$

- Roughly: transforms a vector in R<sup>∞</sup> into a function defined on R<sup>1</sup>.
- Related to Fourier, Laplace, Mellin, ...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- Idea: Given a sequence a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>,..., associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

### Definition:

• The generating function (g.f.) for a sequence  $\{a_n\}$  is



- ▶ Roughly: transforms a vector in R<sup>∞</sup> into a function defined on R<sup>1</sup>.
- ▶ Related to Fourier, Laplace, Mellin, ...

#### Random Networks

Basics Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Largest component

Definitions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- Idea: Given a sequence a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>,..., associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

### Definition:

• The generating function (g.f.) for a sequence  $\{a_n\}$  is

$$F(x)=\sum_{n=0}^{\infty}a_nx^n.$$

- ▶ Roughly: transforms a vector in R<sup>∞</sup> into a function defined on R<sup>1</sup>.
- Related to Fourier, Laplace, Mellin, ...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Frame 58/89

- Idea: Given a sequence a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>,..., associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

### Definition:

• The generating function (g.f.) for a sequence  $\{a_n\}$  is

$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$

- ► Roughly: transforms a vector in R<sup>∞</sup> into a function defined on R<sup>1</sup>.
- Related to Fourier, Laplace, Mellin, ...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 58/89

- Idea: Given a sequence a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>,..., associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

### Definition:

• The generating function (g.f.) for a sequence  $\{a_n\}$  is

$$F(x)=\sum_{n=0}^{\infty}a_nx^n$$

- ► Roughly: transforms a vector in R<sup>∞</sup> into a function defined on R<sup>1</sup>.
- Related to Fourier, Laplace, Mellin, ...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component condition Component sizes Useful results Size of the Glaint Component Average Component Size

References

Frame 58/89

### Simple example

### Rolling dice:

$$F^{(\Box)}(x) = \sum_{k=1}^{6} p_k x^k = \frac{1}{6} (x + x^2 + x^3 + x^4 + x^5 + x^6).$$

We'll come back to this simple example as we derive various delicious properties of generating functions.

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Functions Definitions Basic Properties Giant Component Condition Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 59/89

### Simple example

### Rolling dice:

$$F^{(\Box)}(x) = \sum_{k=1}^{6} p_k x^k = \frac{1}{6} (x + x^2 + x^3 + x^4 + x^5 + x^6).$$

We'll come back to this simple example as we derive various delicious properties of generating functions.

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Definitions Definitions Basic Properties Glant Component Condition Component Sizes Useful results Size of the Glant Component Average Component Size

References

Frame 59/89

### Simple example

### Rolling dice:

$$F^{(\Box)}(x) = \sum_{k=1}^{6} p_k x^k = \frac{1}{6}(x + x^2 + x^3 + x^4 + x^5 + x^6).$$

We'll come back to this simple example as we derive various delicious properties of generating functions.

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Denerating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

Frame 59/89

লি ৩৫৫

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where  $c = 1 - e^{-\lambda}$ .

The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda k}}$$

- Notice that  $F(1) = c/(1 e^{-\lambda}) = 1$ .
- For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where  $c = 1 - e^{-\lambda}$ .

The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

- Notice that  $F(1) = c/(1 e^{-\lambda}) = 1$ .
- For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where  $c = 1 - e^{-\lambda}$ .

The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

- Notice that  $F(1) = c/(1 e^{-\lambda}) = 1$ .
- For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where  $c = 1 - e^{-\lambda}$ .

The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

- Notice that  $F(1) = c/(1 e^{-\lambda}) = 1$ .
- For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1$$

#### Random Networks

#### Basics Definitions How to build Some visual examples

### Structure

Clustering Degree distributions Configuration model Largest component

#### Generating Functions

### Definitions

Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where  $c = 1 - e^{-\lambda}$ .

The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

• Notice that  $F(1) = c/(1 - e^{-\lambda}) = 1$ .

For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where  $c = 1 - e^{-\lambda}$ .

The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

- Notice that  $F(1) = c/(1 e^{-\lambda}) = 1$ .
- For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where  $c = 1 - e^{-\lambda}$ .

The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

• Notice that  $F(1) = c/(1 - e^{-\lambda}) = 1$ .

For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where  $c = 1 - e^{-\lambda}$ .

The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

• Notice that  $F(1) = c/(1 - e^{-\lambda}) = 1$ .

For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1.$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

# Outline

### Generating Functions

### **Basic Properties**

**Component sizes** Average Component Size

### Random Networks

**Basics** 

Generating Basic Properties

Frame 61/89 Sac

P

Average degree:

$$\langle \mathbf{k} \rangle = \sum_{k=0}^{\infty} \mathbf{k} \mathbf{P}_{\mathbf{k}} = \sum_{k=0}^{\infty} \mathbf{k} \mathbf{P}_{k} x^{k-1} \bigg|_{x=1}$$
$$= \frac{d}{dx} F(x) \bigg|_{x=1} = F'(1)$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$

So:

$$\langle k \rangle = F'(1) = rac{e^{-\lambda}}{(1-e^{-\lambda})}.$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Dedinitions Baic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Average degree:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \bigg|_{x=1}$$
$$= \frac{d}{dx} F(x) \bigg|_{x=1} = F'(1)$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$

So:

$$\langle k \rangle = F'(1) = rac{e^{-\lambda}}{(1-e^{-\lambda})}.$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Average degree:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \bigg|_{x=1}$$
$$= \frac{d}{dx} F(x) \bigg|_{x=1} = F'(1)$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$

So:

$$\langle k \rangle = F'(1) = \frac{e^{-\lambda}}{(1-e^{-\lambda})}.$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Dafinitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

Average degree:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \bigg|_{x=1}$$
$$= \frac{d}{dx} F(x) \bigg|_{x=1} = F'(1)$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$

So:

$$\langle k \rangle = F'(1) = \frac{e^{-\lambda}}{(1-e^{-\lambda})}.$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Average degree:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \bigg|_{x=1}$$
$$= \frac{d}{dx} F(x) \bigg|_{x=1} = F'(1)$$

In general, many calculations become simple, if a little abstract.



$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$

So:

$$\langle k \rangle = F'(1) = \frac{e^{-\lambda}}{(1-e^{-\lambda})}.$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Datinitions Baic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Average degree:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \bigg|_{x=1}$$
$$= \frac{d}{dx} F(x) \bigg|_{x=1} = F'(1)$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x)=rac{(1-e^{-\lambda})e^{-\lambda}}{(1-xe^{-\lambda})^2}.$$

So:

$$\langle k \rangle = F'(1) = \frac{e^{-\lambda}}{(1 - e^{-\lambda})}.$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Average degree:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \bigg|_{x=1}$$
$$= \frac{d}{dx} F(x) \bigg|_{x=1} = F'(1)$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = rac{(1-e^{-\lambda})e^{-\lambda}}{(1-xe^{-\lambda})^2}.$$

So:

$$\langle k 
angle = F'(1) = rac{e^{-\lambda}}{(1-e^{-\lambda})}.$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

### Useful pieces for probability distributions:

Normalization:

First moment:

$$\langle k \rangle = F'(1)$$

► Higher moments:

 $\langle k^n \rangle = \left( x \frac{\mathrm{d}}{\mathrm{d}x} \right)^n F(x) \Big|_{x=1}$ 

kth element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} F(x) \Big|_{x=1}$$

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Baice Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

### Useful pieces for probability distributions:

Normalization:

F(1) = 1

First moment:

 $\langle k \rangle = F'(1)$ 

► Higher moments:

 $\langle k^n \rangle = \left( x \frac{\mathrm{d}}{\mathrm{d}x} \right)^n F(x) \Big|_{x=1}$ 

kth element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} F(x) \Big|_{x=1}$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

### Useful pieces for probability distributions:

Normalization:

F(1) = 1

First moment:

$$\langle k \rangle = F'(1)$$

Higher moments:

 $\langle k^n \rangle = \left( x \frac{\mathrm{d}}{\mathrm{d}x} \right)^n F(x) \Big|_{x=1}$ 

kth element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} F(x) \Big|_{x=1}$$

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

### Useful pieces for probability distributions:

Normalization:

First moment:

$$\langle k \rangle = F'(1)$$

F(1) = 1

Higher moments:

$$\langle k^n \rangle = \left( x \frac{\mathrm{d}}{\mathrm{d}x} \right)^n F(x) \Big|_{x=1}$$

kth element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} F(x) \Big|_{x=1}$$

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

### Useful pieces for probability distributions:

Normalization:

First moment:

$$\langle k \rangle = F'(1)$$

F(1) = 1

Higher moments:

$$\langle k^n \rangle = \left( x \frac{\mathrm{d}}{\mathrm{d}x} \right)^n F(x) \Big|_{x=1}$$

kth element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} F(x) \bigg|_{x=0}$$

Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

# Outline

Definitions How to build Some visual examples

### Structure

Clustering Degree distributions Configuration model Largest component

### Generating Functions

Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties **Giant Component Condition** Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 64/89

ମ୍ବ ରବତ

### Edge-degree distribution

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- We first need the g.f. for  $R_k$ .
- We'll now use this notation:

 $F_P(x)$  is the g.f. for  $P_k$ .  $F_B(x)$  is the g.f. for  $R_k$ .

Condition in terms of g.f. is:

 $\langle k \rangle_R = F'_R(1) > 1.$ 

▶ Now find how *F<sub>R</sub>* is related to *F<sub>P</sub>*...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

Frame 65/89

### Edge-degree distribution

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- We first need the g.f. for  $R_k$ .

We'll now use this notation:

 $F_R(x)$  is the g.f. for  $R_k$ .

Condition in terms of g.f. is:

 $\langle k \rangle_R = F'_R(1) > 1.$ 

▶ Now find how *F<sub>R</sub>* is related to *F<sub>P</sub>*...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 65/89

Recall our condition for a giant component:

$$\langle k \rangle_{R} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- We first need the g.f. for  $R_k$ .

• We'll now use this notation:  $F_P(x)$  is the g.f. for  $P_k$ .  $F_R(x)$  is the g.f. for  $R_k$ .

Condition in terms of g.f. is:

 $\langle k \rangle_R = F'_R(1) > 1.$ 

▶ Now find how *F<sub>R</sub>* is related to *F<sub>P</sub>*...

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 65/89

Recall our condition for a giant component:

$$\langle k \rangle_{R} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- We first need the g.f. for  $R_k$ .
- We'll now use this notation:

 $F_P(x)$  is the g.f. for  $P_k$ .  $F_R(x)$  is the g.f. for  $R_k$ .

