Generalized Contagion Complex Networks, Course 303A, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Outline

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 2/63

Basic questions about contagion

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?
- Focus: mean field models.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 3/63

Basic questions about contagion

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?
- Focus: mean field models.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 3/63

Basic questions about contagion

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?
- Focus: mean field models.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Basic questions about contagion

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?
- Focus: mean field models.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 3/63

Basic questions about contagion

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?
- Focus: mean field models.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- ► S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model^[10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- ► S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- ► S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- ► S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- ► S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- ► S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- ► S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Discrete time automata example:

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Discrete time automata example:

Transition Probabilities:

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Discrete time automata example:

Transition Probabilities:

 β for being infected given contact with infected

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Discrete time automata example:

Transition Probabilities:

 β for being infected given contact with infected *r* for recovery Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Discrete time automata example:

Transition Probabilities:

- β for being infected given contact with infected *r* for recovery
- ρ for loss of immunity

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Original models attributed to

- 1920's: Reed and Frost
- 1920's/1930's: Kermack and McKendrick^{[7, 9, 8}
- Coupled differential equations with a mass-action principle

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Original models attributed to

- 1920's: Reed and Frost
- 1920's/1930's: Kermack and McKendrick^{[7, 9, 8}
- Coupled differential equations with a mass-action principle

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Original models attributed to

- 1920's: Reed and Frost
- 1920's/1930's: Kermack and McKendrick^[7, 9, 8]
- Coupled differential equations with a mass-action principle

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Original models attributed to

- 1920's: Reed and Frost
- 1920's/1930's: Kermack and McKendrick^[7, 9, 8]
- Coupled differential equations with a mass-action principle

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Differential equations for continuous model

$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta IS + \rho R$$
$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta IS - rI$$
$$\frac{\mathrm{d}}{\mathrm{d}t}R = rI - \rho R$$

β , *r*, and ρ are now rates.

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective
- ▶ Epidemic threshold: If *R*₀ > 1, 'epidemic' occurs.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Differential equations for continuous model

$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta IS + \rho R$$
$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta IS - rI$$
$$\frac{\mathrm{d}}{\mathrm{d}t}R = rI - \rho R$$

 β , *r*, and ρ are now rates.

Reproduction Number *R*₀:

- R₀ = expected number of infected individuals resulting from a single initial infective
- Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Differential equations for continuous model

$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta IS + \rho R$$
$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta IS - rI$$
$$\frac{\mathrm{d}}{\mathrm{d}t}R = rI - \rho R$$

$$\beta$$
, *r*, and ρ are now rates.

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective
- Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Differential equations for continuous model

$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta IS + \rho R$$
$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta IS - rI$$
$$\frac{\mathrm{d}}{\mathrm{d}t}R = rI - \rho R$$

$$\beta$$
, *r*, and ρ are now rates.

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective
- Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 7/63 日 のへで

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective random bumps into a Susceptible
- Probability of transmission = β
- ► At time t = 1, single Infective remains infected with probability 1 - r
- At time t = k, single Infective remains infected with probability $(1 r)^k$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective random bumps into a Susceptible
- Probability of transmission = β
- ► At time t = 1, single Infective remains infected with probability 1 - r
- At time t = k, single Infective remains infected with probability $(1 r)^k$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective random bumps into a Susceptible
- Probability of transmission = β
- ► At time t = 1, single Infective remains infected with probability 1 - r
- At time t = k, single Infective remains infected with probability $(1 r)^k$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 8/63 日 のへで

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective random bumps into a Susceptible
- Probability of transmission = β
- ► At time t = 1, single Infective remains infected with probability 1 - r
- At time t = k, single Infective remains infected with probability $(1 r)^k$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective random bumps into a Susceptible
- Probability of transmission = β
- ► At time t = 1, single Infective remains infected with probability 1 - r
- At time t = k, single Infective remains infected with probability $(1 r)^k$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References
Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$= \beta \left(1 + (1 - r) + (1 - r)^2 + (1 - r)^3 + \dots \right)$$
$$= \beta \frac{1}{1 - (1 - r)} = \beta/r$$

Similar story for continuous model.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$= \beta \left(1 + (1 - r) + (1 - r)^2 + (1 - r)^3 + \dots \right)$$
$$= \beta \frac{1}{1 - (1 - r)} = \beta/r$$

Similar story for continuous model.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$= \beta \left(1 + (1 - r) + (1 - r)^2 + (1 - r)^3 + \dots \right)$$
$$= \beta \frac{1}{1 - (1 - r)} = \beta/r$$

Similar story for continuous model.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$= \beta \left(1 + (1 - r) + (1 - r)^2 + (1 - r)^3 + \dots \right)$$
$$= \beta \frac{1}{1 - (1 - r)} = \frac{\beta}{r}$$

Similar story for continuous model.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$= \beta \left(1 + (1 - r) + (1 - r)^2 + (1 - r)^3 + \dots \right)$$
$$= \beta \frac{1}{1 - (1 - r)} = \frac{\beta}{r}$$

Similar story for continuous model.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Independent Interaction models

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Independent Interaction models

Continuous phase transition.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Independent Interaction models

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Continuous phase transition.
- Fine idea from a simple model.

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[6]
- Spread of rumors (Daley & Kendall, 1964, 1965)^[2, 3]
- Diffusion of innovations (Bass, 1969)^[1]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[6]
- Spread of rumors (Daley & Kendall, 1964, 1965)^[2, 3]
- Diffusion of innovations (Bass, 1969)^[1]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 11/63 日 のへで

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[6]
- Spread of rumors (Daley & Kendall, 1964, 1965)^[2, 3]
- Diffusion of innovations (Bass, 1969)^[1]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

```
Appendix
```

References

Frame 11/63 日 のへで

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[6]
- Spread of rumors (Daley & Kendall, 1964, 1965)^[2, 3]
- Diffusion of innovations (Bass, 1969)^[1]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

```
Appendix
```

References

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[6]
- Spread of rumors (Daley & Kendall, 1964, 1965)^[2, 3]
- Diffusion of innovations (Bass, 1969)^[1]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Granovetter's model (recap of recap)

- Two states: S and I.
- Recovery now possible (SIS).
- ϕ = fraction of contacts 'on' (e.g., rioting).
- Discrete time, synchronous update.
- This is a Critical mass model.
- Interdependent interaction model.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

 Disease models assume independence of infectious events.

- ► Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- Disease models assume independence of infectious events.
- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 13/63 日 のへで

- Disease models assume independence of infectious events.
- ► Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 13/63 日 のへで

- Disease models assume independence of infectious events.
- ► Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Disease models assume independence of infectious events.
- ► Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 13/63 日 クへへ

- Disease models assume independence of infectious events.
- ► Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Basic ingredients:

- Incorporate memory of a contagious element^[4, 5]
- Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Frame 14/63 日 かへや

Basic ingredients:

- Incorporate memory of a contagious element^[4, 5]
- Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Frame 14/63 日 かへや

Basic ingredients:

- Incorporate memory of a contagious element^[4, 5]
- Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time *t* = probability of <u>contact</u> with infected individual
- With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Frame 14/63 日 のへへ

Basic ingredients:

- Incorporate memory of a contagious element^[4, 5]
- Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time *t* = probability of <u>contact</u> with infected individual
- With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Basic ingredients:

- Incorporate memory of a contagious element^[4, 5]
- Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- φ_t = fraction infected at time t
 = probability of <u>contact</u> with infected individual
- With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Basic ingredients:

- Incorporate memory of a contagious element^[4, 5]
- Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- φ_t = fraction infected at time t
 = probability of <u>contact</u> with infected individual
- With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

$S \Rightarrow \mathsf{I}$

▶ Individuals 'remember' last *T* contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i^*$$

Threshold d^{*}_i drawn from arbitrary distribution g at t = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

$S \Rightarrow \mathsf{I}$

► Individuals 'remember' last *T* contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^t d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i^*$$

► Threshold d_i^* drawn from arbitrary distribution g at t = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

 $\textbf{S} \Rightarrow \textbf{I}$

Individuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i^*$$

• Threshold d_i^* drawn from arbitrary distribution g at t = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

 $\textbf{S} \Rightarrow \textbf{I}$

Individuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^t d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i^*$$

Threshold d^{*}_i drawn from arbitrary distribution g at t = 0. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

$I \Rightarrow R$

When $D_{t,i} < d_i^*$, individual *i* recovers to state R with probability *r*.

$\mathsf{R} \Rightarrow \mathsf{S}$

Once in state R, individuals become susceptible again with probability ρ .

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

$\mathsf{I} \Rightarrow \mathsf{R}$

When $D_{t,i} < d_i^*$, individual *i* recovers to state R with probability *r*.

$\mathsf{R} \Rightarrow \mathsf{S}$

Once in state R, individuals become susceptible again with probability ρ .

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

A visual explanation

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Generalized mean-field model

Study SIS-type contagion first:

 Recovered individuals are immediately susceptible again:

 $r=\rho=1.$

- Look for steady-state behavior as a function of exposure probability p.
- Denote fixed points by ϕ^* .

Homogeneous version:

- All individuals have threshold d*
- All dose sizes are equal: d = 1

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Frame 18/63 日 かへへ

Generalized mean-field model

Study SIS-type contagion first:

 Recovered individuals are immediately susceptible again:

 $r = \rho = 1.$

- Look for steady-state behavior as a function of exposure probability p.
- Denote fixed points by ϕ^* .

Homogeneous version:

- All individuals have threshold d*
- All dose sizes are equal: d = 1

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Generalized mean-field model

Study SIS-type contagion first:

 Recovered individuals are immediately susceptible again:

 $r = \rho = 1.$

- Look for steady-state behavior as a function of exposure probability p.
- Denote fixed points by ϕ^* .

Homogeneous version:

- All individuals have threshold d*
- All dose sizes are equal: d = 1

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix
Study SIS-type contagion first:

 Recovered individuals are immediately susceptible again:

 $r = \rho = 1.$

- Look for steady-state behavior as a function of exposure probability p.
- Denote fixed points by ϕ^* .

Homogeneous version:

- All individuals have threshold d*
- All dose sizes are equal: d = 1

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Study SIS-type contagion first:

 Recovered individuals are immediately susceptible again:

 $r = \rho = 1.$

- Look for steady-state behavior as a function of exposure probability p.
- Denote fixed points by \(\phi^*\).

Homogeneous version:

- All individuals have threshold d*
- All dose sizes are equal: d = 1

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Study SIS-type contagion first:

 Recovered individuals are immediately susceptible again:

 $r = \rho = 1.$

- Look for steady-state behavior as a function of exposure probability p.
- Denote fixed points by ϕ^* .

Homogeneous version:

All individuals have threshold d*

All dose sizes are equal: d = 1

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Study SIS-type contagion first:

 Recovered individuals are immediately susceptible again:

 $r = \rho = 1.$

- Look for steady-state behavior as a function of exposure probability p.
- Denote fixed points by \(\phi^*\).

Homogeneous version:

- All individuals have threshold d*
- All dose sizes are equal: d = 1

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

Outline

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 19/63

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.
- \blacktriangleright T = 1 means individuals forget past interactions.
- d* = 1 means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathbf{a}} + \underbrace{\phi_t(1 - p\phi_t)}_{\mathbf{b}} \underbrace{(1 - r)}_{\mathbf{c}}.$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.</p>
- \blacktriangleright T = 1 means individuals forget past interactions.
- d* = 1 means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathbf{a}} + \underbrace{\phi_t(1 - p\phi_t)}_{\mathbf{b}} \underbrace{(1 - r)}_{\mathbf{c}}.$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.
- T = 1 means individuals forget past interactions.
- d* = 1 means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathbf{a}} + \underbrace{\phi_t(1 - p\phi_t)}_{\mathbf{b}} \underbrace{(1 - r)}_{\mathbf{c}}.$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.
- T = 1 means individuals forget past interactions.
- d* = 1 means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathbf{a}} + \underbrace{\phi_t(1 - p\phi_t)}_{\mathbf{b}} \underbrace{(1 - r)}_{\mathbf{c}}.$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.
- T = 1 means individuals forget past interactions.
- d* = 1 means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathbf{a}} + \underbrace{\phi_t(1 - p\phi_t)}_{\mathbf{b}} \underbrace{(1 - r)}_{\mathbf{c}}.$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.
- T = 1 means individuals forget past interactions.
- d* = 1 means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathbf{a}} + \underbrace{\phi_t(1-p\phi_t)}_{\mathbf{b}} \underbrace{(1-r)}_{\mathbf{c}}.$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.

