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Generalized contagion model

Basic questions about contagion

» How many types of contagion are there?
» How can we categorize real-world contagions?

» Can we connect models of disease-like and social
contagion?
» Focus: mean field models.
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Mathematical Epidemiology (recap)

The standard SIR model ']

vy
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v

= basic model of disease contagion
Three states:

1. S = Susceptible
2. | = Infective/Infectious
3. R = Recovered or Removed or Refractory

S(t)+ I(t)+ R(t) =1

Presumes random interactions (mass-action
principle)

Interactions are independent (no memory)
Discrete and continuous time versions
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Independent Interaction Models

Discrete time automata example:

Transition Probabilities:

( for being infected given
contact with infected

r for recovery

p for loss of immunity
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Independent Interaction Models

Original models attributed to

» 1920’s: Reed and Frost
» 1920’s/1930’s: Kermack and McKendrick [ - €l

» Coupled differential equations with a mass-action
principle
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Independent Interaction models

Differential equations for continuous model

d

d
EI—QIS—I’I
d

G, r, and p are now rates.

Reproduction Number Ry:

» Ry = expected number of infected individuals
resulting from a single initial infective

» Epidemic threshold: If Ry > 1, ‘epidemic’ occurs.
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» Set up: One Infective in a randomly mixing
population of Susceptibles

» Attime t = 0, single infective random bumps into a
Susceptible

» Probability of transmission = 3

» Attime t = 1, single Infective remains infected with
probability 1 — r

» Attime t = K, single Infective remains infected with
probability (1 — r)k
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» Expected number infected by original Infective:
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Reproduction Number Ry

Discrete version:

» Expected number infected by original Infective:

Ro=B+(1 =B+ —-r28+(1-rP®3+...

:5<1+(1—r)+(1—r)2+(1fr)3+...)

1

B (s B

» Similar story for continuous model.
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Example of epidemic threshold: lrdepardent

1 Interaction models

Fraction infected
o o o
S N [os]

o
N

(@)

=

[
PUINS
w
B

Frame 10/63

F DA



Independent Interaction models

Example of epidemic threshold:
1

Fraction infected
o o o
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» Continuous phase transition.
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Independent Interaction models

Example of epidemic threshold:
1

Fraction infected
o o o
S N [os]

o
N

(@)

o
=

2 3

R

» Continuous phase transition.
» Fine idea from a simple model.
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Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:
» Adoption of ideas/beliefs (Goffman & Newell,
1964) (6]
» Spread of rumors (Daley & Kendall, 1964, 1965) * °!
» Diffusion of innovations (Bass, 1969) ']

» Spread of fanatical behavior (Castillo-Chavez &
Song, 2003)
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Granovetter's model (recap of recap) Contagion

» Action based on perceived behavior of others.

1 2.5 1
A B C :
. 08| 2 —~. 08 / Interdependent
o £ ' interaction models
~ 0.6] 15 L 08§
+ IS/ I
804 w— 1 i 0.4
T o2 05 S 02 ‘i
% @ 1 % 05 1 % 05 1
Gy (pD @
» Two states: Sand I.
» Recovery now possible (SIS).
» ¢ = fraction of contacts ‘on’ (e.g., rioting).
» Discrete time, synchronous update.
» This is a Critical mass model.
» Interdependent interaction model.
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Disease models assume independence of infectious
events.

Threshold models only involve proportions:
3/10 =30/100.

Threshold models ignore exact sequence of
influences

Threshold models assume immediate polling.
Mean-field models neglect network structure
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Some (of many) issues

» Disease models assume independence of infectious
events.

» Threshold models only involve proportions:
3/10 = 30/100.

» Threshold models ignore exact sequence of
influences

» Threshold models assume immediate polling.
» Mean-field models neglect network structure

» Network effects only part of story:
media, advertising, direct marketing.
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Basic ingredients:

» Incorporate memory of a contagious element!* °!
» Population of N individuals, each in state S, I, or R. ML

» Each individual randomly contacts another at each
time step.

» ¢ = fraction infected at time ¢
= probability of contact with infected individual
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Generalized

Generalized model Contagion

Basic ingredients:

Incorporate memory of a contagious element [+ °!
Population of N individuals, each in state S, I, or R.

Each individual randomly contacts another at each
time step.
¢ = fraction infected at time

= probability of contact with infected individual

With probability p, contact with infective
leads to an exposure.

If exposed, individual receives a dose of size d
drawn from distribution f. Otherwise d = 0.

v

Generalized Model
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Generalized model—ingredients Gontagion

S=|

» Individuals ‘remember’ last T contacts:

t
Dij= > dt)

t=t—T+1

Generalized Model

» Infection occurs if individual /’s ‘threshold’ is

exceeded:
D> df
» Threshold d drawn from arbitrary distribution g at
t=0.
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When D;; < df,
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Generalized
Contagion

Generalized Model

Frame 16/63

F DA



Generalized model—ingredients

When D;; < df,
individual i/ recovers to state R with probability r.

Once in state R, individuals become susceptible again
with probability p.

Generalized
Contagion

Generalized Model

Frame 16/63

F DA



Generalized

VISU8| eXp|anat|0n Contagion

(ﬁf contact P receive
- infective —®{dose d > 0

Lal 1_ Ql 11— p‘ receive

no dose

Generalized Model

1—rif Dy; < dyf ]
1if Dy; > df

To o]

1-p
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Generalized mean-field model

Study SIS-type contagion first:

» Recovered individuals are immediately susceptible
again:
r=p=1.

» Look for steady-state behavior as a function of
exposure probability p.

» Denote fixed points by ¢*.

Homogeneous version:

» All individuals have threshold d*
» All dose sizes are equal: d =1
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Outline

Generalized Model
Homogeneous version
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Homogeneous, one hit models: Contagion

Fixed pointsforr <1, d*=1,and T = 1:

v

r < 1 means recovery is probabilistic.
» T =1 means individuals forget past interactions.

d* = 1 means one positive interaction will infect an
individual.

v

Evolution of infection level:

v

bti1 = pdt + (1 — por)
~ Y——
a b
a: Fraction infected between t and t + 1, independent of

past state or recovery.
b: Probability of being infected and not being reinfected.
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Homogeneous, one hit models: Contagion

Fixed pointsforr <1, d*=1,and T = 1:

v

r < 1 means recovery is probabilistic.
» T =1 means individuals forget past interactions.

d* = 1 means one positive interaction will infect an
individual.

v

Evolution of infection level:

v

bti1 = PPt + (1 —podt) (1—1).

a: Fraction infected between t and t + 1, independent of
past state or recovery.
b: Probability of being infected and not being reinfected.

c: Probability of not recovering. Frame 20/63
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Homogeneous, one hit models: Contagion
Fixed pointsforr <1, d*=1,and T = 1:
» Set ¢y = ¢*:

" = pd* + (1 —pp*)g*(1—r)

=1=p+(—-pp*)(1—-r), ¢"#0,

:>q§*:11__r/rp and ¢ =0.