Condition in terms of g.f. is:

 $\langle k \rangle_R = F'_R(1) > 1.$ 

• Now find how  $F_R$  is related to  $F_P$ ...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 65/89

Recall our condition for a giant component:

$$\langle k \rangle_{R} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- We first need the g.f. for  $R_k$ .
- We'll now use this notation:

 $F_P(x)$  is the g.f. for  $P_k$ .  $F_R(x)$  is the g.f. for  $R_k$ .

Condition in terms of g.f. is:

 $\langle k \rangle_R = F'_R(1) > 1.$ 

▶ Now find how *F<sub>R</sub>* is related to *F<sub>P</sub>*...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 65/89

SQC2

Recall our condition for a giant component:

$$\langle k \rangle_{R} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- We first need the g.f. for  $R_k$ .
- We'll now use this notation:

 $F_P(x)$  is the g.f. for  $P_k$ .  $F_R(x)$  is the g.f. for  $R_k$ .

Condition in terms of g.f. is:

 $\langle k \rangle_R = F'_R(1) > 1.$ 

▶ Now find how *F<sub>R</sub>* is related to *F<sub>P</sub>*...

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 65/89

Recall our condition for a giant component:

$$\langle k \rangle_{R} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- ▶ We first need the g.f. for *R<sub>k</sub>*.
- We'll now use this notation:
  - $F_P(x)$  is the g.f. for  $P_k$ .  $F_R(x)$  is the g.f. for  $R_k$ .
- Condition in terms of g.f. is:

 $\langle k \rangle_R = F'_R(1) > 1.$ 

▶ Now find how *F<sub>R</sub>* is related to *F<sub>P</sub>*...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 65/89

SQC2

Recall our condition for a giant component:

$$\langle k \rangle_{R} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- We first need the g.f. for  $R_k$ .
- We'll now use this notation:

 $F_P(x)$  is the g.f. for  $P_k$ .  $F_R(x)$  is the g.f. for  $R_k$ .

Condition in terms of g.f. is:

 $\langle k \rangle_R = F'_R(1) > 1.$ 

Now find how F<sub>R</sub> is related to F<sub>P</sub>...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 65/89

 $\neg \land \land \land$ 

We have

$$F_{R}(x) = \sum_{k=0}^{\infty} \frac{R_{k}x^{k}}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^{k}.$$

Shift index to j = k + 1 and pull out  $\frac{1}{\langle k \rangle}$ :

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

$$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle}F_{P}'(x).$$

Finally, since  $\langle k \rangle = F'_P(1)$ ,

$$F_R(x) = \frac{F'_P(x)}{F'_P(1)}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

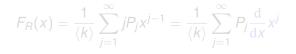
Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k x^k}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out  $\frac{1}{\langle k \rangle}$ :



$$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle}F_{P}'(x).$$

Finally, since  $\langle k \rangle = F'_P(1)$ ,

$$F_R(x) = \frac{F'_P(x)}{F'_P(1)}$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k x^k}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out  $\frac{1}{\langle k \rangle}$ :



$$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle}F_{P}'(x).$$

Finally, since  $\langle k \rangle = F'_P(1)$ ,

$$F_R(x) = \frac{F'_P(x)}{F'_P(1)}$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k x^k}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out  $\frac{1}{\langle k \rangle}$ :

$$F_{R}(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{d}}{\mathrm{d}x} x^{j}$$

$$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle}F_{P}'(x).$$

Finally, since  $\langle k \rangle = F'_P(1)$ ,

$$F_R(x) = \frac{F'_P(x)}{F'_P(1)}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k x^k}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out  $\frac{1}{\langle k \rangle}$ :

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

$$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle}F_{P}'(x).$$

Finally, since  $\langle k \rangle = F'_P(1)$ ,

$$F_R(x) = \frac{F'_P(x)}{F'_P(1)}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k x^k}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out  $\frac{1}{\langle k \rangle}$ :

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

$$= \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \sum_{j=1}^{\infty} P_j x^j = \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \left( F_P(x) - P_0 \right) = \frac{1}{\langle k \rangle} F'_P(x).$$

Finally, since  $\langle k \rangle = F'_P(1)$ ,

$$F_R(x) = \frac{F'_P(x)}{F'_P(1)}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k x^k}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out  $\frac{1}{\langle k \rangle}$ :

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

$$= \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \sum_{j=1}^{\infty} P_j x^j = \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \left( F_P(x) - P_0 \right) = \frac{1}{\langle k \rangle} F_P'(x).$$

Finally, since  $\langle k \rangle = F'_P(1)$ ,

$$F_R(x) = \frac{F'_P(x)}{F'_P(1)}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k x^k}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out  $\frac{1}{\langle k \rangle}$ :

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

$$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle}F_{P}'(x).$$

$$F_R(x) = \frac{F'_P(x)}{F'_P(1)}$$

Random Networks

# **Basics**

Giant Component Condition

Frame 66/89 P

Sac.

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k x^k}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out  $\frac{1}{\langle k \rangle}$ :

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

$$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle}F_{P}'(x).$$

Finally, since  $\langle k \rangle = F'_P(1)$ ,

$$F_R(x) = \frac{F'_P(x)}{F'_P(1)}$$

#### Random Networks

#### Basics Definitions How to build Some visual examples

### Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

- Recall giant component condition is  $\langle k \rangle_R = F'_R(1) > 1.$
- Since we have  $F_R(x) = F'_P(x)/F'_P(1)$ ,





#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 67/89

୭ ୬୦୯

- Recall giant component condition is  $\langle k \rangle_R = F'_R(1) > 1.$
- Since we have  $F_R(x) = F'_P(x)/F'_P(1)$ ,

$$F'_R(x) = \frac{F''_P(x)}{F'_P(1)}$$

Setting x = 1, our condition becomes



### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 67/89

ା ୬ବ୍ଦ

- Recall giant component condition is  $\langle k \rangle_R = F'_R(1) > 1.$
- Since we have  $F_R(x) = F'_P(x)/F'_P(1)$ ,

$$F'_{R}(x) = rac{F''_{P}(x)}{F'_{P}(1).}$$

$$rac{F_P''(1)}{F_P'(1)} > 1$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Degree distributions Configuration model Largest component Generating Functions Definitions Basic Properties Glant Component Condition

Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 67/89

লি ৩৫৫

- Recall giant component condition is  $\langle k \rangle_R = F'_R(1) > 1.$
- Since we have  $F_R(x) = F'_P(x)/F'_P(1)$ ,

$$F'_{R}(x) = rac{F''_{P}(x)}{F'_{P}(1).}$$

Setting x = 1, our condition becomes



#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 67/89

৽৵৻৻৽

## Outline

Definitions How to build Some visual examples

### Structure

Clustering Degree distributions Configuration model Largest component

### Generating Functions

Definitions Basic Properties Giant Component Condition

### Component sizes

Useful results Size of the Giant Component Average Component Size

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Frame 68/89

লি ৩৫৫

To figure out the size of the largest component  $(S_1)$ , we need more resolution on component sizes.

### **Definitions:**

- π<sub>n</sub> = probability that a random node belongs to a finite component of size n < ∞.</p>
- ρ<sub>n</sub> = probability a random link leads to a finite subcomponent of size n < ∞.</p>

Local-global connection:

 $P_k, R_k \Leftrightarrow \pi_n, 
ho_n$ neighbors  $\Leftrightarrow$  components

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 69/89

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

To figure out the size of the largest component  $(S_1)$ , we need more resolution on component sizes.

### Definitions:

- *π<sub>n</sub>* = probability that a random node belongs to a finite component of size *n* < ∞.</p>

Local-global connection:

 $P_k, R_k \Leftrightarrow \pi_n, 
ho_n$ neighbors  $\Leftrightarrow$  components

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Ciant Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 69/89

୬ବ୍ଦ

To figure out the size of the largest component  $(S_1)$ , we need more resolution on component sizes.

### Definitions:

- *π<sub>n</sub>* = probability that a random node belongs to a finite component of size *n* < ∞.</p>

Local-global connection:

 $P_k, R_k \Leftrightarrow \pi_n, 
ho_n$ neighbors  $\Leftrightarrow$  components

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 69/89

SQC2

To figure out the size of the largest component  $(S_1)$ , we need more resolution on component sizes.

### Definitions:

- *π<sub>n</sub>* = probability that a random node belongs to a finite component of size *n* < ∞.</p>
- *ρ<sub>n</sub>* = probability a random link leads to a finite subcomponent of size *n* < ∞.</p>

Local-global connection:

 $P_k, R_k \Leftrightarrow \pi_n, \rho_n$ neighbors  $\Leftrightarrow$  components

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 69/89

ା ୬ବ୍ଦ

### G.f.'s for component size distributions:

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n$$
 and  $F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$ 

### The largest component:

Subtle key: F<sub>π</sub>(1) is the probability that a node belongs to a finite component.

• Therefore: 
$$S_1 = 1 - F_{\pi}(1)$$
.

### Our mission, which we accept:

Find the four generating functions

 $F_P, F_R, F_\pi$ , and  $F_\rho$ .

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component sizes Useful results Size of the Giant Component Average Component Size

References

G.f.'s for component size distributions:

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n$$
 and  $F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$ 

### The largest component:

- Subtle key: F<sub>π</sub>(1) is the probability that a node belongs to a finite component.
- Therefore:  $S_1 = 1 F_{\pi}(1)$ .

### Our mission, which we accept:

Find the four generating functions

 $F_P, F_R, F_\pi$ , and  $F_\rho$ .

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

G.f.'s for component size distributions:

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n$$
 and  $F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$ 

### The largest component:

Subtle key: F<sub>π</sub>(1) is the probability that a node belongs to a finite component.

• Therefore:  $S_1 = 1 - F_{\pi}(1)$ .

### Our mission, which we accept:

Find the four generating functions

 $F_P, F_R, F_\pi$ , and  $F_\rho$ .

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

G.f.'s for component size distributions:

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n$$
 and  $F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$ 

### The largest component:

Subtle key: F<sub>π</sub>(1) is the probability that a node belongs to a finite component.

• Therefore: 
$$S_1 = 1 - F_{\pi}(1)$$
.

### Our mission, which we accept:

Find the four generating functions

 $F_P, F_R, F_\pi$ , and  $F_\rho$ .

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

G.f.'s for component size distributions:

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n$$
 and  $F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$ 

### The largest component:

Subtle key:  $F_{\pi}(1)$  is the probability that a node belongs to a finite component.

• Therefore: 
$$S_1 = 1 - F_{\pi}(1)$$
.