c: Probability of not recovering.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.
- T = 1 means individuals forget past interactions.
- d* = 1 means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathbf{a}} + \underbrace{\phi_t(1 - p\phi_t)}_{\mathbf{b}} \underbrace{(1 - r)}_{\mathbf{c}}.$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.
- T = 1 means individuals forget past interactions.
- d* = 1 means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathbf{a}} + \underbrace{\phi_t(1 - p\phi_t)}_{\mathbf{b}} \underbrace{(1 - r)}_{\mathbf{c}}.$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r < 1, $d^* = 1$, and T = 1:

• Set $\phi_t = \phi^*$:

 $\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$

 $\Rightarrow 1 = \rho + (1 - \rho \phi^*)(1 - r), \quad \phi^* \neq 0,$

 $\Rightarrow \phi^* = \frac{1 - r/p}{1 - r}$ and $\phi^* = 0$.

- Critical point at $p = p_c = r$.
- Spreading takes off if p/r > 1
- ▶ Find continuous phase transition as for SIR model.
- ▶ Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

• Set
$$\phi_t = \phi^*$$
:
 $\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$
 $\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0$
 $\Rightarrow \phi^* = \frac{1 - r/p}{1 - r} \text{ and } \phi^* = 0.$

- Critical point at $p = p_c = r$.
- Spreading takes off if p/r > 1
- ► Find continuous phase transition as for SIR model.
- ▶ Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

► Set
$$\phi_t = \phi^*$$
:
 $\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$

 $\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$

 $\Rightarrow \phi^* = \frac{1 - r/p}{1 - r} \quad \text{and} \quad \phi^* = 0.$

- Critical point at $p = p_c = r$.
- Spreading takes off if p/r > 1
- ▶ Find continuous phase transition as for SIR model.
- ▶ Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

► Set
$$\phi_t = \phi^*$$
:
 $\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$

 $\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$

 $\Rightarrow \phi^* = \frac{1 - r/p}{1 - r} \quad \text{and} \quad \phi^* = 0.$

• Critical point at $p = p_c = r$.

- Spreading takes off if p/r > 1
- ▶ Find continuous phase transition as for SIR model.
- Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

► Set
$$\phi_t = \phi^*$$
:
 $\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$

 $\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$

 $\Rightarrow \phi^* = \frac{1 - r/p}{1 - r} \quad \text{and} \quad \phi^* = 0.$

• Critical point at $p = p_c = r$.

- Spreading takes off if p/r > 1
- ▶ Find continuous phase transition as for SIR model.
- ▶ Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

• Set
$$\phi_t = \phi^*$$
:
 $\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$

 $\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$

 $\Rightarrow \phi^* = \frac{1 - r/p}{1 - r} \quad \text{and} \quad \phi^* = 0.$

- Critical point at $p = p_c = r$.
- Spreading takes off if p/r > 1
- ▶ Find continuous phase transition as for SIR model.
- ▶ Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

• Set
$$\phi_t = \phi^*$$
:
 $\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$

 $\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0$

1 r/p

$$\Rightarrow \phi^* = rac{1-r/p}{1-r}$$
 and $\phi^* = 0$.

- Critical point at $p = p_c = r$.
- Spreading takes off if p/r > 1
- Find continuous phase transition as for SIR model.
- Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

• Set
$$\phi_t = \phi^*$$
:
 $\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$
 $\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$

$$\Rightarrow \phi^* = rac{1-r/p}{1-r}$$
 and $\phi^* = 0.$

- Critical point at $p = p_c = r$.
- Spreading takes off if p/r > 1
- Find continuous phase transition as for SIR model.
- Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r = 1, $d^* = 1$, and T > 1

- ightarrow r = 1 means recovery is immediate.
- ► *T* > 1 means individuals remember at least 2 interactions.
- d* = 1 means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- ► *T* > 1 means individuals remember at least 2 interactions.
- d* = 1 means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

 $\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- d* = 1 means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

 $\phi^* = 1 - (1 - p\phi^*)^T$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- d* = 1 means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^* = 1 - (1 - p\phi^*)^T$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- d* = 1 means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^* = 1 - (1 - \boldsymbol{\rho}\phi^*)^T$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- d* = 1 means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

 $\phi^* = \mathsf{1} - (\mathsf{1} - \boldsymbol{p} \phi^*)^T$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 22/63 日 のへで

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- d* = 1 means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

 $\phi^* = 1 - (1 - p\phi^*)^T.$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 22/63 日 かへで

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- d* = 1 means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r = 1, $d^* = 1$, and T > 1

• Closed form expression for ϕ^* :

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

Look for critical infection probability p_c.
 As φ^{*} → 0, we see

$$\phi^* \simeq {\pmb{\rho}} T \phi^* \; \Rightarrow {\pmb{\rho}}_c = 1/T$$

Again find continuous phase transition...
 Note: we can solve for *p* but not *φ*^{*}:

$$p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

• Closed form expression for ϕ^* :

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T$$

Look for critical infection probability p_c.
 As φ^{*} → 0, we see

 $\phi^* \simeq {oldsymbol p} T \phi^* \ \Rightarrow {oldsymbol p}_c = 1/T$

Again find continuous phase transition...
 Note: we can solve for *p* but not *φ**:

$$p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

• Closed form expression for ϕ^* :

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

Look for critical infection probability p_c.
 As φ^{*} → 0, we see

$$\phi^* \simeq oldsymbol{
ho} T \phi^* \ \Rightarrow oldsymbol{
ho}_c = 1/T$$

Again find continuous phase transition...
 Note: we can solve for *p* but not *φ**:

$$p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

• Closed form expression for ϕ^* :

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

Look for critical infection probability p_c.
As φ^{*} → 0, we see

$$\phi^* \simeq \rho T \phi^* \Rightarrow \rho_c = 1/T$$

Again find continuous phase transition...
 Note: we can solve for *p* but not *φ**:

$$p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

• Closed form expression for ϕ^* :

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

• Look for critical infection probability p_c .