» Critical pointat p=pc =r.

» Spreading takes off if p/r > 1

» Find continuous phase transition as for SIR model.
» Goodness: Matches R, = 3/~ > 1 condition. Frame 21/63
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» d* = 1 means only one positive interaction in past T
interactions will infect individual.
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Generalized

Simple homogeneous examples Contagion

Fixed pointsforr=1,d*=1,and T > 1

» r =1 means recovery is immediate.

» T > 1 means individuals remember at least 2
interactions.

» d* = 1 means only one positive interaction in past T
interactions will infect individual.

» Effect of individual interactions is independent from
effect of others.
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Generalized

Simple homogeneous examples Contagion

Fixed pointsforr=1,d*=1,and T > 1

» r = 1 means recovery is immediate.

» T > 1 means individuals remember at least 2
interactions.

» d* = 1 means only one positive interaction in past T
interactions will infect individual.

» Effect of individual interactions is independent from
effect of others.

Call ¢* the steady state level of infection.

v

Frame 22/63
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Generalized

Simple homogeneous examples Contagion

Fixed pointsforr=1,d*=1,and T > 1

» r = 1 means recovery is immediate.

» T > 1 means individuals remember at least 2
interactions.

» d* = 1 means only one positive interaction in past T
interactions will infect individual.

» Effect of individual interactions is independent from
effect of others.

» Call ¢* the steady state level of infection.
» Pr(infected) = 1 - Pr(uninfected):
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Generalized

Simple homogeneous examples Contagion

Fixed pointsforr=1,d*=1,and T > 1

» r = 1 means recovery is immediate.

» T > 1 means individuals remember at least 2
interactions.

» d* = 1 means only one positive interaction in past T
interactions will infect individual.

» Effect of individual interactions is independent from
effect of others.

» Call ¢* the steady state level of infection.
» Pr(infected) = 1 - Pr(uninfected):

¢"=1-(1-po)".

Frame 22/63

F DA



Homogeneous, one hit models: Contagion
Fixed pointsforr=1,d*=1,and T > 1

» Closed form expression for ¢*:

¢ =1—(1-ps*).

Frame 23/63
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Homogeneous, one hit models: Contagion
Fixed pointsforr=1,d*=1,and T > 1
» Closed form expression for ¢*:
0" =1-(1-po")".

» Look for critical infection probability pc.
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Homogeneous, one hit models: Contagion
Fixed pointsforr=1,d*=1,and T > 1
» Closed form expression for ¢*:
0" =1-(1-po")".

» Look for critical infection probability pc.
» As ¢* — 0, we see

¢~ pTo*

Frame 23/63
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Homogeneous, one hit models: Contagion
Fixed pointsforr=1,d*=1,and T > 1
» Closed form expression for ¢*:
0" =1-(1-po")".

» Look for critical infection probability pc.
» As ¢* — 0, we see

" ~pTep* =p.=1/T.

Frame 23/63
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Homogeneous, one hit models: Contagion
Fixed pointsforr=1,d*=1,and T > 1
» Closed form expression for ¢*:
0" =1-(1-po")".

» Look for critical infection probability pc.
» As ¢* — 0, we see

" ~pTep* =p.=1/T.

» Again find continuous phase transition...

Frame 23/63
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Generalized

Homogeneous, one hit models: Gontagion
Fixed pointsforr=1,d*=1,and T > 1
» Closed form expression for ¢*:
¢"=1-(1-pg").

» Look for critical infection probability pc.
» As ¢* — 0, we see

" ~pTep* =p.=1/T.

» Again find continuous phase transition...
» Note: we can solve for p but not ¢*:

p=(¢")""1—(1-¢")"T].

Frame 23/63

F DA



Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1

» Startwithr=1,d*=1,and T > 1 case we have
just examined:

¢ =1—(1-ps*)T.

Frame 24/63
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Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1

» Startwithr=1,d*=1,and T > 1 case we have
just examined:

¢ =1—(1-ps*)T.

» For r < 1, add to right hand side fraction who:
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Fixed pointsforr <1,d*=1,and T > 1

» Startwithr=1,d*=1,and T > 1 case we have
just examined:

¢ =1—(1-ps*)T.

» For r < 1, add to right hand side fraction who:
1. Did not receive any infections in last T time steps,
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Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1

» Startwithr=1,d*=1,and T > 1 case we have
just examined:

¢ =1—(1-ps*)T.

» For r < 1, add to right hand side fraction who:

1. Did not receive any infections in last T time steps,
2. And did not recover from a previous infection.
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Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1

» Startwithr=1,d*=1,and T > 1 case we have
just examined:

¢ =1—(1-ps*)T.

» For r < 1, add to right hand side fraction who:

1. Did not receive any infections in last T time steps,
2. And did not recover from a previous infection.

» Define corresponding dose histories. Example:
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Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1

» Startwithr=1,d*=1,and T > 1 case we have
just examined:

¢ =1—(1-ps*)T.

» For r < 1, add to right hand side fraction who:

1. Did not receive any infections in last T time steps,
2. And did not recover from a previous infection.

» Define corresponding dose histories. Example:
Hy = { < df—T—Qa df—T—1a170a07 <o 7070}a
N —
T 0’s
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Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1

» Startwithr=1,d*=1,and T > 1 case we have
just examined:

¢ =1—(1-ps*)T.

» For r < 1, add to right hand side fraction who:

1. Did not receive any infections in last T time steps,
2. And did not recover from a previous infection.

» Define corresponding dose histories. Example:
Hy = { < df—T—Qa df—T—1a170a07 <o 7070}a
N —
T 0’s

» With history H;, probability of being infected (not

recovering in one time step) is 1 —r. Frame 24/63
F DA




Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1
» In general, relevant dose histories are:

Hni1=1{...,d-7-m-1,1,0,0,...,0,0,0,0,...,0,0}.
mQO’s T6’s

Frame 25/63

F DA



Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1
» In general, relevant dose histories are:

Hm+1 :{"'7dt—T—m—1717070a"'70)070707"'70’0}'
mQ’s T O0's

» Overall probabilities for dose histories occurring:

P(Hy) = p¢*(1 = p¢") (1 = 1),
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Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1
» In general, relevant dose histories are:

Hm+1 :{"'7dt—T—m—1717070a"'70)070707"'70’0}'
mQ’s T O0's

» Overall probabilities for dose histories occurring:

P(Hy) = p¢*(1 = p¢") (1 = 1),

P(Himi1) =

Frame 25/63
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Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1
» In general, relevant dose histories are:

Hm+1 :{"'7dt—T—m—1717070a"'70)070707"'70’0}'
mQ’s T 0's

» Overall probabilities for dose histories occurring:

P(Hy) = p¢*(1 = p¢") (1 = 1),

P(Hmi1) = po"

a

a: Pr(infection T + m + 1 time steps ago)

Frame 25/63
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Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1
» In general, relevant dose histories are:

Hm+1 :{"'7dt—T—m—1717070a"'70)070707"'70’0}'
mQ’s T 0's

» Overall probabilities for dose histories occurring:

P(Hy) = p¢*(1 = p¢") (1 = 1),

P(Hmy1) = @(1 — po*) T
a b

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T 4+ m time steps since)

Frame 25/63

F DA



Homogeneous, one hit models: Contagion
Fixed pointsforr <1,d*=1,and T > 1
» In general, relevant dose histories are:

Hm+1 :{"'7dt—T—m—1717070a"'70)070707"'70’0}'
mQ’s T 0's

» Overall probabilities for dose histories occurring:

P(Hy) = p¢*(1 = p¢") (1 = 1),

P(Hm.1) = po", (1 =pd))™™ (1 - )™,

~~

a b c

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T 4+ m time steps since)
c: Pr(no recovery in m chances)

Frame 25/63

F DA



Homogeneous, one hit models: Contagion

Fixed points for r <1,d*=1,and T > 1

» Pr(recovery) = Pr(seeing no doses for at least T time
steps and recovering)

Frame 26/63
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Homogeneous, one hit models: Contagion

Fixed points for r <1,d*=1,and T > 1

» Pr(recovery) = Pr(seeing no doses for at least T time
steps and recovering)

=1 P(Hrim)
m=0

Frame 26/63
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Homogeneous, one hit models: Contagion

Fixed points for r <1,d*=1,and T > 1

» Pr(recovery) = Pr(seeing no doses for at least T time
steps and recovering)

=Y P(Hrim) = 1> po(1 = ps”) (1 — )"
m=0

m=0

Frame 26/63

F DA



Homogeneous, one hit models: Contagion

Fixed points for r <1,d*=1,and T > 1

» Pr(recovery) = Pr(seeing no doses for at least T time
steps and recovering)

=13 P(Hrem) = 3 p6™(1 — pg) (1 — 1)
m=0 m=0

_ Pt —pet)T
1=(1=per)(1—r)

Frame 26/63

F DA



Homogeneous, one hit models: Contagion

Fixed points for r <1,d*=1,and T > 1

» Pr(recovery) = Pr(seeing no doses for at least T time
steps and recovering)

=13 P(Hrem) = 3 p6™(1 — pg) (1 — 1)
m=0 m=0

_ Pt —pet)T
1=(1=per)(1—r)

» Fixed point equation:

r(1—pe)’

R T =7 (o

Frame 26/63

F DA



Homogeneous, one hit models: Contagion
Fixed points for r <1, d*=1,and T > 1
» Fixed point equation (again):

r(1—pe)’

R ErTD ()

Frame 27/63
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Homogeneous, one hit models: Contagion

Fixed points for r <1, d*=1,and T > 1
» Fixed point equation (again):

(1 =per)T
1—(1—pe*)(1—r)

» Find critical exposure probability by examining above
as ¢* — 0.

o =1

Frame 27/63

F DA



Generalized

Homogeneous, one hit models: Gontagion

Fixed points for r <1, d*=1,and T > 1
» Fixed point equation (again):

¢* — 1 _ r(1 B p¢*)T )
1= =pe*)(1—r)
» Find critical exposure probability by examining above
as ¢* — 0.

1 1
CTH1)r—1  T4+1
where 7 = mean recovery time for simple relaxation
process.

= Pc

Frame 27/63

F DA




Homogeneous, one hit models: Contagion

Fixed points for r <1, d*=1,and T > 1

» Fixed point equation (again):

r(1—pe)’

=1 .
R S (v C
» Find critical exposure probability by examining above
as ¢* — 0.
| 4
1 1
=  pPc

- T+1/r—A1 T T4
where 7 = mean recovery time for simple relaxation
process.

» Decreasing r keeps individuals infected for longer
and decreases pc.

Frame 27/63

F DA



Epidemic threshold:

Fixed pointsford* =1, r<1,and T > 1

0.8]
> o*=0 04 /
> po=1/(T+7) /
CU 0.2 - 0.6 0.8

» Example details: T=2& r=1/2=p. =1/3.
» Blue = stable, red = unstable, fixed points.

» 7 =1/r — 1 = characteristic recovery time = 1.
» T + 7 ~ average memory in system = 3.

Generalized
Contagion

Frame 28/63

F DA



Generalized

EpldemIC tthShOld. Contagion

Fixed pointsford* =1, r<1,and T > 1

* _ 1—pg*)T *
AR (= (S I
> ¢* =0 04

> po=1/(T+7)

Example details: T=2&r=1/2= p.=1/3.
Blue = stable, red = unstable, fixed points.

T =1/r — 1 = characteristic recovery time = 1.
T + 7 ~ average memory in system = 3.

Phase transition can be seen as a transcritical
bifurcation. ['] Frame 28/63

vV v.v. vy

F DA



Homogeneous, multi-hit models: Contagion

» All right: d* = 1 models correspond to simple
disease spreading models.

Frame 29/63
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» All right: d* = 1 models correspond to simple
disease spreading models.

» What if we allow d* > 27
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Homogeneous, multi-hit models: Contagion

» All right: d* = 1 models correspond to simple
disease spreading models.

» What if we allow d* > 27

» Again first consider SIS with immediate recovery
(r="1
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Homogeneous, multi-hit models: Contagion

» All right: d* = 1 models correspond to simple
disease spreading models.

» What if we allow d* > 27

» Again first consider SIS with immediate recovery
(r=1)

» Also continue to assume unit dose sizes
(f(d) =do(d - 1)).

Frame 29/63

F DA



Homogeneous, multi-hit models: Contagion

» All right: d* = 1 models correspond to simple
disease spreading models.

» What if we allow d* > 27

» Again first consider SIS with immediate recovery
(r="1

» Also continue to assume unit dose sizes
(f(d) = 6(d —1)).

» To be infected, must have at least d* exposures in
last T time steps.

Frame 29/63

F DA



Homogeneous, multi-hit models: Contagion

» All right: d* = 1 models correspond to simple
disease spreading models.

» What if we allow d* > 27

» Again first consider SIS with immediate recovery
(r="1

» Also continue to assume unit dose sizes
(f(d) = é(d = 1)).