### Our mission, which we accept:

Find the four generating functions

$$F_P, F_R, F_\pi$$
, and  $F_\rho$ 

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

## Outline

Definitions How to build Some visual examples

### Structure

Clustering Degree distributions Configuration model Largest component

### Generating Functions

Definitions Basic Properties Giant Component Condition Component sizes

### Useful results

Size of the Giant Component Average Component Size

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Usefur results

Size of the Giant Component Average Component Size

References

Frame 71/89

### Sneaky Result 1:

- Consider two random variables U and V whose values may be 0, 1, 2, ...
- ► Write probability distributions as U<sub>k</sub> and U<sub>k</sub> and g.f.'s as F<sub>U</sub> and F<sub>V</sub>.
- SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{V} U^{(i)}$$
 with each  $U^{(i)} \stackrel{d}{=} U$ 

then

$$F_W(x) = F_V(F_U(x))$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

### Sneaky Result 1:

- ► Consider two random variables *U* and *V* whose values may be 0, 1, 2, ...
- ► Write probability distributions as U<sub>k</sub> and U<sub>k</sub> and g.f.'s as F<sub>U</sub> and F<sub>V</sub>.
- SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{V} U^{(i)}$$
 with each  $U^{(i)} \stackrel{d}{=} U$ 

then

$$F_W(x) = F_V(F_U(x))$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

### Sneaky Result 1:

- Consider two random variables U and V whose values may be 0, 1, 2, ...
- Write probability distributions as U<sub>k</sub> and U<sub>k</sub> and g.f.'s as F<sub>U</sub> and F<sub>V</sub>.
- SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{V} U^{(i)}$$
 with each  $U^{(i)} \stackrel{d}{=} U$ 

then

$$F_W(x) = F_V(F_U(x))$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

### Sneaky Result 1:

- Consider two random variables U and V whose values may be 0, 1, 2, ...
- Write probability distributions as U<sub>k</sub> and U<sub>k</sub> and g.f.'s as F<sub>U</sub> and F<sub>V</sub>.
- SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{V} U^{(i)}$$
 with each  $U^{(i)} \stackrel{d}{=} U$ 

then

$$F_W(x) = F_V(F_U(x))$$

Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

```
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
```

References

### Sneaky Result 1:

- Consider two random variables U and V whose values may be 0, 1, 2, ...
- Write probability distributions as U<sub>k</sub> and U<sub>k</sub> and g.f.'s as F<sub>U</sub> and F<sub>V</sub>.
- SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{V} U^{(i)}$$
 with each  $U^{(i)} \stackrel{d}{=} U$ 

then

$$F_W(x) = F_V(F_U(x))$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

```
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
```

References

## Proof of SR1:

### Write probability that variable W has value k as $W_k$ .

 $W_k = \sum_{j=0}^{\infty} V_j \times \Pr(\text{sum of } j \text{ draws of variable } U = k)$ 

$$= \sum_{j=0}^{\infty} V_j \sum_{\substack{\{i_1, i_2, \dots, i_j\} \mid \\ i_1+i_2+\dots+i_j=k}} U_{i_1} U_{i_2} \cdots U_{i_j}$$

$$\therefore F_{W}(x) = \sum_{k=0}^{\infty} W_{k} x^{k} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{j}\} \mid \\ i_{1}+i_{2}+\dots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}} x^{k}$$

$$= \sum_{j=0}^{\infty} V_j \sum_{k=0}^{\infty} \sum_{\substack{\{i_1, i_2, \dots, i_j\} \mid \\ i_1+i_2+\dots+i_j=k}} U_{i_1} x^{i_1} U_{i_2} x^{i_2} \cdots U_{i_j} x^{i_j}$$

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

Component Average Component Size

References

Frame 73/89

Write probability that variable *W* has value *k* as  $W_k$ .

$$W_k = \sum_{j=0}^{\infty} V_j \times \Pr(\text{sum of } j \text{ draws of variable } U = k)$$

$$=\sum_{j=0}^{\infty} V_j \sum_{\substack{\{i_1,i_2,\dots,i_j\} \mid \\ i_1+i_2+\dots+i_j=k}} U_{i_1} U_{i_2} \cdots U_{i_j}$$

$$\therefore F_{W}(x) = \sum_{k=0}^{\infty} W_{k} x^{k} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{j}\} \mid \\ i_{1}+i_{2}+\dots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}} x^{k}$$

$$= \sum_{j=0}^{\infty} V_j \sum_{k=0}^{\infty} \sum_{\substack{\{i_1, i_2, \dots, i_j\} \mid \\ i_1+i_2+\dots+i_j=k}} U_{i_1} x^{i_1} U_{i_2} x^{i_2} \cdots U_{i_j} x^{i_j}$$

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

Average Compone

Write probability that variable *W* has value *k* as  $W_k$ .

 $\sim$ 

$$W_k = \sum_{j=0}^{\infty} V_j \times \Pr(\text{sum of } j \text{ draws of variable } U = k)$$

$$=\sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1},i_{2},\ldots,i_{j}\} \mid \\ i_{1}+i_{2}+\ldots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}}$$

$$\therefore F_{W}(x) = \sum_{k=0}^{\infty} W_{k} x^{k} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{j}\} \mid \\ i_{1}+i_{2}+\dots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}} x^{k}$$

$$= \sum_{j=0}^{\infty} V_j \sum_{k=0}^{\infty} \sum_{\substack{\{i_1, i_2, \dots, i_j\} \mid \\ i_1+i_2+\dots+i_j=k}} U_{i_1} x^{i_1} U_{i_2} x^{i_2} \cdots U_{i_j} x^{i_j}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Write probability that variable *W* has value *k* as  $W_k$ .

 $\sim$ 

$$W_k = \sum_{j=0}^{\infty} V_j \times \Pr(\text{sum of } j \text{ draws of variable } U = k)$$

$$=\sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1},i_{2},\ldots,i_{j}\} \mid \\ i_{1}+i_{2}+\ldots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}}$$

$$\therefore F_{W}(x) = \sum_{k=0}^{\infty} W_{k} x^{k} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{j}\} \mid \\ i_{1}+i_{2}+\dots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}} x^{k}$$

$$= \sum_{j=0}^{\infty} V_j \sum_{k=0}^{\infty} \sum_{\substack{\{i_1, i_2, \dots, i_j\} \mid \\ i_1+i_2+\dots+i_j=k}} U_{i_1} x^{i_1} U_{i_2} x^{i_2} \cdots U_{i_j} x^{i_j}$$

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

Average Component Siz

References

Write probability that variable *W* has value *k* as  $W_k$ .

 $\sim$ 

$$W_k = \sum_{j=0}^{\infty} V_j imes \mathsf{Pr}(\mathsf{sum of } j \mathsf{ draws of variable } U = k)$$

$$=\sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1},i_{2},\ldots,i_{j}\} \mid \\ i_{1}+i_{2}+\ldots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}}$$

$$\therefore F_{W}(x) = \sum_{k=0}^{\infty} W_{k} x^{k} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{j}\} \mid \\ i_{1}+i_{2}+\dots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}} x^{k}$$

$$= \sum_{j=0}^{\infty} V_j \sum_{k=0}^{\infty} \sum_{\substack{\{i_1, i_2, \dots, i_j\} \mid \\ i_1+i_2+\dots+i_j=k}} U_{i_1} x^{i_1} U_{i_2} x^{i_2} \cdots U_{i_j} x^{i_j}$$

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration mode

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Awarane Component Size

### References

Write probability that variable *W* has value *k* as  $W_k$ .

 $\sim$ 

$$W_k = \sum_{j=0}^{\infty} V_j imes \mathsf{Pr}(\mathsf{sum of } j \mathsf{ draws of variable } U = k)$$

$$=\sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1},i_{2},\ldots,i_{j}\} \mid \\ i_{1}+i_{2}+\ldots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}}$$

$$\therefore F_{W}(x) = \sum_{k=0}^{\infty} W_{k} x^{k} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{j}\} \mid \\ i_{1}+i_{2}+\dots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}} x^{k}$$

$$= \sum_{j=0}^{\infty} V_j \sum_{k=0}^{\infty} \sum_{\substack{\{i_1, i_2, \dots, i_j\} \\ i_1+i_2+\dots+i_j=k}} U_{i_1} x^{i_1} U_{i_2} x^{i_2} \cdots U_{i_j} x^{i_j}$$

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distribution: Configuration mode

Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Write probability that variable *W* has value *k* as  $W_k$ .

 $\sim$ 

$$W_k = \sum_{j=0}^{\infty} V_j imes ext{Pr}( ext{sum of } j ext{ draws of variable } U = k)$$

$$=\sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1},i_{2},\ldots,i_{j}\} \mid \\ i_{1}+i_{2}+\ldots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}}$$

$$\therefore F_{W}(x) = \sum_{k=0}^{\infty} W_{k} x^{k} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{j}\} \mid \\ i_{1}+i_{2}+\dots+i_{j}=k}} U_{i_{1}} U_{i_{2}} \cdots U_{i_{j}} x^{k}$$

$$= \sum_{j=0}^{\infty} V_j \sum_{k=0}^{\infty} \sum_{\substack{\{i_1, i_2, \dots, i_j\} \mid \\ i_1+i_2+\dots+i_j=k}} U_{i_1} x^{i_1} U_{i_2} x^{i_2} \cdots U_{i_j} x^{i_j}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Condition Component Sizes Useful results Size of the Giant Component Average Component Size

References

With some concentration, observe:

$$F_{W}(x) = \sum_{j=0}^{\infty} V_{j} \sum_{k=0}^{\infty} \underbrace{\sum_{\substack{\{i_{1}, i_{2}, \dots, i_{j}\} \mid \\ i_{1}+i_{2}+\dots+i_{j}=k}} U_{i_{1}} x^{i_{1}} U_{i_{2}} x^{i_{2}} \dots U_{i_{j}} x^{i_{j}}}_{x^{k} \text{ piece of } \left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j}}$$

$$=\sum_{j=0}^{\infty} V_j (F_U(x))^j$$
$$= F_V (F_U(x)) \checkmark$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

With some concentration, observe:

$$F_{W}(x) = \sum_{j=0}^{\infty} V_{j} \sum_{k=0}^{\infty} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{k}\} \mid \\ i_{1}+i_{2}+\dots+i_{k}=j}} U_{i_{1}} x^{i_{1}} U_{i_{2}} x^{i_{2}} \dots U_{i_{j}} x^{i_{j}}} \\ \underbrace{x^{k} \text{ piece of } \left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j}}_{\left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j} = (F_{U}(x))^{j}} \\ = \sum_{j=0}^{\infty} V_{j} (F_{U}(x))^{j} \\ = F_{V} (F_{U}(x)) \checkmark$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