• As
$$\phi^* \rightarrow 0$$
, we see

$$\phi^* \simeq \rho T \phi^* \Rightarrow \rho_c = 1/T$$

Again find continuous phase transition...

Note: we can solve for p but not ϕ^* :

 $p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* = 1$, and T > 1

• Closed form expression for ϕ^* :

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

• Look for critical infection probability p_c .

As
$$\phi^* \rightarrow 0$$
, we see

$$\phi^* \simeq \rho T \phi^* \Rightarrow \rho_c = 1/T$$

Again find continuous phase transition...

• Note: we can solve for p but not ϕ^* :

$$\boldsymbol{\rho} = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, d[∗] = 1, and T ≥ 1 case we have just examined:

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

For r < 1, add to right hand side fraction who:
 1. Did not receive any infections in last T time steps,
 2. And did not recover from a previous infection.

Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \ 0's}\},\$$

With history *H*₁, probability of being infected (not recovering in one time step) is 1 − *r*.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix
Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, d[∗] = 1, and T ≥ 1 case we have just examined:

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

- For r < 1, add to right hand side fraction who:
 - Did not receive any infections in last T time steps,
 And did not recover from a previous infection.
- Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{l-T-2}, d_{l-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \ 0's}\},\$$

With history *H*₁, probability of being infected (not recovering in one time step) is 1 − *r*.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, d[∗] = 1, and T ≥ 1 case we have just examined:

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

▶ For *r* < 1, add to right hand side fraction who:

- 1. Did not receive any infections in last T time steps,
- 2. And did not recover from a previous infection.
- Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{l-T-2}, d_{l-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \ 0's}\},\$$

With history *H*₁, probability of being infected (not recovering in one time step) is 1 − *r*.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, d[∗] = 1, and T ≥ 1 case we have just examined:

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

▶ For *r* < 1, add to right hand side fraction who:

- 1. Did not receive any infections in last T time steps,
- 2. And did not recover from a previous infection.

Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{l-T-2}, d_{l-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \ 0's}\},\$$

With history *H*₁, probability of being infected (not recovering in one time step) is 1 − *r*.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, d[∗] = 1, and T ≥ 1 case we have just examined:

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

▶ For *r* < 1, add to right hand side fraction who:

- 1. Did not receive any infections in last T time steps,
- 2. And did not recover from a previous infection.
- Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\},\$$

With history *H*₁, probability of being infected (not recovering in one time step) is 1 − *r*.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, d[∗] = 1, and T ≥ 1 case we have just examined:

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

▶ For *r* < 1, add to right hand side fraction who:

- 1. Did not receive any infections in last T time steps,
- 2. And did not recover from a previous infection.

Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\},\$$

With history H₁, probability of being infected (not recovering in one time step) is 1 − r.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 24/63

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, d[∗] = 1, and T ≥ 1 case we have just examined:

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

▶ For *r* < 1, add to right hand side fraction who:

- 1. Did not receive any infections in last T time steps,
- 2. And did not recover from a previous infection.
- Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\},\$$

With history *H*₁, probability of being infected (not recovering in one time step) is 1 − *r*.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \ 0\text{'s}}, \underbrace{0, 0, \dots, 0, 0}_{T \ 0\text{'s}}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1 - p\phi^*)^T(1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1 - p\phi^*)^{T+m}}_{b} \underbrace{(1 - r)^{m+1}}_{c}.$$

a: Pr(infection T + m + 1 time steps ago) b: Pr(no doses received in T + m time steps since) c: Pr(no recovery in *m* chances) Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \ 0's}, \underbrace{0, 0, \dots, 0, 0}_{T \ 0's}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1 - p\phi^*)^T(1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1 - p\phi^*)^{T+m}}_{b} \underbrace{(1 - r)^{m+1}}_{c}$$

a: Pr(infection T + m + 1 time steps ago) b: Pr(no doses received in T + m time steps since) c: Pr(no recovery in *m* chances) Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \ 0's}, \underbrace{0, 0, \dots, 0, 0}_{T \ 0's}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1 - p\phi^*)^T(1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1 - p\phi^*)^{T+m}}_{b} \underbrace{(1 - r)^{m+1}}_{c}$$

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
c: Pr(no recovery in m chances)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \ 0's}, \underbrace{0, 0, \dots, 0, 0}_{T \ 0's}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1 - p\phi^*)^T(1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1 - p\phi^*)^{T+m}}_{b} \underbrace{(1 - r)^{m+1}}_{c}$$

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
c: Pr(no recovery in m chances)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \ 0's}, \underbrace{0, 0, \dots, 0, 0}_{T \ 0's}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1 - p\phi^*)^T(1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1-p\phi^*)^{T+m}}_{b} \underbrace{(1-r)^{m+1}}_{\circ}.$$

- a: Pr(infection T + m + 1 time steps ago)
- b: Pr(no doses received in T + m time steps since)

c: Pr(no recovery in *m* chances)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \ 0's}, \underbrace{0, 0, \dots, 0, 0}_{T \ 0's}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1 - p\phi^*)^T(1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1 - p\phi^*)^{T+m}}_{b} \underbrace{(1 - r)^{m+1}}_{c}.$$

- a: Pr(infection T + m + 1 time steps ago)
- b: Pr(no doses received in T + m time steps since)
- c: Pr(no recovery in *m* chances)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

 Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m}) = r \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$

$$= r \frac{p\phi^*(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}$$

Fixed point equation:

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 26/63 日 かへへ

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

 Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m}) = r \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$
$$= r \phi^* (1 - p \phi^*)^T$$

► Fixed point equation:

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 26/63 බ ආද ල

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

 Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m}) = r \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$

$$= r \frac{p\phi^*(1-p\phi^*)^{\,\prime}}{1-(1-p\phi^*)(1-r)}$$

Fixed point equation:

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

 Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m}) = r \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$

$$= r \frac{p\phi^*(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}$$

Fixed point equation:

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 26/63 日 のへへ

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

 Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m}) = r \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$

$$= r \frac{p\phi^*(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}$$

Fixed point equation:

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Find critical exposure probability by examining above as $\phi^* \rightarrow 0$.

$$\Rightarrow \quad \boldsymbol{p_c} = \frac{1}{T+1/r-1} = \frac{1}{T+\tau}.$$

where τ = mean recovery time for simple relaxation process.