» To be infected, must have at least d* exposures in
last T time steps.

» Fixed point equation:

¢ = ;::* <IT> (P$")'(1 —po™) T,

Frame 29/63

F DA



Homogeneous, multi-hit models: Contagion

» All right: d* = 1 models correspond to simple
disease spreading models.

» What if we allow d* > 27
» Again first consider SIS with immediate recovery
(r="1
» Also continue to assume unit dose sizes
(f(d) = é(d = 1)).
» To be infected, must have at least d* exposures in
last T time steps.
» Fixed point equation:
T /T . .
oF=> (,)(paﬁ*)’ﬁ —po) .
i=d*

» As always, ¢* = 0 works too. Frame 29/63
F DA




Homogeneous, multi-hit models: Contagion

Fixed pointsforr=1,d* >1,and T > 1

Frame 30/63

F DA



Homogeneous, multi-hit models: Contagion

Fixed pointsforr=1,d* >1,and T > 1

» Exactly solvable for small T.
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Homogeneous, multi-hit models: Contagion

Fixed pointsforr=1,d* >1,and T > 1

» Exactly solvable for small T.
» eg.,ford* =2 T=3:
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Homogeneous, multi-hit models: Contagion

Fixed pointsforr=1,d* >1,and T > 1

» Exactly solvable for small T.
» eg.,ford* =2 T=3:

» Fixed point equation:

*

3p%¢"%(1 - pe) +pPo

Frame 30/63

F DA



Generalized

Homogeneous, multi-hit models: Gontagion

Fixed pointsforr=1,d* >1,and T > 1

» Exactly solvable for small T.
» eg.,ford* =2 T=3:

» Fixed point equation:

*

3p2¢ 2 (1 — pg*) + p3¢*°
» See new structure: see
a saddle node

bifurcation "'l appear
as p increases.

Frame 30/63

F DA



Homogeneous, multi-hit models: Contagion

Fixed pointsforr=1,d* >1,and T > 1

» Exactly solvable for small T.
» eg.,ford* =2 T=3:

1 ‘ » Fixed point equation:
ogf T * =
o5 X 3p2¢ 2 (1 — pg*) + p3¢*°
S o4 3 » See new structure: see
: a saddle node
02 bifurcation ' appear
0;

0 02 04 06 08 ‘ 1 as p increases.

Frame 30/63

F DA



Homogeneous, multi-hit models: Contagion

Fixed pointsforr=1,d* >1,and T > 1

» Exactly solvable for small T.
» eg.,ford* =2 T=3:

1 ‘ » Fixed point equation:
ogf T * =
o5 X 3p2¢ 2 (1 — pg*) + p3¢*°
S o4 3 » See new structure: see
: a saddle node
02 bifurcation ' appear
0;

0 0z 04 o6 o8 1 as p increases.

P > (Po, &) = (8/9,27/32).

» See behavior akin to output of Granovetter’s
threshold model.

Frame 30/63

F DA



Homogeneous, multi-hit models: Contagion

» Another example:

Critical Mass Models

0.8

N
eﬂ‘ﬁ.o- \%N?

0.4 0%%%
0.2 o
+ SOO@@QO@O@OSO@G
GO 0.2 04 0.6 0.8 1
p
»r=1,d*=3, T=12 Saddle-node bifurcation.

Frame 31/63
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Fixed points forr =1, d* > 1,and T > 1 Tt

T=24,d"=1,2,...23.
g =122 > d*=1-0d >1:

! [(fffff( ”\\”\‘ jump between
08 ; RERERNNN NN continuous phase 7
06 ! A :3 : transition and
*o pure critical mass
0.4 model.
0.2 » Unstable curve for
0 d* = 2 does not

hit ¢* = 0.

Frame 32/63

F DA




Fixed pointsforr=1,d* >1,and T > 1 ——

Contagion

» T=24,d*=1,2,...23.

1 > d*=1—-d" > 1:
[ (fff‘f‘”f\ & jump between
0.8 P NN continuous phase
06 b " 0 ~: NN transition and
"o DL . pure critical mass
04r | model.
0.2 ;

» Unstable curve for
d* = 2 does not
hit ¢* = 0.

» See either simple phase transition or saddle-node
bifurcation, nothing in between.

Frame 32/63

F DA




Fixed pointsforr=1,d*>1,and T > 1

» Bifurcation points for example fixed T, varying d*:

1 ////I//I/////////////}l/?/Z))}/‘»]/:‘/‘//‘a:‘/‘fg%g
0.8 //o
* 06
?, L)y . > T =24 (),
0.4 [ , )
C S » T =12 (q),
‘ / / // 7
0.21" /// // // /// > T:6(D)s
; / 7/
0 pr—
0z 04 06 08 » T=3(0),

Generalized
Contagion

Homogeneous version

Frame 33/63

F DA




Fun with amazon’s recommender system (H).
[amaznode.fladdict.net]

Generalized
Contagion

Homogeneous version

Frame 34/63

F DA



http://amaznode.fladdict.net/

Fixed points forr < 1,d* > 1,and T > 1 Tt

» For r < 1, need to determine probability of
recovering as a function of time since dose load last
dropped below threshold.

Frame 35/63

F DA



Fixed points forr < 1,d* > 1,and T > 1 Tt
» For r < 1, need to determine probability of
recovering as a function of time since dose load last
dropped below threshold.
» Partially summed random walks:

t
Di(ty="Y_ d(t)

t'=t—T+1
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Fixed points forr < 1,d* > 1,and T > 1 Tt
» For r < 1, need to determine probability of
recovering as a function of time since dose load last
dropped below threshold.
» Partially summed random walks:

t
Di(ty="Y_ d(t)

t'=t—T+1
» Example for T = 24, d* = 14:

Frame 35/63
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Fixed pointsforr <1,d*>1,and T > 1

» For r < 1, need to determine probability of
recovering as a function of time since dose load last
dropped below threshold.