With some concentration, observe:

$$F_{W}(x) = \sum_{j=0}^{\infty} V_{j} \sum_{k=0}^{\infty} \sum_{\substack{\{i_{1},i_{2},...,i_{k}\}|\\i_{1}+i_{2}+...+i_{k}=j}} U_{i_{1}} x^{i_{1}} U_{i_{2}} x^{i_{2}} \cdots U_{i_{j}} x^{i_{j}}}$$

$$x^{k} \text{ piece of } \left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j}$$

$$\left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j} = (F_{U}(x))^{j}$$

$$= \sum_{j=0}^{\infty} V_{j} (F_{U}(x))^{j}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component Sizes Useful results Size of the Giant Component

References

With some concentration, observe:

$$F_{W}(x) = \sum_{j=0}^{\infty} V_{j} \sum_{k=0}^{\infty} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{k}\} \\ i_{1}+i_{2}+\dots+i_{k}=j \\ \\ x^{k} \text{ piece of } \left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j} \\ \left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j} = (F_{U}(x))^{j} \\ = \sum_{j=0}^{\infty} V_{j} (F_{U}(x))^{j} \\ = F_{V} (F_{U}(x)) \checkmark$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component Sizes Useful results Size of the Giant Component

References

With some concentration, observe:

$$F_{W}(x) = \sum_{j=0}^{\infty} V_{j} \sum_{k=0}^{\infty} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{k}\} \\ i_{1}+i_{2}+\dots+i_{k}=j}} U_{i_{1}} x^{i_{1}} U_{i_{2}} x^{i_{2}} \dots U_{i_{j}} x^{i_{j}}}{x^{k} \text{ piece of } \left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j}} \left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j}}{\left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j}} = (F_{U}(x))^{j}}$$
$$= \sum_{j=0}^{\infty} V_{j} (F_{U}(x))^{j}$$
$$= F_{V} (F_{U}(x)) \checkmark$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

- Start with a random variable U with distribution  $U_k$  (k = 0, 1, 2, ...)
- SR2: If a second random variable is defined as

V = U + 1 then  $F_V(x) = xF_U(x)$ 

• Reason:  $V_k = U_{k-1}$  for  $k \ge 1$  and  $V_0 = 0$ .

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$
$$= x \sum_{k=0}^{\infty} U_j x^j = x F_U(x) \cdot \sqrt{1-1}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Frame 75/89

Start with a random variable U with distribution  $U_k$  (k = 0, 1, 2, ...)

### SR2: If a second random variable is defined as

V = U + 1 then  $F_V(x) = xF_U(x)$ 

• Reason:  $V_k = U_{k-1}$  for  $k \ge 1$  and  $V_0 = 0$ .

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$
$$= x \sum_{k=0}^{\infty} U_k x^k = x F_U(x) \cdot \sqrt{2}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant

Component Average Component Size

References

Frame 75/89

- Start with a random variable U with distribution  $U_k$  (k = 0, 1, 2, ...)
- SR2: If a second random variable is defined as

V = U + 1 then  $F_V(x) = xF_U(x)$ 

• Reason:  $V_k = U_{k-1}$  for  $k \ge 1$  and  $V_0 = 0$ .

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$
$$= x \sum_{i=0}^{\infty} U_i x^i = x F_U(x) \cdot \sqrt{1-1}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Start with a random variable U with distribution  $U_k$  (k = 0, 1, 2, ...)

### SR2: If a second random variable is defined as

$$V = U + 1$$
 then  $|F_V(x) = xF_U(x)|$ 

• Reason: 
$$V_k = U_{k-1}$$
 for  $k \ge 1$  and  $V_0 = 0$ .

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$
$$= x \sum_{k=0}^{\infty} U_l x^l = x F_U(x) \cdot \sqrt{2}$$

### Random Networks

### Basics Definitions How to build Some visual examples

### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Frame 75/89

Start with a random variable U with distribution  $U_k$  (k = 0, 1, 2, ...)

### SR2: If a second random variable is defined as

V = U + 1 then  $|F_V(x) = xF_U(x)|$ 

• Reason:  $V_k = U_{k-1}$  for  $k \ge 1$  and  $V_0 = 0$ .

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$
$$= x \sum_{j=0}^{\infty} U_j x^j = x F_U(x) . \checkmark$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Start with a random variable U with distribution  $U_k$  (k = 0, 1, 2, ...)

### SR2: If a second random variable is defined as

$$V = U + 1$$
 then  $|F_V(x) = xF_U(x)|$ 

• Reason: 
$$V_k = U_{k-1}$$
 for  $k \ge 1$  and  $V_0 = 0$ .

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$
$$= x \sum_{j=0}^{\infty} U_j x^j = x F_U(x) \cdot \checkmark$$

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Start with a random variable U with distribution  $U_k$  (k = 0, 1, 2, ...)

### SR2: If a second random variable is defined as

$$V = U + 1$$
 then  $|F_V(x) = xF_U(x)|$ 

• Reason: 
$$V_k = U_{k-1}$$
 for  $k \ge 1$  and  $V_0 = 0$ .

$$\therefore F_{V}(x) = \sum_{k=0}^{\infty} V_{k} x^{k} = \sum_{k=1}^{\infty} U_{k-1} x^{k}$$
$$= x \sum_{k=0}^{\infty} U_{i} x^{j} = x F_{U}(x) \sqrt{1-x^{k}}$$

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Start with a random variable U with distribution  $U_k$  (k = 0, 1, 2, ...)

### SR2: If a second random variable is defined as

$$V = U + 1$$
 then  $|F_V(x) = xF_U(x)|$ 

• Reason: 
$$V_k = U_{k-1}$$
 for  $k \ge 1$  and  $V_0 = 0$ .

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$
$$= x \sum_{j=0}^{\infty} U_j x^j = x F_U(x).\checkmark$$

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Start with a random variable U with distribution  $U_k$  (k = 0, 1, 2, ...)

### SR2: If a second random variable is defined as

$$V = U + 1$$
 then  $|F_V(x) = xF_U(x)|$ 

• Reason: 
$$V_k = U_{k-1}$$
 for  $k \ge 1$  and  $V_0 = 0$ .

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$
$$= x \sum_{j=0}^{\infty} U_j x^j = x F_U(x).$$

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

Average Component Size

References

Start with a random variable U with distribution  $U_k$  (k = 0, 1, 2, ...)

### SR2: If a second random variable is defined as

$$V = U + 1$$
 then  $|F_V(x) = xF_U(x)|$ 

• Reason: 
$$V_k = U_{k-1}$$
 for  $k \ge 1$  and  $V_0 = 0$ .

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$
$$= x \sum_{j=0}^{\infty} U_j x^j = x F_U(x) \cdot \checkmark$$

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Frame 75/89

### Generalization of SR2:

▶ (1) If V = U + i then

 $F_V(x) = x^i F_U(x).$ 

▶ (2) If V = U - i then

 $F_V(x) = x^{-i} F_U(x)$ 



### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results

Size of the Giant Component Average Component Size

References

Frame 76/89

୶ୡ୲ୖ

### Generalization of SR2:

• (1) If 
$$V = U + i$$
 then

 $F_V(x) = x^i F_U(x).$ 

• (2) If 
$$V = U - i$$
 then

 $F_V(x) = x^{-i} F_U(x)$ 



### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results

Size of the Giant Component Average Component Size

References

Frame 76/89

### Generalization of SR2:

• (1) If 
$$V = U + i$$
 then

 $F_V(x) = x^i F_U(x).$ 

• (2) If V = U - i then

 $F_V(x) = x^{-i}F_U(x)$ 



### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Conditior Component sizes Useful results

Size of the Giant Component Average Component Size

References

Frame 76/89

Sac.

### Generalization of SR2:

• (1) If 
$$V = U + i$$
 then

 $F_V(x) = x^i F_U(x).$ 

• (2) If V = U - i then

 $F_V(x) = x^{-i}F_U(x)$ 

$$=x^{-i}\sum_{k=0}^{\infty}U_kx^k$$

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Conditior Component sizes Useful results

Size of the Giant Component Average Component Size

References

Frame 76/89

ল ৩০৫

# Outline

Definitions How to build Some visual examples

### Structure

Clustering Degree distributions Configuration model Largest component

### **Generating Functions**

Definitions Basic Properties Giant Component Condition Component sizes Useful results

### Size of the Giant Component

Average Component Size

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Frame 77/89

- Goal: figure out forms of the component generating functions, *F<sub>π</sub>* and *F<sub>ρ</sub>*.
- $\pi_n$  = probability that a random node belongs to a finite component of size *n*

sum of sizes of subcomponents at end of k random links = n - 1

Therefore:



Extra factor of x accounts for random node itself.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 78/89 日 のへへ

- Goal: figure out forms of the component generating functions, *F<sub>π</sub>* and *F<sub>ρ</sub>*.
- $\pi_n$  = probability that a random node belongs to a finite component of size *n*

 $= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$ 

Therefore:



Extra factor of x accounts for random node itself.

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- Goal: figure out forms of the component generating functions, *F<sub>π</sub>* and *F<sub>ρ</sub>*.
- $\pi_n$  = probability that a random node belongs to a finite component of size *n*

 $= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$ 

Extra factor of x accounts for random node itself.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component Sizes Useful results Size of the Giant Component Average Component Size

References

- Goal: figure out forms of the component generating functions, *F<sub>π</sub>* and *F<sub>ρ</sub>*.
- $\pi_n$  = probability that a random node belongs to a finite component of size *n*

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Therefore:

$$F_{\pi}(x) = \underbrace{x}_{SR2} \underbrace{F_{P}(F_{\rho}(x))}_{SR1}$$

Extra factor of x accounts for random node itself.

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

Average Component Size

References

Frame 78/89 日 のへへ

- Goal: figure out forms of the component generating functions, *F<sub>π</sub>* and *F<sub>ρ</sub>*.
- $\pi_n$  = probability that a random node belongs to a finite component of size *n*

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Therefore:

$$F_{\pi}(x) = \underbrace{x}_{SR2} \underbrace{F_{P}(F_{\rho}(x))}_{SR1}$$

Extra factor of x accounts for random node itself.

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

Average Component Size

References

- Goal: figure out forms of the component generating functions, *F<sub>π</sub>* and *F<sub>ρ</sub>*.
- $\pi_n$  = probability that a random node belongs to a finite component of size *n*

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Therefore: 
$$F_{\pi}(x) = \underbrace{x}_{SR2} \underbrace{F_{P}(F_{\rho}(x))}_{SR1}$$

Extra factor of x accounts for random node itself.

### Random Networks

### Basics Definitions How to build Some visual examples

### Structure

Clustering Degree distributions Configuration model Largest component

### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Frame 78/89

- *ρ<sub>n</sub>* = probability that a random link leads to a finite subcomponent of size *n*.
- Invoke one step of recursion: ρ<sub>n</sub> = probability that a random node arrived along a random edge is part of a finite subcomponent of size n.