Decreasing r keeps individuals infected for longer and decreases p_c. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - \rho \phi^*)^T}{1 - (1 - \rho \phi^*)(1 - r)}.$$

 Find critical exposure probability by examining above as φ^{*} → 0.

$$\Rightarrow \quad \boldsymbol{p}_{c} = \frac{1}{T+1/r-1} = \frac{1}{T+\tau}.$$

where τ = mean recovery time for simple relaxation process.

Decreasing r keeps individuals infected for longer and decreases p_c. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - \rho \phi^*)^T}{1 - (1 - \rho \phi^*)(1 - r)}.$$

 Find critical exposure probability by examining above as φ^{*} → 0.

$$\Rightarrow \quad \boldsymbol{p_c} = \frac{1}{T+1/r-1} = \frac{1}{T+\tau}.$$

where τ = mean recovery time for simple relaxation process.

Decreasing r keeps individuals infected for longer and decreases p_c. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - \rho \phi^*)^T}{1 - (1 - \rho \phi^*)(1 - r)}.$$

 Find critical exposure probability by examining above as φ^{*} → 0.

$$\Rightarrow \quad \boldsymbol{p}_c = \frac{1}{T+1/r-1} = \frac{1}{T+\tau}.$$

where τ = mean recovery time for simple relaxation process.

Decreasing r keeps individuals infected for longer and decreases p_c. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Epidemic threshold:

- Example details: $T = 2 \& r = 1/2 \Rightarrow p_c = 1/3$.
- Blue = stable, red = unstable, fixed points.
- $\tau = 1/r 1$ = characteristic recovery time = 1.
- $T + \tau \simeq$ average memory in system = 3.
- Phase transition can be seen as a transcritical bifurcation.^[11]

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Epidemic threshold:

- Example details: $T = 2 \& r = 1/2 \Rightarrow p_c = 1/3$.
- Blue = stable, red = unstable, fixed points.
- $\tau = 1/r 1$ = characteristic recovery time = 1.
- $T + \tau \simeq$ average memory in system = 3.
- Phase transition can be seen as a transcritical bifurcation.^[11]

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- All right: d* = 1 models correspond to simple disease spreading models.
- What if we allow $d^* \ge 2$?
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d* exposures in last T time steps.
- Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T {T \choose i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

• As always, $\phi^* = 0$ works too.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- All right: d* = 1 models correspond to simple disease spreading models.
- What if we allow $d^* \ge 2$?
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d* exposures in last T time steps.
- Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T {T \choose i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

• As always, $\phi^* = 0$ works too.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- All right: d* = 1 models correspond to simple disease spreading models.
- What if we allow $d^* \ge 2$?
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d* exposures in last T time steps.
- Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T {T \choose i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

• As always, $\phi^* = 0$ works too.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- All right: d* = 1 models correspond to simple disease spreading models.
- What if we allow $d^* \ge 2$?
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d* exposures in last T time steps.
- Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T {T \choose i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

• As always, $\phi^* = 0$ works too.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- All right: d* = 1 models correspond to simple disease spreading models.
- What if we allow $d^* \ge 2$?
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d* exposures in last T time steps.
- Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T {T \choose i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

• As always, $\phi^* = 0$ works too.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- All right: d* = 1 models correspond to simple disease spreading models.
- What if we allow $d^* \ge 2$?
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d* exposures in last T time steps.
- Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

• As always, $\phi^* = 0$ works too.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- All right: d* = 1 models correspond to simple disease spreading models.
- What if we allow $d^* \ge 2$?
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d* exposures in last T time steps.
- Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

• As always, $\phi^* = 0$ works too.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

Exactly solvable for small *T*.

▶ e.g., for *d*^{*} = 2, *T* = 3:

► Fixed point equation: $\phi^* =$ $3p^2 \phi^{*2} (1 - p \phi^*) + p^3 \phi^*$

See new structure: see a saddle node bifurcation^[11] appear as p increases.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

Exactly solvable for small T.

▶ e.g., for *d*^{*} = 2, *T* = 3:

► Fixed point equation: $\phi^* =$ $3p^2 \phi^{*2} (1 - p \phi^*) + p^3 \phi$

See new structure: see a saddle node bifurcation^[11] appear as p increases.

•
$$(p_b, \phi^*) = (8/9, 27/32).$$

 See behavior akin to output of Granovetter's threshold model. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

Exactly solvable for small T.

- ▶ e.g., for *d*^{*} = 2, *T* = 3:
- Fixed point equation: $\phi^* =$ $3p^2 \phi^{*2} (1 - p \phi^*) + p^3 \phi$
- See new structure: see a saddle node bifurcation^[11] appear as p increases.

•
$$(p_b, \phi^*) = (8/9, 27/32).$$

 See behavior akin to output of Granovetter's threshold model. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

Exactly solvable for small T.

Fixed point equation: $\phi^* =$ $3p^2 \phi^{*2}(1 - p\phi^*) + p^3 \phi^{*3}$

See new structure: see a saddle node bifurcation^[11] appear as p increases.

•
$$(p_b, \phi^*) = (8/9, 27/32).$$

 See behavior akin to output of Granovetter's threshold model. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

Exactly solvable for small T.

Fixed point equation:

$$\phi^* = 3p^2 \phi^{*2} (1 - p \phi^*) + p^3 \phi^{*3}$$

 See new structure: see a saddle node bifurcation^[11] appear as p increases.

•
$$(p_b, \phi^*) = (8/9, 27/32).$$

 See behavior akin to output of Granovetter's threshold model. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

See behavior akin to output of Granovetter's

Exactly solvable for small T.

- Fixed point equation: $\phi^* =$ $3p^2 \phi^{*2} (1 - p\phi^*) + p^3 \phi^{*3}$
- See new structure: see a saddle node bifurcation^[11] appear as p increases.

$$(p_b, \phi^*) = (8/9, 27/32).$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References
Homogeneous, multi-hit models:

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

Exactly solvable for small T.

- Fixed point equation: $\phi^* =$ $3p^2 \phi^{*2}(1-p\phi^*) + p^3 \phi^{*3}$
- See new structure: see a saddle node bifurcation ^[11] appear as p increases.

•
$$(p_b, \phi^*) = (8/9, 27/32).$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

 See behavior akin to output of Granovetter's threshold model.