» Partially summed random walks:

t
D)= > d(t)

t=t—T+1

» Example for T = 24, d* = 14:
24 . . : :

20f
161

D(t)

12F

D (o]
T T

10 20 30 40 50 60 70 80

OO

Generalized
Contagion

Frame 35/63

F DA



Fixed points forr < 1,d* > 1,and T > 1 Tt

» Define vy, as fraction of individuals for whom D(t)
last equaled, and his since been below, their
threshold m time steps ago,

Frame 36/63

F DA



Generalized

Fixed pointsforr <1,d*>1,and T > 1 Contagion

» Define vy, as fraction of individuals for whom D(t)
last equaled, and his since been below, their
threshold m time steps ago,

» Fraction of individuals below threshold but not
recovered:

=> (1= Nym(p,¢").
m=1

Frame 36/63

F DA



Generalized

Fixed pointsforr <1,d*>1,and T > 1 Contagion

» Define vy, as fraction of individuals for whom D(t)
last equaled, and his since been below, their
threshold m time steps ago,

» Fraction of individuals below threshold but not

recovered:
Z 1 - r /71’17 p7 *)
m=1
» Fixed point equation:
T T '
¢ =T(p,¢"r)+ Y (,)(p¢*)’(1 —po)T
i=a*

Frame 36/63

F DA



Fixed points forr < 1,d* > 1,and T > 1 Tt
Example: T =3, d" =2

Frame 37/63
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Fixed points forr < 1,d* > 1,and T > 1 Tt
Example: T =3, d" =2

» Want to examine how dose load can drop below
threshold of d* = 2:

Dy=2= Dp,1 =1

Frame 37/63
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Fixed points forr < 1,d* > 1,and T > 1 Tt
Example: T =3, d" =2

» Want to examine how dose load can drop below
threshold of d* = 2:

Dp=2= Dpiy =1

» Two subsequences do this:

Frame 37/63

F DA



Fixed points forr < 1,d* > 1,and T > 1 Tt
Example: T =3, d" =2

» Want to examine how dose load can drop below
threshold of d* = 2:

Dy=2= Dp,1 =1

» Two subsequences do this:
{dn_2,dp_1,0h, dpit} = {1,1,0,0}

Frame 37/63

F DA



Fixed points forr < 1,d* > 1,and T > 1 Tt
Example: T=3,d* =2
» Want to examine how dose load can drop below
threshold of d* = 2:
Dh,=2= Dy =1

» Two subsequences do this:
{dn_2,dn_1, dn, dny1} = {1,1,0,0}
and {dan: dnf1 ) dn» dn+1 ) dn+2} = {1 ) 07 1 ) 07 0}

Frame 37/63

F DA



Fixed pointsforr <1,d*>1,and T > 1 ]

Contagion

Example: T=3,d* =2

» Want to examine how dose load can drop below
threshold of d* = 2:

Dy=2= Dp,1 =1

» Two subsequences do this:
{dn_2,dn_1,dn,dns1} ={1,1,0,0}
and {dan: dnf1 ) dn: dn+1 ) dn+2} = {1 ,0,1,0, 0}
» Note: second sequence includes an extra 0 since
this is necessary to stay below d* = 2.

Frame 37/63

F DA



Fixed points forr < 1,d* > 1,and T > 1 Tt
Example: T =3, d" =2

» Want to examine how dose load can drop below
threshold of d* = 2:

Dp=2= Dpiy =1

» Two subsequences do this:
{dn_2,dn_1,dn,dns1} ={1,1,0,0}
and {dn—Z; dnf1 ) dn: dn+1 ) dn+2} = {1 ,0,1,0, 0}
» Note: second sequence includes an extra 0 since
this is necessary to stay below d* = 2.

» To stay below threshold, observe acceptable
following sequences may be composed of any
combination of two subsequences:

a={0} and b={1,0,0}. Frame 37/63

F DA



Fixed points forr < 1,d* > 1,and T > 1 Tt

» Determine number of sequences of length m that
keep dose load below d* = 2.

Frame 38/63
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Fixed points forr < 1,d* > 1,and T > 1 Tt

» Determine number of sequences of length m that
keep dose load below d* = 2.

» N, = number of a = {0} subsequences.

Frame 38/63
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Generalized

Fixed pointsforr <1,d*>1,and T > 1 Contagion

» Determine number of sequences of length m that
keep dose load below d* = 2.

» N, = number of a = {0} subsequences.
» Njp = number of b = {1,0,0} subsequences.

Frame 38/63
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Generalized

Fixed pointsforr <1,d*>1,and T > 1 Contagion

» Determine number of sequences of length m that
keep dose load below d* = 2.

» N, = number of a = {0} subsequences.
» Njp = number of b = {1,0,0} subsequences.

m=~Ngz-1+N,-3

Frame 38/63

F DA



Generalized

Fixed pointsforr <1,d*>1,and T > 1 Contagion

» Determine number of sequences of length m that
keep dose load below d* = 2.

» N, = number of a = {0} subsequences.
» Njp = number of b = {1,0,0} subsequences.

m=Nz-1+Np-3
Possible values for Nj:

01,2, .., gJ

where |- | means floor.

Frame 38/63
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Generalized

Fixed pointsforr <1,d*>1,and T > 1 Contagion

» Determine number of sequences of length m that
keep dose load below d* = 2.

» N, = number of a = {0} subsequences.
» Njp = number of b = {1,0,0} subsequences.

m=Nz-1+Np-3
Possible values for Nj:

01,2, .., gJ

where |- | means floor.
» Corresponding possible values for Nj:

m,m—3,m—6,...,m—3{;—nJ.

Frame 38/63

F DA



Fixed points forr < 1,d* > 1,and T > 1 Tt

» How many ways to arrange N; a’s and N, b’s?

Frame 39/63
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Fixed points forr < 1,d* > 1,and T > 1 Tt

» How many ways to arrange N; a’s and N, b’s?
» Think of overall sequence in terms of subsequences:

{Z1 ) 227 e ey ZNa+Nb}
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Fixed points forr < 1,d* > 1,and T > 1 Tt

» How many ways to arrange N; a’s and N, b’s?
» Think of overall sequence in terms of subsequences:

{Z1 ) 227 e ey ZNa+Nb}

» N, + N, slots for subsequences.

Frame 39/63
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Fixed points forr < 1,d* > 1,and T > 1 Tt

» How many ways to arrange N; a’s and N, b’s?
» Think of overall sequence in terms of subsequences:

{Z1 ) 227 e ey ZNa+Nb}

» N, + N, slots for subsequences.
» Choose positions of either a's or b’s:

Nz + Np\  (Na+ Np
Na - Nb ’

Frame 39/63

F DA



Fixed points forr < 1,d* > 1,and T > 1 Tt
» Total number of allowable sequences of length m:

L”’f“ Np + Na _“"Z/sj m— 2k
Ny )~ k

Np—=0 b k=0

where k = Np and we have used m = N; + 3N,

Frame 40/63
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Fixed points forr < 1,d* > 1,and T > 1 Tt

» Total number of allowable sequences of length m:
L”’f“ Np+ Na\ “"Z/sj m— 2k
Np N k
Np=0 k=0

where k = Np and we have used m = N; + 3N,
> P(a) = (1 - pg*) and P(b) = po*(1 — ps~)?