 $= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n - 1 \end{array}\right)$ 

Therefore: 
$$F_{\rho}(x) = \underbrace{x}_{SR2} \underbrace{F_R(F_{\rho}(x))}_{SR1}$$

 Again, extra factor of x accounts for random node itself.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

Frame 79/89

- *ρ<sub>n</sub>* = probability that a random link leads to a finite subcomponent of size *n*.
- Invoke one step of recursion: ρ<sub>n</sub> = probability that a random node arrived along a random edge is part of a finite subcomponent of size n.

 $= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$ 

Therefore: 
$$F_{\rho}(x) = \underbrace{x}_{SR2} \underbrace{F_{R}(F_{\rho}(x))}_{SR1}$$

 Again, extra factor of x accounts for random node itself.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Aurano Component Size

References

- *ρ<sub>n</sub>* = probability that a random link leads to a finite subcomponent of size *n*.
- Invoke one step of recursion: ρ<sub>n</sub> = probability that a random node arrived along a random edge is part of a finite subcomponent of size n.

 $= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$ 

Therefore: 
$$F_{\rho}(x) = \underbrace{x}_{SR2} \underbrace{F_{R}(F_{\rho}(x))}_{SR1}$$

 Again, extra factor of x accounts for random node itself.

### Random Networks

### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- *ρ<sub>n</sub>* = probability that a random link leads to a finite subcomponent of size *n*.
- Invoke one step of recursion: ρ<sub>n</sub> = probability that a random node arrived along a random edge is part of a finite subcomponent of size n.

 $= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$ 

Therefore: 
$$F_{\rho}(x) = \underbrace{\times}_{SR2} \underbrace{F_{R}(F_{\rho}(x))}_{SR1}$$

 Again, extra factor of x accounts for random node itself.

### Random Networks

### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- *ρ<sub>n</sub>* = probability that a random link leads to a finite subcomponent of size *n*.
- Invoke one step of recursion: ρ<sub>n</sub> = probability that a random node arrived along a random edge is part of a finite subcomponent of size n.

 $= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$ 

Therefore: 
$$F_{\rho}(x) = \underbrace{x}_{SR2} \underbrace{F_R(F_{\rho}(x))}_{SR1}$$

 Again, extra factor of x accounts for random node itself.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

- *ρ<sub>n</sub>* = probability that a random link leads to a finite subcomponent of size *n*.
- Invoke one step of recursion: ρ<sub>n</sub> = probability that a random node arrived along a random edge is part of a finite subcomponent of size n.

 $= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$ 

Therefore: 
$$F_{\rho}(x) = \underbrace{x}_{SR2} \underbrace{F_R(F_{\rho}(x))}_{SR1}$$

 Again, extra factor of x accounts for random node itself.

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

```
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Glant
Component
Average Component Size
```

References

We now have two functional equations connecting our generating functions:

 $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$  and  $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$ 

- ► Taking stock: We know  $F_P(x)$  and  $F_R(x) = F'_P(x)/F'_P(1)$ .
- We first untangle the second equation to find F<sub>ρ</sub>
- We can do this because it only involves  $F_{\rho}$  and  $F_R$ .
- The first equation then immediately gives us F<sub>π</sub> in terms of F<sub>ρ</sub> and F<sub>R</sub>.

#### Random Networks

#### Basics Definitions

low to build come visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

### Generating Functions

Giant Component Condition Component sizes Useful results Size of the Giant

Component Average Component Size

References

We now have two functional equations connecting our generating functions:

 $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$  and  $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$ 

- ► Taking stock: We know  $F_P(x)$  and  $F_R(x) = F'_P(x)/F'_P(1)$ .
- We first untangle the second equation to find F<sub>ρ</sub>
- We can do this because it only involves  $F_{\rho}$  and  $F_R$ .
- The first equation then immediately gives us F<sub>π</sub> in terms of F<sub>ρ</sub> and F<sub>R</sub>.

#### Random Networks

#### Basics Definitions How to build

low to build come visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions

Giant Component Condition Component sizes Useful results Size of the Giant Component

Average Component Size

References

We now have two functional equations connecting our generating functions:

 $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$  and  $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$ 

- ► Taking stock: We know  $F_P(x)$  and  $F_R(x) = F'_P(x)/F'_P(1)$ .
- We first untangle the second equation to find F<sub>ρ</sub>
- We can do this because it only involves  $F_{\rho}$  and  $F_R$ .
- The first equation then immediately gives us F<sub>π</sub> in terms of F<sub>ρ</sub> and F<sub>R</sub>.

#### Random Networks

#### Basics Definitions How to build

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component Sizes Useful results Size of the Giant Component Average Component Size

References

We now have two functional equations connecting our generating functions:

 $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$  and  $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$ 

- ► Taking stock: We know  $F_P(x)$  and  $F_R(x) = F'_P(x)/F'_P(1)$ .
- We first untangle the second equation to find F<sub>ρ</sub>
- We can do this because it only involves  $F_{\rho}$  and  $F_{R}$ .
- The first equation then immediately gives us F<sub>π</sub> in terms of F<sub>ρ</sub> and F<sub>R</sub>.

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

We now have two functional equations connecting our generating functions:

 $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$  and  $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$ 

- ► Taking stock: We know  $F_P(x)$  and  $F_R(x) = F'_P(x)/F'_P(1)$ .
- We first untangle the second equation to find F<sub>ρ</sub>
- We can do this because it only involves  $F_{\rho}$  and  $F_{R}$ .
- The first equation then immediately gives us F<sub>π</sub> in terms of F<sub>ρ</sub> and F<sub>R</sub>.

#### Random Networks

#### Basics Definitions

low to build come visual examples

#### Structure

Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

### Remembering vaguely what we are doing:

Finding  $F_{\pi}$  to obtain the fractional size of the largest component  $S_1 = 1 - F_{\pi}(1)$ .

Set x = 1 in our two equations:

 $F_{\pi}(1) = F_{P}(F_{\rho}(1))$  and  $F_{\rho}(1) = F_{R}(F_{\rho}(1))$ 

Solve second equation numerically for *F<sub>ρ</sub>*(1).
 Plug *F<sub>ρ</sub>*(1) into first equation to obtain *F<sub>π</sub>*(1).

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Remembering vaguely what we are doing:

Finding  $F_{\pi}$  to obtain the fractional size of the largest component  $S_1 = 1 - F_{\pi}(1)$ .

Set x = 1 in our two equations:

 $F_{\pi}(1) = F_{P}(F_{\rho}(1))$  and  $F_{\rho}(1) = F_{R}(F_{\rho}(1))$ 

Solve second equation numerically for *F<sub>ρ</sub>*(1).
 Plug *F<sub>ρ</sub>*(1) into first equation to obtain *F<sub>π</sub>*(1).

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

Average Component Siz

References

Remembering vaguely what we are doing:

Finding  $F_{\pi}$  to obtain the fractional size of the largest component  $S_1 = 1 - F_{\pi}(1)$ .

Set x = 1 in our two equations:

 $F_{\pi}(1) = F_{P}(F_{\rho}(1))$  and  $F_{\rho}(1) = F_{R}(F_{\rho}(1))$ 

Solve second equation numerically for *F<sub>ρ</sub>*(1).
 Plug *F<sub>ρ</sub>*(1) into first equation to obtain *F<sub>π</sub>*(1).

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Remembering vaguely what we are doing:

Finding  $F_{\pi}$  to obtain the fractional size of the largest component  $S_1 = 1 - F_{\pi}(1)$ .

Set x = 1 in our two equations:

 $F_{\pi}(1) = F_{P}(F_{\rho}(1))$  and  $F_{\rho}(1) = F_{R}(F_{\rho}(1))$ 

Solve second equation numerically for *F*<sub>ρ</sub>(1).
 Plug *F*<sub>ρ</sub>(1) into first equation to obtain *F*<sub>π</sub>(1).

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Remembering vaguely what we are doing:

Finding  $F_{\pi}$  to obtain the fractional size of the largest component  $S_1 = 1 - F_{\pi}(1)$ .

Set x = 1 in our two equations:

 $F_{\pi}(1) = F_{P}(F_{\rho}(1))$  and  $F_{\rho}(1) = F_{R}(F_{\rho}(1))$ 

Solve second equation numerically for *F*<sub>ρ</sub>(1).
 Plug *F*<sub>ρ</sub>(1) into first equation to obtain *F*<sub>π</sub>(1).

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

Remembering vaguely what we are doing:

Finding  $F_{\pi}$  to obtain the fractional size of the largest component  $S_1 = 1 - F_{\pi}(1)$ .

Set x = 1 in our two equations:

 $F_{\pi}(1) = F_{P}(F_{\rho}(1))$  and  $F_{\rho}(1) = F_{R}(F_{\rho}(1))$ 

- Solve second equation numerically for  $F_{\rho}(1)$ .
- Plug  $F_{\rho}(1)$  into first equation to obtain  $F_{\pi}(1)$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

### Example: Standard random graphs.

• We can show 
$$F_P(x) = e^{-\langle k \rangle (1-x)}$$

 $\therefore F_R(x) = F'_P(x)/F'_P(1) = e^{-\langle k \rangle (1-x)}/e^{-\langle k \rangle (1-x')}|_{x'}$ 

 $=e^{-\langle k\rangle(1-x)}=F_P(x)$  ...aha!

- ► RHS's of our two equations are the same.
   ► So F<sub>π</sub>(x) = F<sub>ρ</sub>(x) = xF<sub>R</sub>(F<sub>ρ</sub>(x)) = xF<sub>R</sub>(F<sub>π</sub>(x))
- Why our dirty (but wrong) trick worked earlier...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 82/89

### Example: Standard random graphs.

• We can show  $F_P(x) = e^{-\langle k \rangle (1-x)}$ 

$$\therefore F_{\mathcal{B}}(x) = F_{\mathcal{P}}'(x)/F_{\mathcal{P}}'(1) = e^{-\langle k \rangle (1-x)}/e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$= e^{-\langle k \rangle (1-x)} = F_P(x)$$
 ...aha!

- RHS's of our two equations are the same.
   So F<sub>π</sub>(x) = F<sub>ρ</sub>(x) = xF<sub>R</sub>(F<sub>ρ</sub>(x)) = xF<sub>R</sub>(F<sub>π</sub>(x))
- Why our dirty (but wrong) trick worked earlier...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 82/89

### Example: Standard random graphs.

• We can show 
$$F_P(x) = e^{-\langle k \rangle (1-x)}$$

$$\therefore F_R(x) = F'_P(x)/F'_P(1) = e^{-\langle k \rangle (1-x)}/e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$=e^{-\langle k\rangle(1-x)}=F_P(x)$$
 ...aha!