Frame 30/63 日 のへへ

Homogeneous, multi-hit models:

Another example:

▶ r = 1, $d^* = 3$, T = 12 Saddle-node bifurcation.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- → d* = 1 → d* > 1: jump between continuous phase transition and pure critical mass model.
- Unstable curve for d^{*} = 2 does not hit φ^{*} = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

See either simple phase transition or saddle-node bifurcation, nothing in between.

- d^{*} = 1 → d^{*} > 1: jump between continuous phase transition and pure critical mass model.
- Unstable curve for d* = 2 does not hit o* = 0.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 32/63

See either simple phase transition or saddle-node bifurcation, nothing in between.

Bifurcation points for example fixed T, varying d*:

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

T = 96 (△).

▶ T = 24 (>),

► $T = 12 (\triangleleft),$

▶ T = 6 (□), ▶ T = 3 (○), References

Fun with amazon's recommender system (⊞). [amaznode.fladdict.net]

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.

Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^{t} d_i(t')$$

• Example for
$$T = 24$$
, $d^* = 14$:

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.

Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^t d_i(t')$$

• Example for
$$T = 24$$
, $d^* = 14$:

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.
- Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^t d_i(t')$$

• Example for
$$T = 24$$
, $d^* = 14$:

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.
- Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^t d_i(t')$$

• Example for
$$T = 24$$
, $d^* = 14$:

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- Define γ_m as fraction of individuals for whom D(t) last equaled, and his since been below, their threshold m time steps ago,
- Fraction of individuals below threshold but not recovered:

$$\Gamma(p,\phi^*;r) = \sum_{m=1}^{\infty} (1-r)^m \gamma_m(p,\phi^*).$$

Fixed point equation:

$$\phi^* = \Gamma(p, \phi^*; r) + \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1 - p\phi^*)^{T-i}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 36/63

- Define γ_m as fraction of individuals for whom D(t) last equaled, and his since been below, their threshold m time steps ago,
- Fraction of individuals below threshold but not recovered:

$$\Gamma(\boldsymbol{p},\phi^*;\boldsymbol{r})=\sum_{m=1}^{\infty}(1-\boldsymbol{r})^m\gamma_m(\boldsymbol{p},\phi^*).$$

Fixed point equation:

$$\phi^* = \Gamma(p, \phi^*; r) + \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1 - p\phi^*)^{T-i}$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Define γ_m as fraction of individuals for whom D(t) last equaled, and his since been below, their threshold m time steps ago,
- Fraction of individuals below threshold but not recovered:

$$\Gamma(\boldsymbol{p},\phi^*;\boldsymbol{r})=\sum_{m=1}^{\infty}(1-\boldsymbol{r})^m\gamma_m(\boldsymbol{p},\phi^*).$$

Fixed point equation:

$$\phi^* = \Gamma(\boldsymbol{p}, \phi^*; \boldsymbol{r}) + \sum_{i=d^*}^T \binom{T}{i} (\boldsymbol{p}\phi^*)^i (1 - \boldsymbol{p}\phi^*)^{T-i}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 36/63 日 のへへ

► Want to examine how dose load can drop below threshold of d* = 2:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

- Two subsequences do this:
 - $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, 0, 0\}.$
- Note: second sequence includes an extra 0 since this is necessary to stay below d* = 2.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Want to examine how dose load can drop below threshold of d* = 2:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

Two subsequences do this: $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, 0, 0\}$.

- Note: second sequence includes an extra 0 since this is necessary to stay below d* = 2.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Want to examine how dose load can drop below threshold of d* = 2:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

Two subsequences do this:

 $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, 0, 0\}.$

- Note: second sequence includes an extra 0 since this is necessary to stay below d* = 2.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Want to examine how dose load can drop below threshold of d* = 2:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

- Two subsequences do this: $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, 0, 0\}.$
- Note: second sequence includes an extra 0 since this is necessary to stay below d* = 2.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Want to examine how dose load can drop below threshold of d* = 2:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

- ► Two subsequences do this: ${d_{n-2}, d_{n-1}, d_n, d_{n+1}} = {1, 1, 0, 0}$ and ${d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}} = {1, 0, 1, 0, 0}.$
- Note: second sequence includes an extra 0 since this is necessary to stay below d* = 2.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 37/63 日 のへへ

Want to examine how dose load can drop below threshold of d* = 2:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

- ► Two subsequences do this: ${d_{n-2}, d_{n-1}, d_n, d_{n+1}} = {1, 1, 0, 0}$ and ${d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}} = {1, 0, 1, 0, 0}.$
- Note: second sequence includes an extra 0 since this is necessary to stay below d* = 2.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Want to examine how dose load can drop below threshold of d* = 2:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

- ► Two subsequences do this: ${d_{n-2}, d_{n-1}, d_n, d_{n+1}} = {1, 1, 0, 0}$ and ${d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}} = {1, 0, 1, 0, 0}.$
- Note: second sequence includes an extra 0 since this is necessary to stay below d* = 2.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}.$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 37/63 日 のへへ

- Determine number of sequences of length *m* that keep dose load below d* = 2.
- N_a = number of $a = \{0\}$ subsequences.
- ▶ N_b = number of $b = \{1, 0, 0\}$ subsequences.

 $m = N_a \cdot 1 + N_b \cdot 3$

Possible values for N_b:

$$0, 1, 2, \ldots, \left\lfloor \frac{m}{3} \right\rfloor$$

where [.] means floor.

Corresponding possible values for N_a:

$$m, m-3, m-6, \ldots, m-3\left\lfloor \frac{m}{3} \right\rfloor$$
.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 38/63 日 のへへ

- Determine number of sequences of length *m* that keep dose load below d* = 2.
- N_a = number of $a = \{0\}$ subsequences.
- ▶ N_b = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b:

$$0, 1, 2, \ldots, \left\lfloor \frac{m}{3} \right\rfloor$$

where [.] means floor.

Corresponding possible values for N_a:

$$m, m-3, m-6, \ldots, m-3\left\lfloor \frac{m}{3} \right\rfloor$$
.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 38/63 日 のへへ

- Determine number of sequences of length *m* that keep dose load below d* = 2.
- N_a = number of $a = \{0\}$ subsequences.
- N_b = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0, 1, 2, \ldots, \left\lfloor \frac{m}{3} \right\rfloor$$

where $\lfloor \cdot \rfloor$ means floor.