Frame 40/63
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Fixed points forr < 1,d* > 1,and T > 1 Tt

» Total number of allowable sequences of length m:
L”’f“ Np+ Na\ “"Z/sj m— 2k
Np N k
Np=0 k=0

where k = Np and we have used m = N; + 3N,

> P(a) = (1 - pg*) and P(b) = po*(1 — ps~)?
» Total probability of allowable sequences of length m:

Lm/3]
e = 3o (™)1 - pymHpoy

k=0

Frame 40/63
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Fixed points forr < 1,d* > 1,and T > 1 Tt

» Total number of allowable sequences of length m:
L”’f“ Np+ Na\ “"Z/sj m— 2k
Np N k
Np=0 k=0
where k = Np and we have used m = N5 + 3N,.

> P(a) = (1 - pg*) and P(b) = po*(1 — ps~)?
» Total probability of allowable sequences of length m:

Lm/3]
e = 3o (™)1 - pymHpoy

k=0

» Notation: Write a randomly chosen sequence of a’s
and b's of length m as D2

Frame 40/63

F DA



Generalized

Fixed pointsforr <1,d*>1,and T > 1 Contagion

» Nearly there... must account for details of sequence
endings.

» Three endings = Six possible sequences:

D1 :{17170707Dfn731}

D> ={1,1,0,0,D%" 1}

m—2»

Ds; = {1,1,0,0,D%", 1,0}

m—=3>
D, = {1,0,1,0,0,D%"}

Ds = {1,0,1,0,0,D%, 1}

m—-3>

Ds = {1,0,1,0,0,D7%,,1,0}

m—4>

Frame 41/63
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Generalized

Fixed pointsforr <1,d*>1,and T > 1 Contagion

» Nearly there... must account for details of sequence
endings.

» Three endings = Six possible sequences:

D1 :{17170707Dfn731}

D> ={1,1,0,0,D%" 1}

m—2»

Ds; = {1,1,0,0,D%", 1,0}

m—=3>
D, = {1,0,1,0,0,D%"}

Ds = {1,0,1,0,0,D%, 1}

m—-3>

Ds = {1,0,1,0,0,D7%,,1,0}

m—4>

Frame 41/63

F DA



Generalized

Fixed pointsforr <1,d*>1,and T > 1 Contagion

» Nearly there... must account for details of sequence
endings.

» Three endings = Six possible sequences:

Dy = {1,1,0,0,D%° }
= (p®)2(1 — pd)2xm-1(P, ®)

D, = {1,1,0,0,D0%°,.1}

Pz = (p9)3(1 — p)?*xm—2(p. ¢)
Ds = {1,1,0,0,D%°,.1,0}

Ps = (p9)*(1 — p9)®xm-3(p. ¢)
D, = {1,0,1,0,0,D%",} |

Py = (pg)?(1 — p$)xm—2(p, ¢)
Ds = {1,0,1,0,0,D%°, 1}

Ps = (pg)3(1 — pg)°xm—3(p. ¢)
Ds = {1,0,1,0,0,D%°, 1,0}

Ps = (p9)°(1 — po)*xm-4(p,¢) R

F DA




Fixed points forr <1, d*=2,and T =3 Tt

T /T _
FP.Eq: ¢" =T(p,¢"1)+ > <,>(p¢*)’(1 —pg*)'™
i=d*
where '(p, ¢*;r) =
(1= (pP)?(1 = pd)* + > (1= n™(pp)*(1 — pp)?x
m=1

[qu + Xm—2 + 2P6(1 — PO)Xm—3 + PO(1 — PO)?Xm—a
and

Lm/3]
wlpo) = Y (T2 )1 - ooy

k=0

Frame 42/63

Note: (1 —r)(p®)?(1 — p®)? accounts for {1,0, 1,0} sequence. & 2ac




Fixed pointsforr <1,d*>1,and T > 1

T=3d =2

038
06
04t

0.2 N

» r=0.01,0.05,0.10,0.15,0.20, . .., 1.00.

Generalized
Contagion

Homogeneous version

Frame 43/63
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Fixed points forr < 1,d* > 1,and T > 1 Tt

T=2d =2

0.8

0.6

0.4 !

A} \\ ~
0.2 . - .
. .
R .

» r=0.01,0.05,0.10, ...,0.3820 + 0.0001.

Frame 44/63

F DA



Fixed points forr < 1,d* > 1,and T > 1 Tt

T=2d =2

0.8

0.6

o

0.4 !
AY \\\ \\\~ N SN

0.2 \\ A Ses

» r=0.01,0.05,0.10,...,0.3820 + 0.0001.
» No spreading for r > 0.382.

Frame 44/63

F DA



What we have now:

» Two kinds of contagion processes:

Generalized
Contagion

Homogeneous version

Frame 45/63

F DA




What we have now:

» Two kinds of contagion processes:
1. Continuous phase transition: SIR-like.
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What we have now:

» Two kinds of contagion processes:

1. Continuous phase transition: SIR-like.
2. Saddle-node bifurcation: threshold model-like.
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What we have now: e

» Two kinds of contagion processes:

1. Continuous phase transition: SIR-like.
2. Saddle-node bifurcation: threshold model-like.

» d* = 1: spreading from small seeds possible.
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What we have now:

» Two kinds of contagion processes:

1. Continuous phase transition: SIR-like.
2. Saddle-node bifurcation: threshold model-like.

» d* = 1: spreading from small seeds possible.
» d* > 1: critical mass model.

Generalized
Contagion

Homogeneous version

Frame 45/63
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What we have now: e

» Two kinds of contagion processes:

1. Continuous phase transition: SIR-like.
2. Saddle-node bifurcation: threshold model-like.

» d* = 1: spreading from small seeds possible.
» d* > 1: critical mass model.
» Are other behaviors possible?

Frame 45/63

F DA



Outline

Generalized Model

Heterogeneous version

Generalized
Contagion

Heterogeneous version

Frame 46/63
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Generalized model

» Now allow for dose distributions (f) and threshold
distributions (g) with width.

Generalized
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Generalized model

» Now allow for dose distributions (f) and threshold
distributions (g) with width.

» Key quantities:

~ K
P, :/ dd* g(d*)P (Zd, > d*) where 1 < k < T.
0 -
=

Generalized
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Frame 47/63

F DA



Generalized model

» Now allow for dose distributions (f) and threshold
distributions (g) with width.

» Key quantities:

~ K
P, :/ dd* g(d*)P (Zd, > d*) where 1 < k < T.
0

=1

» Py = Probability that the threshold of
a randomly selected individual
will be exceeded by k doses.

Generalized
Contagion

Heterogeneous version

Frame 47/63
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Generalized model

» Now allow for dose distributions (f) and threshold
distributions (g) with width.