- RHS's of our two equations are the same.
- So  $F_{\pi}(x) = F_{\rho}(x) = xF_R(F_{\rho}(x)) = xF_R(F_{\pi}(x))$
- Why our dirty (but wrong) trick worked earlier...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 82/89

୍୬ବ୍ଦ

### Example: Standard random graphs.

• We can show 
$$F_P(x) = e^{-\langle k \rangle (1-x)}$$

$$\therefore$$
  $F_R(x) = F'_P(x)/F'_P(1) = e^{-\langle k \rangle (1-x)}/e^{-\langle k \rangle (1-x')}|_{x'=1}$ 

$$= e^{-\langle k \rangle (1-x)} = F_P(x)$$
 ...aha!

- ► RHS's of our two equations are the same.
- $\blacktriangleright \text{ So } F_{\pi}(x) = F_{\rho}(x) = xF_{R}(F_{\rho}(x)) = xF_{R}(F_{\pi}(x))$
- Why our dirty (but wrong) trick worked earlier...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 82/89

୬ବ୍ଦ

### Example: Standard random graphs.

• We can show 
$$F_P(x) = e^{-\langle k \rangle (1-x)}$$

$$\therefore$$
  $F_R(x) = F'_P(x)/F'_P(1) = e^{-\langle k \rangle (1-x)}/e^{-\langle k \rangle (1-x')}|_{x'=1}$ 

$$= e^{-\langle k \rangle (1-x)} = F_P(x)$$
 ...aha

- ► RHS's of our two equations are the same.
   ► So F<sub>π</sub>(x) = F<sub>ρ</sub>(x) = xF<sub>R</sub>(F<sub>ρ</sub>(x)) = xF<sub>R</sub>(F<sub>π</sub>(x))
- Why our dirty (but wrong) trick worked earlier...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 82/89

୬ବ୍ଦ

### Example: Standard random graphs.

• We can show  $F_P(x) = e^{-\langle k \rangle (1-x)}$ 

$$\therefore F_R(x) = F'_P(x)/F'_P(1) = e^{-\langle k \rangle (1-x)}/e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$= e^{-\langle k \rangle (1-x)} = F_P(x)$$
 ...aha

► RHS's of our two equations are the same.
 ► So F<sub>π</sub>(x) = F<sub>ρ</sub>(x) = xF<sub>R</sub>(F<sub>ρ</sub>(x)) = xF<sub>R</sub>(F<sub>π</sub>(x))
 ► Why our dirty (but wrong) trick worked earlier...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

Frame 82/89

ା ୬ବ୍ଦ

Example: Standard random graphs.

• We can show  $F_P(x) = e^{-\langle k \rangle (1-x)}$ 

$$\therefore F_R(x) = F'_P(x)/F'_P(1) = e^{-\langle k \rangle (1-x)}/e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$= e^{-\langle k \rangle (1-x)} = F_P(x)$$
 ...aha!

- ► RHS's of our two equations are the same.
   ► So F<sub>π</sub>(x) = F<sub>ρ</sub>(x) = xF<sub>R</sub>(F<sub>ρ</sub>(x)) = xF<sub>R</sub>(F<sub>π</sub>(x))
- Why our dirty (but wrong) trick worked earlier...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 82/89

### Example: Standard random graphs.

• We can show  $F_P(x) = e^{-\langle k \rangle (1-x)}$ 

$$\therefore F_R(x) = F'_P(x)/F'_P(1) = e^{-\langle k \rangle (1-x)}/e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$= e^{-\langle k \rangle (1-x)} = F_P(x)$$
 ...aha!

- RHS's of our two equations are the same.
- So  $F_{\pi}(x) = F_{\rho}(x) = xF_R(F_{\rho}(x)) = xF_R(F_{\pi}(x))$
- Why our dirty (but wrong) trick worked earlier...

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Usaful results Size of the Giant Component Average Component Size

References

Frame 82/89

৸৵ঀ৻৾৽

$$1-S_1=e^{-\langle k
angle S_1}$$

Or:  $\langle k 
angle = rac{1}{S_1} \ln rac{1}{1-S_1}$ 

Just as we found with our dirty trick ....

Again, we (usually) have to resort to numerics ...

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component

References

• We are down to  

$$F_{\pi}(x) = xF_{R}(F_{\pi}(x))$$
 and  $F_{R}(x) = e^{-\langle k \rangle (1-x)}$ .  
•  $\therefore F_{\pi}(x) = xe^{-\langle k \rangle (1-F_{\pi}(x))}$ 

We're first after S<sub>1</sub> = 1 − F<sub>π</sub>(1) so set x = 1 and replace F<sub>π</sub>(1) by 1 − S<sub>1</sub>:

$$1-S_1=e^{-\langle k\rangle S_1}$$

Or:  $\langle k 
angle = rac{1}{S_1} \ln rac{1}{1-S_1}$ 

Just as we found with our dirty trick ....

Again, we (usually) have to resort to numerics ...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

• We are down to  

$$F_{\pi}(x) = xF_{R}(F_{\pi}(x))$$
 and  $F_{R}(x) = e^{-\langle k \rangle (1-x)}$ .  
•  $\therefore F_{\pi}(x) = xe^{-\langle k \rangle (1-F_{\pi}(x))}$ 

We're first after S<sub>1</sub> = 1 − F<sub>π</sub>(1) so set x = 1 and replace F<sub>π</sub>(1) by 1 − S<sub>1</sub>:

$$1 - S_1 = e^{-\langle k \rangle S_1}$$
  
Dr:  $\langle k 
angle = rac{1}{S_1} \ln rac{1}{1 - S_1}$ 

Just as we found with our dirty trick ....

Again, we (usually) have to resort to numerics ...

#### Random Networks

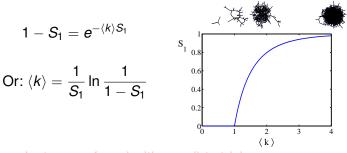
#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Averance Component Size

References

- We are down to  $F_{\pi}(x) = xF_{R}(F_{\pi}(x)) \text{ and } F_{R}(x) = e^{-\langle k \rangle (1-x)}.$ •  $\therefore F_{\pi}(x) = xe^{-\langle k \rangle (1-F_{\pi}(x))}$
- We're first after  $S_1 = 1 F_{\pi}(1)$  so set x = 1 and replace  $F_{\pi}(1)$  by  $1 S_1$ :



Just as we found with our dirty trick ....

Again, we (usually) have to resort to numerics ...

#### Random Networks

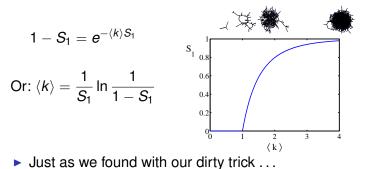
#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- We are down to  $F_{\pi}(x) = xF_{R}(F_{\pi}(x)) \text{ and } F_{R}(x) = e^{-\langle k \rangle (1-x)}.$ •  $\therefore F_{\pi}(x) = xe^{-\langle k \rangle (1-F_{\pi}(x))}$
- We're first after S<sub>1</sub> = 1 − F<sub>π</sub>(1) so set x = 1 and replace F<sub>π</sub>(1) by 1 − S<sub>1</sub>:



Again, we (usually) have to resort to numerics ...

#### Random Networks

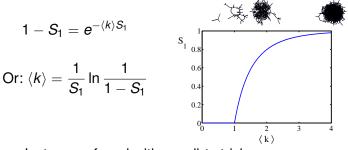
#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- We are down to  $F_{\pi}(x) = xF_R(F_{\pi}(x))$  and  $F_R(x) = e^{-\langle k \rangle (1-x)}$ . •  $\therefore F_{\pi}(x) = xe^{-\langle k \rangle (1-F_{\pi}(x))}$
- We're first after S<sub>1</sub> = 1 − F<sub>π</sub>(1) so set x = 1 and replace F<sub>π</sub>(1) by 1 − S<sub>1</sub>:



- Just as we found with our dirty trick ...
- Again, we (usually) have to resort to numerics ...

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

# Outline

Definitions How to build Some visual examples

### Structure

Clustering Degree distributions Configuration model Largest component

### **Generating Functions**

Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 84/89

লি ৩৫৫

- Next: find average size of finite components  $\langle n \rangle$ .
- Using standard G.F. result:  $\langle n \rangle = F'_{\pi}(1)$ .
- Try to avoid finding  $F_{\pi}(x)$ ...
- Starting from  $F_{\pi}(x) = xF_P(F_{\rho}(x))$ , we differentiate:

 $F'_{\pi}(x) = F_{P}\left(F_{\rho}(x)\right) + xF'_{\rho}(x)F'_{P}\left(F_{\rho}(x)\right)$ 

• While  $F_{\rho}(x) = xF_R(F_{\rho}(x))$  gives

 $F'_{\rho}(x) = F_R(F_{\rho}(x)) + xF'_{\rho}(x)F'_R(F_{\rho}(x))$ 

- Now set x = 1 in both equations.
- We solve the second equation for F'<sub>ρ</sub>(1) (we must already have F<sub>ρ</sub>(1)).
- ▶ Plug  $F'_{\rho}(1)$  and  $F_{\rho}(1)$  into first equation to find  $F'_{\pi}(1)$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- Next: find average size of finite components  $\langle n \rangle$ .
- Using standard G.F. result:  $\langle n \rangle = F'_{\pi}(1)$ .
- Try to avoid finding  $F_{\pi}(x)$ ...

Starting from  $F_{\pi}(x) = xF_P(F_{\rho}(x))$ , we differentiate:

 $F'_{\pi}(x) = F_{P}\left(F_{\rho}(x)\right) + xF'_{\rho}(x)F'_{P}\left(F_{\rho}(x)\right)$ 

• While  $F_{\rho}(x) = xF_R(F_{\rho}(x))$  gives

 $F'_{\rho}(x) = F_R(F_{\rho}(x)) + xF'_{\rho}(x)F'_R(F_{\rho}(x))$ 

- Now set x = 1 in both equations.
- We solve the second equation for F'<sub>ρ</sub>(1) (we must already have F<sub>ρ</sub>(1)).
- ▶ Plug  $F'_{\rho}(1)$  and  $F_{\rho}(1)$  into first equation to find  $F'_{\pi}(1)$ .

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- Next: find average size of finite components  $\langle n \rangle$ .
- Using standard G.F. result:  $\langle n \rangle = F'_{\pi}(1)$ .
- Try to avoid finding  $F_{\pi}(x)$ ...