Corresponding possible values for N_a:

$$m, m-3, m-6, \ldots, m-3\left\lfloor \frac{m}{3} \right\rfloor$$
.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 38/63 日 のへへ

- Determine number of sequences of length *m* that keep dose load below d* = 2.
- N_a = number of $a = \{0\}$ subsequences.
- N_b = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0, 1, 2, \ldots, \left\lfloor \frac{m}{3} \right\rfloor$$

where $\lfloor \cdot \rfloor$ means floor.

Corresponding possible values for N_a:

$$m, m-3, m-6, \ldots, m-3\left\lfloor \frac{m}{3} \right\rfloor$$
.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Determine number of sequences of length *m* that keep dose load below d* = 2.
- N_a = number of $a = \{0\}$ subsequences.
- N_b = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b:

$$0, 1, 2, \ldots, \left\lfloor \frac{m}{3} \right\rfloor$$

where $\lfloor \cdot \rfloor$ means floor.

Corresponding possible values for N_a

$$m, m-3, m-6, \ldots, m-3 \left\lfloor \frac{m}{3} \right\rfloor$$
.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- Determine number of sequences of length *m* that keep dose load below d* = 2.
- N_a = number of $a = \{0\}$ subsequences.
- N_b = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0, 1, 2, \ldots, \left\lfloor \frac{m}{3} \right\rfloor$$

where $\lfloor \cdot \rfloor$ means floor.

Corresponding possible values for N_a:

$$m, m-3, m-6, \ldots, m-3\left\lfloor \frac{m}{3} \right\rfloor.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 38/63 日 かへで

How many ways to arrange N_a a's and N_b b's?
 Think of overall sequence in terms of subsequences:

 $\{Z_1, Z_2, \ldots, Z_{N_a+N_b}\}$

• $N_a + N_b$ slots for subsequences.

Choose positions of either a's or b's:

$$\binom{N_a+N_b}{N_a} = \binom{N_a+N_b}{N_b}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 39/63 日 かへへ

- How many ways to arrange N_a a's and N_b b's?
- Think of overall sequence in terms of subsequences:

$$\{Z_1, Z_2, \ldots, Z_{N_a+N_b}\}$$

► $N_a + N_b$ slots for subsequences.

Choose positions of either a's or b's:

$$\binom{N_a+N_b}{N_a} = \binom{N_a+N_b}{N_b}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 39/63 日 のへへ

- How many ways to arrange N_a a's and N_b b's?
- Think of overall sequence in terms of subsequences:

 $\{Z_1, Z_2, \ldots, Z_{N_a+N_b}\}$

- $N_a + N_b$ slots for subsequences.
- Choose positions of either a's or b's:

$$\binom{N_a+N_b}{N_a} = \binom{N_a+N_b}{N_b}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- How many ways to arrange N_a a's and N_b b's?
- Think of overall sequence in terms of subsequences:

$$\{Z_1, Z_2, \ldots, Z_{N_a+N_b}\}$$

- $N_a + N_b$ slots for subsequences.
- Choose positions of either a's or b's:

$$\binom{N_a+N_b}{N_a}=\binom{N_a+N_b}{N_b}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 39/63 බ ආද ල

Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3 \rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$.

▶ $P(a) = (1 - p\phi^*)$ and $P(b) = p\phi^*(1 - p\phi^*)^2$

► Total probability of allowable sequences of length *m*:

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Notation: Write a randomly chosen sequence of a's and b's of length m as D^{a,b}_m. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3 \rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$.

• $P(a) = (1 - p\phi^*)$ and $P(b) = p\phi^*(1 - p\phi^*)^2$

► Total probability of allowable sequences of length *m*:

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} {\binom{m-2k}{k}} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Notation: Write a randomly chosen sequence of a's and b's of length m as D^{a,b}_m. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3 \rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$.

- $P(a) = (1 p\phi^*)$ and $P(b) = p\phi^*(1 p\phi^*)^2$
- Total probability of allowable sequences of length m:

$$\chi_m(\boldsymbol{p},\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-\boldsymbol{p}\phi^*)^{m-k} (\boldsymbol{p}\phi^*)^k.$$

Notation: Write a randomly chosen sequence of a's and b's of length m as D^{a,b}_m. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3 \rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$.

- $P(a) = (1 p\phi^*)$ and $P(b) = p\phi^*(1 p\phi^*)^2$
- Total probability of allowable sequences of length m:

$$\chi_m(\boldsymbol{\rho},\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-\boldsymbol{\rho}\phi^*)^{m-k} (\boldsymbol{\rho}\phi^*)^k.$$

Notation: Write a randomly chosen sequence of a's and b's of length m as D^{a,b}_m. Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- Nearly there... must account for details of sequence endings.
- Three endings \Rightarrow Six possible sequences:

$$\begin{split} D_1 &= \{1, 1, 0, 0, D_{m-1}^{a,b}\} \\ D_2 &= \{1, 1, 0, 0, D_{m-2}^{a,b}, 1\} \\ D_3 &= \{1, 1, 0, 0, D_{m-3}^{a,b}, 1, 0\} \\ D_4 &= \{1, 0, 1, 0, 0, D_{m-2}^{a,b}\} \\ D_5 &= \{1, 0, 1, 0, 0, D_{m-3}^{a,b}, 1\} \\ D_6 &= \{1, 0, 1, 0, 0, D_{m-4}^{a,b}, 1, 0\} \\ \end{split}$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 41/63 日 つくへ