» Key quantities:

~ K
P, :/ dd* g(d*)P (Zd, > d*) where 1 < k < T.
0

=1

» P, = Probability that the threshold of
a randomly selected individual
will be exceeded by k doses.
> eg.,
P4 = Probability that one dose will exceed
the threshold of a random individual
= Fraction of most vulnerable individuals.

Generalized
Contagion

Heterogeneous version

Frame 47/63

F DA



Generalized model—heterogeneity, r = 1 Comagion.

» Fixed point equation:

)
6 =3 (1) o)1 - po)T e
k=1

Frame 48/63
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Generalized model—heterogeneity, r = 1
» Fixed point equation:

)
6 =3 (1) o)1 - po)T e

k=1

» Expand around ¢* = 0 to find when spread from
single seed is possible:

Generalized
Contagion
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Generalized model—heterogeneity, r = 1
» Fixed point equation:

)
6 =3 (1) o)1 - po)T e

k=1

» Expand around ¢* = 0 to find when spread from
single seed is possible:

or [z pe=1/(TP)]

Generalized
Contagion

Frame 48/63
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Generalized model—heterogeneity, r = 1 Comagion.
» Fixed point equation:

.
T * * —
o= (k)(p¢ (1= po*) Py
k=1
» Expand around ¢* = 0 to find when spread from
single seed is possible:

or [z pe=1/(TP)]

» Very good:
1. Py T is the expected number of vulnerables the initial
infected individual meets before recovering.

Heterogeneous version

Frame 48/63
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Generalized model—heterogeneity, r = 1 Comagion.
» Fixed point equation:

.
T * * —
o= (k)(p¢ (1= po*) Py
k=1
» Expand around ¢* = 0 to find when spread from
single seed is possible:

or [z pe=1/(TP)]

» Very good:
1. Py T is the expected number of vulnerables the initial
infected individual meets before recovering.
2. pP; T is .. the expected number of successful
infections (equivalent to Ry).

Heterogeneous version

Frame 48/63

F DA



Generalized

Generalized model—heterogeneity, r = 1 Chriaion
» Fixed point equation:

.
T * * —
o= (k)(p¢ (1= po*) Py
k=1
» Expand around ¢* = 0 to find when spread from
single seed is possible:

or [z pe=1/(TP)]

» Very good:
1. Py T is the expected number of vulnerables the initial
infected individual meets before recovering.
2. pP; T is .. the expected number of successful
infections (equivalent to Ry).

» Observe: p. may exceed 1 meaning no spreading Frame 48/63
from a small seed. & vac

Heterogeneous version




Heterogeneous case

» Next: Determine slope of fixed point curve at critical
point pe.

Generalized
Contagion

Heterogeneous version
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Heterogeneous case

» Next: Determine slope of fixed point curve at critical
point pc.
» Expand fixed point equation around (p, ¢*) = (p, 0).

Generalized
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Heterogeneous case

» Next: Determine slope of fixed point curve at critical
point pe.

» Expand fixed point equation around (p, ¢*) = (p, 0).

» Find slope depends on (P; — P,/2) ]
(see appendix).

Generalized
Contagion

Frame 49/63
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Generalized

Heterogeneous case Contagion

» Next: Determine slope of fixed point curve at critical
point pe.
» Expand fixed point equation around (p, ¢*) = (p, 0).
» Find slope depends on (P; — P,/2) ]
(see appendix).

» Behavior near fixed point depends on whether this
slope is

Frame 49/63
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Heterogeneous case

» Next: Determine slope of fixed point curve at critical
point pe.

» Expand fixed point equation around (p, ¢*) = (p, 0).

» Find slope depends on (P; — P,/2) ]
(see appendix).
» Behavior near fixed point depends on whether this
slope is
1. positive: Py > P,/2 (continuous phase transition)

Generalized
Contagion

Heterogeneous version

Frame 49/63
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Heterogeneous case

» Next: Determine slope of fixed point curve at critical
point pc.
» Expand fixed point equation around (p, ¢*) = (p, 0).
» Find slope depends on (P; — P,/2) ]
(see appendix).
» Behavior near fixed point depends on whether this
slope is
1. positive: Py > P,/2 (continuous phase transition)
2. negative: Py < P,/2 (discontinuous phase transition)

Generalized
Contagion

Heterogeneous version

Frame 49/63
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Heterogeneous case

» Next: Determine slope of fixed point curve at critical
point pc.
» Expand fixed point equation around (p, ¢*) = (p, 0).
» Find slope depends on (P; — P,/2) ]
(see appendix).
» Behavior near fixed point depends on whether this
slope is
1. positive: Py > P,/2 (continuous phase transition)
2. negative: Py < P,/2 (discontinuous phase transition)
» Now find three basic universal classes of contagion
models...

Generalized
Contagion

Heterogeneous version

Frame 49/63
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Heterogeneous case

Example configuration:

» Dose sizes are lognormally distributed with mean 1
and variance 0.433.
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Heterogeneous case

Example configuration:

» Dose sizes are lognormally distributed with mean 1
and variance 0.433.

» Memory span: T = 10.

Generalized
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Generalized

Heterogeneous case Contagion

Example configuration:

» Dose sizes are lognormally distributed with mean 1
and variance 0.433.

» Memory span: T = 10.
» Thresholds are uniformly set at

5
6

saan
([
w =0

1
2.
3.

Frame 50/63

F DA




Heterogeneous case

Example configuration:

» Dose sizes are lognormally distributed with mean 1
and variance 0.433.

» Memory span: T = 10.

» Thresholds are uniformly set at

1. d. =05
2.d.,=16
3. d.=3

» Spread of dose sizes matters, details are not
important.

Generalized
Contagion

Heterogeneous version

Frame 50/63

F DA




Three universal classes Generalized

Contagion

I. Epidemic threshold 1. Vanishing critical mass  Ill. Critical mass
1

08 r
@ 08

\
1
0.4 u‘ ‘\‘ Heterogeneous version
0.2 ‘v\ ~ed
% 02 04 06 08 10 02 02 06 08 10 02 04 06 08 1

Frame 51/63
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Three universal classes

I. Epidemic threshold 1. Vanishing critical mass  Ill. Critical mass
1
0.8 r
y 08 !
. \
¢ , g
0.4 ’ \
A) ‘~
0.2 ‘V\ .
% 62 64 06 08 10 02 04 06 085 10 02 04 06 08
p p p

» Epidemic threshold:

Pi > P2/2, pc =1/(TP) <1

Generalized
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Heterogeneous version
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Three universal classes