Starting from  $F_{\pi}(x) = xF_P(F_{\rho}(x))$ , we differentiate:

 $F'_{\pi}(x) = F_{P}\left(F_{\rho}(x)\right) + xF'_{\rho}(x)F'_{P}\left(F_{\rho}(x)\right)$ 

• While  $F_{\rho}(x) = xF_R(F_{\rho}(x))$  gives

 $F'_{\rho}(x) = F_R(F_{\rho}(x)) + xF'_{\rho}(x)F'_R(F_{\rho}(x))$ 

- Now set x = 1 in both equations.
- We solve the second equation for F'<sub>ρ</sub>(1) (we must already have F<sub>ρ</sub>(1)).
- ▶ Plug  $F'_{\rho}(1)$  and  $F_{\rho}(1)$  into first equation to find  $F'_{\pi}(1)$ .

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- Next: find average size of finite components  $\langle n \rangle$ .
- Using standard G.F. result:  $\langle n \rangle = F'_{\pi}(1)$ .
- Try to avoid finding  $F_{\pi}(x)$ ...
- Starting from  $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$ , we differentiate:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\rho}(x)
ight) + xF'_{
ho}(x)F'_{\mathcal{P}}\left(F_{
ho}(x)
ight)$$

• While 
$$F_{\rho}(x) = xF_R(F_{\rho}(x))$$
 gives

 $F'_{\rho}(x) = F_R(F_{\rho}(x)) + xF'_{\rho}(x)F'_R(F_{\rho}(x))$ 

- Now set x = 1 in both equations.
- We solve the second equation for F'<sub>ρ</sub>(1) (we must already have F<sub>ρ</sub>(1)).
- ▶ Plug  $F'_{\rho}(1)$  and  $F_{\rho}(1)$  into first equation to find  $F'_{\pi}(1)$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component Sizes Useful results Size of the Giant Component Average Component Size

References

- Next: find average size of finite components  $\langle n \rangle$ .
- Using standard G.F. result:  $\langle n \rangle = F'_{\pi}(1)$ .
- Try to avoid finding  $F_{\pi}(x)$ ...
- Starting from  $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$ , we differentiate:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\rho}(x)\right) + xF'_{\rho}(x)F'_{\mathcal{P}}\left(F_{\rho}(x)\right)$$

• While 
$$F_{\rho}(x) = xF_{R}(F_{\rho}(x))$$
 gives

$$F_{
ho}'(x)=F_R\left(F_{
ho}(x)
ight)+xF_{
ho}'(x)F_R'\left(F_{
ho}(x)
ight)$$

- Now set x = 1 in both equations.
- We solve the second equation for F'<sub>ρ</sub>(1) (we must already have F<sub>ρ</sub>(1)).
- ▶ Plug  $F'_{\rho}(1)$  and  $F_{\rho}(1)$  into first equation to find  $F'_{\pi}(1)$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model

#### Generating Functions Definitions Basic Properties Glant Component Condition Component Sizes Useful results Size of the Glant Component Average Component Size

References

- Next: find average size of finite components  $\langle n \rangle$ .
- Using standard G.F. result:  $\langle n \rangle = F'_{\pi}(1)$ .
- Try to avoid finding  $F_{\pi}(x)$ ...
- Starting from  $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$ , we differentiate:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\rho}(x)\right) + xF'_{\rho}(x)F'_{\mathcal{P}}\left(F_{\rho}(x)\right)$$

• While 
$$F_{\rho}(x) = xF_R(F_{\rho}(x))$$
 gives

$$F_{
ho}'(x)=F_{R}\left(F_{
ho}(x)
ight)+xF_{
ho}'(x)F_{R}'\left(F_{
ho}(x)
ight)$$

- Now set x = 1 in both equations.
- We solve the second equation for F'<sub>ρ</sub>(1) (we must already have F<sub>ρ</sub>(1)).
- ▶ Plug  $F'_{\rho}(1)$  and  $F_{\rho}(1)$  into first equation to find  $F'_{\pi}(1)$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model

#### Generating Functions Definitions Basic Properties Glant Component Condition Component Sizes Useful results Size of the Glant Component Average Component Size

References

- Next: find average size of finite components  $\langle n \rangle$ .
- Using standard G.F. result:  $\langle n \rangle = F'_{\pi}(1)$ .
- Try to avoid finding  $F_{\pi}(x)$ ...
- Starting from  $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$ , we differentiate:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\rho}(x)\right) + xF'_{\rho}(x)F'_{\mathcal{P}}\left(F_{\rho}(x)\right)$$

• While 
$$F_{\rho}(x) = xF_R(F_{\rho}(x))$$
 gives

$$F_{
ho}'(x)=F_{R}\left(F_{
ho}(x)
ight)+xF_{
ho}'(x)F_{R}'\left(F_{
ho}(x)
ight)$$

- Now set x = 1 in both equations.
- We solve the second equation for F'<sub>ρ</sub>(1) (we must already have F<sub>ρ</sub>(1)).

▶ Plug  $F'_{\rho}(1)$  and  $F_{\rho}(1)$  into first equation to find  $F'_{\pi}(1)$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

- Next: find average size of finite components  $\langle n \rangle$ .
- Using standard G.F. result:  $\langle n \rangle = F'_{\pi}(1)$ .
- Try to avoid finding  $F_{\pi}(x)$ ...
- Starting from  $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$ , we differentiate:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\rho}(x)\right) + xF'_{\rho}(x)F'_{\mathcal{P}}\left(F_{\rho}(x)\right)$$

• While 
$$F_{\rho}(x) = xF_R(F_{\rho}(x))$$
 gives

$$F'_{\rho}(x) = F_{R}\left(F_{\rho}(x)\right) + xF'_{\rho}(x)F'_{R}\left(F_{\rho}(x)\right)$$

- Now set x = 1 in both equations.
- We solve the second equation for F'<sub>ρ</sub>(1) (we must already have F<sub>ρ</sub>(1)).
- ▶ Plug  $F'_{\rho}(1)$  and  $F_{\rho}(1)$  into first equation to find  $F'_{\pi}(1)$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

### Example: Standard random graphs.

• Use fact that  $F_P = F_R$  and  $F_{\pi} = F_{\rho}$ .

Two differentiated equations reduce to only one:

 $F'_{\pi}(x) = F_{P}(F_{\pi}(x)) + xF'_{\pi}(x)F'_{P}(F_{\pi}(x))$ 

Rearrange: 
$$F'_{\pi}(x) = rac{F_{P}(F_{\pi}(x))}{1 - xF'_{P}(F_{\pi}(x))}$$

- Simplify denominator using  $F'_P(x) = \langle k \rangle F_P(x)$
- ► Replace  $F_P(F_\pi(x))$  using  $F_\pi(x) = xF_P(F_\pi(x))$ .
- Set x = 1 and replace  $F_{\pi}(1)$  with  $1 S_1$ .

End result: 
$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Example: Standard random graphs.

• Use fact that  $F_P = F_R$  and  $F_{\pi} = F_{\rho}$ .

Two differentiated equations reduce to only one:

 $F'_{\pi}(x) = F_{P}(F_{\pi}(x)) + xF'_{\pi}(x)F'_{P}(F_{\pi}(x))$ 

Rearrange: 
$$F'_{\pi}(x) = rac{F_{P}(F_{\pi}(x))}{1 - xF'_{P}(F_{\pi}(x))}$$

- Simplify denominator using  $F'_P(x) = \langle k \rangle F_P(x)$
- ▶ Replace  $F_P(F_\pi(x))$  using  $F_\pi(x) = xF_P(F_\pi(x))$ .
- Set x = 1 and replace  $F_{\pi}(1)$  with  $1 S_1$ .

End result:  $\langle n \rangle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k 
angle(1-S_1)}$ 

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 86/89 日 のへへ

Example: Standard random graphs.

• Use fact that  $F_P = F_R$  and  $F_{\pi} = F_{\rho}$ .

Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\pi}(x)\right) + xF'_{\pi}(x)F'_{\mathcal{P}}\left(F_{\pi}(x)\right)$$

Rearrange: 
$$F'_{\pi}(x) = \frac{F_{P}(F_{\pi}(x))}{1 - xF'_{P}(F_{\pi}(x))}$$

- Simplify denominator using  $F'_P(x) = \langle k \rangle F_P(x)$
- Replace  $F_P(F_\pi(x))$  using  $F_\pi(x) = xF_P(F_\pi(x))$ .
- Set x = 1 and replace  $F_{\pi}(1)$  with  $1 S_1$ .

End result: 
$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration mode

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Example: Standard random graphs.

• Use fact that  $F_P = F_R$  and  $F_{\pi} = F_{\rho}$ .

Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\pi}(x)\right) + xF'_{\pi}(x)F'_{\mathcal{P}}\left(F_{\pi}(x)\right)$$

Rearrange: 
$$F'_{\pi}(x) = rac{F_{\mathcal{P}}(F_{\pi}(x))}{1 - xF'_{\mathcal{P}}(F_{\pi}(x))}$$

- Simplify denominator using  $F'_P(x) = \langle k \rangle F_P(x)$
- ▶ Replace  $F_P(F_\pi(x))$  using  $F_\pi(x) = xF_P(F_\pi(x))$ .
- Set x = 1 and replace  $F_{\pi}(1)$  with  $1 S_1$ .

End result: 
$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Example: Standard random graphs.

• Use fact that  $F_P = F_R$  and  $F_{\pi} = F_{\rho}$ .

Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\pi}(x)
ight) + xF'_{\pi}(x)F'_{\mathcal{P}}\left(F_{\pi}(x)
ight)$$

Rearrange: 
$$F'_{\pi}(x) = \frac{F_P(F_{\pi}(x))}{1 - xF'_P(F_{\pi}(x))}$$

- Simplify denominator using  $F'_P(x) = \langle k \rangle F_P(x)$
- ▶ Replace  $F_P(F_\pi(x))$  using  $F_\pi(x) = xF_P(F_\pi(x))$ .
- Set x = 1 and replace  $F_{\pi}(1)$  with  $1 S_1$ .

End result: 
$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Example: Standard random graphs.

• Use fact that  $F_P = F_R$  and  $F_{\pi} = F_{\rho}$ .

Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\pi}(x)\right) + xF'_{\pi}(x)F'_{\mathcal{P}}\left(F_{\pi}(x)\right)$$

Rearrange: 
$$F'_{\pi}(x) = \frac{F_P(F_{\pi}(x))}{1 - xF'_P(F_{\pi}(x))}$$

- Simplify denominator using  $F'_P(x) = \langle k \rangle F_P(x)$
- Replace  $F_P(F_{\pi}(x))$  using  $F_{\pi}(x) = xF_P(F_{\pi}(x))$ .
- Set x = 1 and replace  $F_{\pi}(1)$  with  $1 S_1$ .

End result:  $\langle n \rangle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k 
angle(1-S_1)}$ 

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Example: Standard random graphs.

• Use fact that  $F_P = F_R$  and  $F_{\pi} = F_{\rho}$ .

Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\pi}(x)\right) + xF'_{\pi}(x)F'_{\mathcal{P}}\left(F_{\pi}(x)\right)$$

Rearrange: 
$$F'_{\pi}(x) = \frac{F_P(F_{\pi}(x))}{1 - xF'_P(F_{\pi}(x))}$$

- Simplify denominator using  $F'_P(x) = \langle k \rangle F_P(x)$
- Replace  $F_P(F_\pi(x))$  using  $F_\pi(x) = xF_P(F_\pi(x))$ .
- Set x = 1 and replace  $F_{\pi}(1)$  with  $1 S_1$ .

End result: 
$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering

Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 86/89 日 のへへ

Example: Standard random graphs.

• Use fact that  $F_P = F_R$  and  $F_{\pi} = F_{\rho}$ .

Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\pi}(x)\right) + xF'_{\pi}(x)F'_{\mathcal{P}}\left(F_{\pi}(x)\right)$$

Rearrange: 
$$F'_{\pi}(x) = \frac{F_P(F_{\pi}(x))}{1 - xF'_P(F_{\pi}(x))}$$

- Simplify denominator using  $F'_P(x) = \langle k \rangle F_P(x)$
- Replace  $F_P(F_{\pi}(x))$  using  $F_{\pi}(x) = xF_P(F_{\pi}(x))$ .
- Set x = 1 and replace  $F_{\pi}(1)$  with  $1 S_1$ .

End result: 
$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

### Random Networks

#### Basics Definitions How to build Some visual examples

### Structure Clustering Degree distributions

argest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Our result for standard random networks:

$$\langle n \rangle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

- Recall that (k) = 1 is the critical value of average degree for standard random networks.
- Look at what happens when we increase (k) to 1 from below.
- We have  $S_1 = 0$  for all  $\langle k \rangle < 1$  so



- This blows up as  $\langle k \rangle \rightarrow 1$ .
- ► Reason: we have a power law distribution of component sizes at (k) = 1.
- Typical critical point behavior....

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Our result for standard random networks:

$$\langle n \rangle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

- Recall that (k) = 1 is the critical value of average degree for standard random networks.
- Look at what happens when we increase (k) to 1 from below.
- We have  $S_1 = 0$  for all  $\langle k \rangle < 1$  so



- This blows up as  $\langle k \rangle \rightarrow 1$ .
- ► Reason: we have a power law distribution of component sizes at (k) = 1.
- Typical critical point behavior....

### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Our result for standard random networks:

$$\langle n \rangle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

- Recall that (k) = 1 is the critical value of average degree for standard random networks.
- Look at what happens when we increase (k) to 1 from below.

• We have 
$$S_1 = 0$$
 for all  $\langle k \rangle < 1$  so



- ► Reason: we have a power law distribution of component sizes at (k) = 1.
- Typical critical point behavior....

#### Random Networks

#### Basics Definitions How to build Some visual examples

### Structure Clustering Degree distributions Configuration model

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Our result for standard random networks:

$$\langle n \rangle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

- Recall that (k) = 1 is the critical value of average degree for standard random networks.
- Look at what happens when we increase (k) to 1 from below.
- We have  $S_1 = 0$  for all  $\langle k \rangle < 1$  so



- This blows up as  $\langle k \rangle \rightarrow 1$ .
- ► Reason: we have a power law distribution of component sizes at (k) = 1.
- Typical critical point behavior....

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 87/89

Our result for standard random networks:

$$\langle n \rangle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

- Recall that (k) = 1 is the critical value of average degree for standard random networks.
- Look at what happens when we increase (k) to 1 from below.
- We have  $S_1 = 0$  for all  $\langle k \rangle < 1$  so

$$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$

- This blows up as  $\langle k \rangle \rightarrow 1$ .
- ► Reason: we have a power law distribution of component sizes at ⟨k⟩ = 1.

Typical critical point behavior....

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

Frame 87/89

SQC2

Our result for standard random networks:

$$\langle n \rangle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

- Recall that (k) = 1 is the critical value of average degree for standard random networks.
- Look at what happens when we increase (k) to 1 from below.
- We have  $S_1 = 0$  for all  $\langle k \rangle < 1$  so

$$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$

- This blows up as  $\langle k \rangle \rightarrow 1$ .
- ► Reason: we have a power law distribution of component sizes at ⟨k⟩ = 1.
- Typical critical point behavior....

#### Random Networks

#### Basics Definitions How to build Some visual examples

#### Structure Clustering Degree distributions Configuration mode

### Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

Frame 87/89

 $\neg \land \land \land$ 

Our result for standard random networks:

$$\langle n \rangle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

- Recall that (k) = 1 is the critical value of average degree for standard random networks.
- Look at what happens when we increase (k) to 1 from below.
- We have  $S_1 = 0$  for all  $\langle k \rangle < 1$  so

$$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$

- This blows up as  $\langle k \rangle \rightarrow 1$ .
- ► Reason: we have a power law distribution of component sizes at ⟨k⟩ = 1.
- Typical critical point behavior....

### Random Networks

#### Basics Definitions How to build Some visual examples

### Structure Clustering Degree distributions Configuration mode

### Generating Functions Definitions Basic Properties Glant Component Sizes Useful results Size of the Glant Component Average Component Size

References

Frame 87/89

 $\neg \land \land \land$ 

• Limits of  $\langle k \rangle = 0$  and  $\infty$  make sense for

$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 = 0$ , and  $\langle n \rangle \rightarrow 1$ 

- All nodes are isolated.
- As  $\langle k \rangle \to \infty$ ,  $S_1 \to 1$  and  $\langle n \rangle \to 0$ .
- ▶ No nodes are outside of the giant component.

### Extra on largest component size:

- For  $\langle k \rangle = 1$ ,  $S_1 \sim N^{2/3}$ .
- For  $\langle k \rangle < 1$ ,  $S_1 \sim \log N$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component taizes Useful results Size of the Giant Component Average Component Size

References

Frame 88/89

ৢৢ৶৻৻৽

• Limits of  $\langle k \rangle = 0$  and  $\infty$  make sense for

$$\langle n \rangle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 = 0$ , and  $\langle n \rangle \rightarrow 1$ .

All nodes are isolated.

• As 
$$\langle k \rangle \to \infty$$
,  $S_1 \to 1$  and  $\langle n \rangle \to 0$ .

▶ No nodes are outside of the giant component.

Extra on largest component size:

• For 
$$\langle k \rangle = 1$$
,  $S_1 \sim N^{2/3}$ .

• For  $\langle k \rangle < 1$ ,  $S_1 \sim \log N$ .

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 88/89

৸৵ঀ৾৾৽

• Limits of  $\langle k \rangle = 0$  and  $\infty$  make sense for

$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 = 0$ , and  $\langle n \rangle \rightarrow 1$ 

All nodes are isolated.

• As 
$$\langle k \rangle \to \infty$$
,  $S_1 \to 1$  and  $\langle n \rangle \to 0$ .

▶ No nodes are outside of the giant component.

Extra on largest component size:

• For 
$$\langle k \rangle = 1$$
,  $S_1 \sim N^{2/3}$ .

• For  $\langle k \rangle < 1$ ,  $S_1 \sim \log N$ .

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 88/89

৽৵৻৻৽

• Limits of  $\langle k \rangle = 0$  and  $\infty$  make sense for

$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 = 0$ , and  $\langle n \rangle \rightarrow 1$ 

All nodes are isolated.

• As 
$$\langle k \rangle \to \infty$$
,  $S_1 \to 1$  and  $\langle n \rangle \to 0$ .

▶ No nodes are outside of the giant component.

Extra on largest component size:

- For  $\langle k \rangle = 1$ ,  $S_1 \sim N^{2/3}$ .
- For  $\langle k \rangle < 1$ ,  $S_1 \sim \log N$ .

#### Random Networks

Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Glant Component Condition Component sizes Useful results Size of the Glant Component Average Component Size

References

Frame 88/89

৸৵ঀ৾৾৽

• Limits of  $\langle k \rangle = 0$  and  $\infty$  make sense for

$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 = 0$ , and  $\langle n \rangle \rightarrow 1$ 

- All nodes are isolated.
- As  $\langle k \rangle \to \infty$ ,  $S_1 \to 1$  and  $\langle n \rangle \to 0$ .
- No nodes are outside of the giant component.

### Extra on largest component size:

- For  $\langle k \rangle = 1$ ,  $S_1 \sim N^{2/3}$ .
- For  $\langle k \rangle < 1$ ,  $S_1 \sim \log N$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Component Size Component Size Component Size Component Sizes Useful results Size of the Giant Component Average Component Size

References

Frame 88/89

୭ ୬ < ୯

• Limits of  $\langle k \rangle = 0$  and  $\infty$  make sense for

$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 = 0$ , and  $\langle n \rangle \rightarrow 1$ 

- All nodes are isolated.
- As  $\langle k \rangle \to \infty$ ,  $S_1 \to 1$  and  $\langle n \rangle \to 0$ .
- No nodes are outside of the giant component.

### Extra on largest component size:

• For 
$$\langle k \rangle = 1$$
,  $S_1 \sim N^{2/3}$ .

For  $\langle k \rangle < 1$ ,  $S_1 \sim \log N$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 88/89

୭ ୬ ୯ ୯

• Limits of  $\langle k \rangle = 0$  and  $\infty$  make sense for

$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

• As 
$$\langle k \rangle \rightarrow 0$$
,  $S_1 = 0$ , and  $\langle n \rangle \rightarrow 1$ 

- All nodes are isolated.
- As  $\langle k \rangle \to \infty$ ,  $S_1 \to 1$  and  $\langle n \rangle \to 0$ .
- No nodes are outside of the giant component.

### Extra on largest component size:

- For  $\langle k \rangle = 1$ ,  $S_1 \sim N^{2/3}$ .
- For  $\langle k \rangle < 1$ ,  $S_1 \sim \log N$ .

#### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Component Average Component Size

References

Frame 88/89

৸৵ঀ৾৾৽

# References I

### [1] M. E. J. Newman.

The structure and function of complex networks. SIAM Review, 45(2):167–256, 2003. pdf ( $\boxplus$ )

### [2] S. H. Strogatz.

*Nonlinear Dynamics and Chaos.* Addison Wesley, Reading, Massachusetts, 1994.

### [3] H. S. Wilf.

Generatingfunctionology.

A K Peters, Natick, MA, 3rd edition, 2006. pdf (⊞)

### Random Networks

#### Basics Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Largest component

#### Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results

Size of the Giant Component Average Component Size

References

Frame 89/89

୬ବ୍ଦ