I. Epidemic threshold 1. Vanishing critical mass  Ill. Critical mass
1
08 r
* 06 )
. \
o , g
0.4 ' \
A) ‘~
0.2 ‘V\ .
% 62 04 06 08 10 02 04 06 085 10 02 04 06 08 1
p p p

» Epidemic threshold:
» Vanishing critical mass:

Pi > P2/2, pc=1/(TPy) <1
P1 < P2/2, Pc = 1/(TP1) <1

Generalized
Contagion

Heterogeneous version

Frame 51/63
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Generalized

Three universal classes Contagion

I. Epidemic threshold 1. Vanishing critical mass  Ill. Critical mass

1

0.8 r
@ 08 \

04 '.‘ \ Heterogeneous version
0.2 ‘\ N

I | A

0O 02 04 06 08 10 02 04 06 08 10 02 04 06 08 1

p p p

» Epidemic threshold: Py > P22, pc =1/(TP;) < 1
» Vanishing critical mass: Py < P2/2, pc =1/(TPy) < 1
» Pure critical mass: Py < P22, pc=1/(TP;) > 1

Frame 51/63

F DA




Generalized

Heterogeneous case Contagion

Now allow r < 1:
1

0.8,

* 0.6
¢

0.4
0.2

CO 0.2 0.4 0.(; 0.8 1

p
» |I-lll transition generalizes: p. = 1/[P1(T + 7)] where

T =1/r — 1 = expected recovery time
» I|-ll transition less pleasant analytically.

Frame 52/63
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More complicated models

Generalized
Contagion
1
( - 7
1 ‘l ‘\
o8 ) .
. N
/ K_J ] Heterogeneous version
. ]
0 b
0 05 10 05 10

05
p

» Due to heterogeneity in individual thresholds.
» Three classes based on behavior for small seeds.
» Same model classification holds: I, I, and Il

Frame 53/63
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Hysteresis in vanishing critical mass models e

@,
0.5

Frame 54/63
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Discussion

» Memory is a natural ingredient.
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Discussion

» Memory is a natural ingredient.
» Three universal classes of contagion processes:

1. I. Epidemic Threshold
2. II. Vanishing Critical Mass
3. lll. Critical Mass
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Discussion

» Memory is a natural ingredient.
» Three universal classes of contagion processes:

1. I. Epidemic Threshold
2. II. Vanishing Critical Mass
3. lll. Critical Mass

» Dramatic changes in behavior possible.
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Discussion

» Memory is a natural ingredient.
» Three universal classes of contagion processes:

1. I. Epidemic Threshold
2. II. Vanishing Critical Mass
3. lll. Critical Mass

» Dramatic changes in behavior possible.

» To change kind of model: ‘adjust’ memory, recovery,
fraction of vulnerable individuals (T, r, p, Py, and/or
Ps).

Generalized
Contagion

Heterogeneous version
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Discussion

vy

v

v

v

Memory is a natural ingredient.
Three universal classes of contagion processes:

1. I. Epidemic Threshold
2. II. Vanishing Critical Mass
3. lll. Critical Mass

Dramatic changes in behavior possible.

To change kind of model: ‘adjust’ memory, recovery,
fraction of vulnerable individuals (T, r, p, Py, and/or
Ps).

To change behavior given model: ‘adjust’ probability
of exposure (p) and/or initial number infected (¢g).

Generalized
Contagion

Heterogeneous version

Frame 55/63
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Discussion

» Single seed infects others if pPy(T + 1) > 1.
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Discussion

» Single seed infects others if pPy(T + 1) > 1.

» Key quantity: p. = 1/[P1(T + 7)]
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Discussion

» Single seed infects others if pPy(T + 1) > 1.
» Key quantity: p. = 1/[P1(T + 7)]
» If pc < 1 = contagion can spread from single seed.
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Discussion

» Single seed infects others if pPy(T + 1) > 1.
» Key quantity: p. = 1/[P1(T + 7)]
» If pc < 1 = contagion can spread from single seed.

» Depends only on:

1. System Memory (T + 7).
2. Fraction of highly vulnerable individuals (Py).
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Discussion

» Single seed infects others if pPy(T + 1) > 1.
» Key quantity: p. = 1/[P1(T + 7)]
» If pc < 1 = contagion can spread from single seed.

» Depends only on:
1. System Memory (T + 7).
2. Fraction of highly vulnerable individuals (P;).
» Details unimportant: Many threshold and dose
distributions give same P.

Generalized
Contagion
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Discussion

» Single seed infects others if pPy(T + 1) > 1.
» Key quantity: p. = 1/[P1(T + 7)]
» If pc < 1 = contagion can spread from single seed.

» Depends only on:
1. System Memory (T + 7).
2. Fraction of highly vulnerable individuals (Py).
» Details unimportant: Many threshold and dose
distributions give same P.
» Another example of a model where
vulnerable/gullible population may be more important
than a small group of super-spreaders or influentials.

Generalized
Contagion

Heterogeneous version

Frame 56/63
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Details for Class |-l transition: Eraion.

i( ) PP (1 = po)T

k=1

Appendix

Frame 57/63
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Details for Class |-l transition: Eraion.

k=1
T T—k T _k
= Z( )Pk(pas*)k ( ; )(— ¢*Y,
k=1 j=0 Appendix

Frame 57/63
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Details for Class I-1l transition:
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Details for Class |-l transition: Eraion.
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Details for Class I-1l transition:
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Details for Class |-l transition: Eraion.

Gn=(-1"( 1) (-1 ()P

k=1
since

<Z> <nTv: l/i) - k!(TTi k) (m —(/C)l_(lr()i m)!

T! m!
mi(T — m)! kI(m — k)!

- () (%)

Appendix

Frame 58/63
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Details for Class |-l transition: Eraion.

» Linearization gives

¢* = Cipg* + Cop2d™.
where Cy = TPi(=1/pc) and Co = (J)(—2P; + P). i

Frame 59/63
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Details for Class I-1l transition:

» Linearization gives

¢* =~ C1p¢p* + Cop2¢™®.

where Cy = TPi(=1/pc) and C = (})(—2P1 + Pa).

» Using pc = 1/(TP1):

C; T2P3

P~ Cng(P—Pc): (T - 1)(P; _P2/2)(p_Pc)-

Generalized
Contagion

Appendix

Frame 59/63

F DA



Details for Class I-1l transition:

» Linearization gives

¢* =~ C1p¢p* + Cop2¢™®.

where Cy = TPi(=1/pc) and C = (})(—2P1 + Pa).

» Using pc = 1/(TP1):

C; T2P3

P~ Cng(P—Pc): (T - 1)(P; _P2/2)(p_Pc)-

» Sign of derivative governed by P; — Py /2.

Generalized
Contagion

Appendix

Frame 59/63
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