- Nearly there... must account for details of sequence endings.
- Three endings \Rightarrow Six possible sequences:

$$\begin{split} D_1 &= \{1, 1, 0, 0, D_{m-1}^{a,b}\} \\ D_2 &= \{1, 1, 0, 0, D_{m-2}^{a,b}, 1\} \\ D_3 &= \{1, 1, 0, 0, D_{m-3}^{a,b}, 1, 0\} \\ D_4 &= \{1, 0, 1, 0, 0, D_{m-2}^{a,b}\} \\ D_5 &= \{1, 0, 1, 0, 0, D_{m-3}^{a,b}, 1\} \\ D_6 &= \{1, 0, 1, 0, 0, D_{m-4}^{a,b}, 1, 0\} \\ \end{split}$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 41/63 日 つくへ
- Nearly there... must account for details of sequence endings.
- Three endings \Rightarrow Six possible sequences:

$$\begin{split} D_1 &= \{1, 1, 0, 0, D_{m-1}^{a,b}\} & P_1 \\ D_2 &= \{1, 1, 0, 0, D_{m-2}^{a,b}, 1\} & P_2 \\ D_3 &= \{1, 1, 0, 0, D_{m-3}^{a,b}, 1, 0\} & P_3 \\ D_4 &= \{1, 0, 1, 0, 0, D_{m-2}^{a,b}\} & P_4 \\ D_5 &= \{1, 0, 1, 0, 0, D_{m-3}^{a,b}, 1\} & P_5 \\ D_6 &= \{1, 0, 1, 0, 0, D_{m-4}^{a,b}, 1, 0\} & P_6 \end{split}$$

$$P_{1} = (p\phi)^{2}(1 - p\phi)^{2}\chi_{m-1}(p, \phi)$$

$$P_{2} = (p\phi)^{3}(1 - p\phi)^{2}\chi_{m-2}(p, \phi)$$

$$P_{3} = (p\phi)^{3}(1 - p\phi)^{3}\chi_{m-3}(p, \phi)$$

$$P_{4} = (p\phi)^{2}(1 - p\phi)^{3}\chi_{m-2}(p, \phi)$$

$$P_{5} = (p\phi)^{3}(1 - p\phi)^{3}\chi_{m-3}(p, \phi)$$

$$P_{6} = (p\phi)^{3}(1 - p\phi)^{4}\chi_{m-4}(p, \phi)$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

F.P. Eq:
$$\phi^* = \Gamma(\rho, \phi^*; r) + \sum_{i=d^*}^T {T \choose i} (\rho \phi^*)^i (1 - \rho \phi^*)^{T-i}.$$

where $\Gamma(p, \phi^*; r) =$

$$(1-r)(p\phi)^2(1-p\phi)^2 + \sum_{m=1}^{\infty}(1-r)^m(p\phi)^2(1-p\phi)^2 \times$$

$$\left[\chi_{m-1} + \chi_{m-2} + 2p\phi(1-p\phi)\chi_{m-3} + p\phi(1-p\phi)^2\chi_{m-4}\right]$$

and

$$\chi_m(\boldsymbol{p},\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-\boldsymbol{p}\phi^*)^{m-k} (\boldsymbol{p}\phi^*)^k.$$

Note: $(1 - r)(p\phi)^2(1 - p\phi)^2$ accounts for $\{1, 0, 1, 0\}$ sequence.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

T = 3, *d*^{*} = 2

▶ $r = 0.01, 0.05, 0.10, 0.15, 0.20, \dots, 1.00.$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

T = 2, *d*^{*} = 2

▶ *r* = 0.01, 0.05, 0.10, ..., 0.3820 ± 0.0001.

▶ No spreading for $r \ge 0.382$.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

T = 2, *d*^{*} = 2

- ▶ $r = 0.01, 0.05, 0.10, \dots, 0.3820 \pm 0.0001.$
- No spreading for $r \gtrsim 0.382$.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Two kinds of contagion processes:

- 1. Continuous phase transition: SIR-like.
- 2. Saddle-node bifurcation: threshold model-like.
- $d^* = 1$: spreading from small seeds possible.
- $d^* > 1$: critical mass model.
- Are other behaviors possible?

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Two kinds of contagion processes:

- 1. Continuous phase transition: SIR-like.
- 2. Saddle-node bifurcation: threshold model-like.
- $d^* = 1$: spreading from small seeds possible.
- $d^* > 1$: critical mass model.
- Are other behaviors possible?

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Two kinds of contagion processes:

- 1. Continuous phase transition: SIR-like.
- 2. Saddle-node bifurcation: threshold model-like.
- $d^* = 1$: spreading from small seeds possible.
- $d^* > 1$: critical mass model.
- Are other behaviors possible?

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Two kinds of contagion processes:
 - 1. Continuous phase transition: SIR-like.
 - 2. Saddle-node bifurcation: threshold model-like.
- $d^* = 1$: spreading from small seeds possible.
- $d^* > 1$: critical mass model.
- Are other behaviors possible?

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Two kinds of contagion processes:
 - 1. Continuous phase transition: SIR-like.
 - 2. Saddle-node bifurcation: threshold model-like.
- $d^* = 1$: spreading from small seeds possible.
- $d^* > 1$: critical mass model.

Are other behaviors possible?

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Two kinds of contagion processes:
 - 1. Continuous phase transition: SIR-like.
 - 2. Saddle-node bifurcation: threshold model-like.
- $d^* = 1$: spreading from small seeds possible.
- $d^* > 1$: critical mass model.
- Are other behaviors possible?

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Outline

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 46/63

Now allow for dose distributions (f) and threshold distributions (g) with width.

Key quantities:

$$m{P}_k = \int_0^\infty \mathrm{d} d^*\, g(d^*) m{P}\left(\sum_{j=1}^k d_j \geq d^*
ight) \,\, ext{where} \,\, 1 \leq k \leq T$$

P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.

► e.g.,

- P₁ = Probability that <u>one dose</u> will exceed the threshold of a random individual
 - = Fraction of most vulnerable individuals.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- ► Now allow for dose distributions (f) and threshold distributions (g) with width.
- Key quantities:

$$m{P}_k = \int_0^\infty \mathrm{d} d^* \, g(d^*) m{P}\left(\sum_{j=1}^k d_j \geq d^*
ight) \, ext{ where } 1 \leq k \leq T.$$

- P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.
- ► e.g.,
 - P₁ = Probability that <u>one dose</u> will exceed the threshold of a random individual
 - = Fraction of most vulnerable individuals.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- Now allow for dose distributions (f) and threshold distributions (g) with width.
- Key quantities:

$$oldsymbol{P}_k = \int_0^\infty \mathrm{d} d^* \, g(d^*) oldsymbol{P}\left(\sum_{j=1}^k d_j \geq d^*
ight) \, ext{where 1} \leq k \leq T.$$

P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.

► e.g.,

- P₁ = Probability that <u>one dose</u> will exceed the threshold of a random individual
 - = Fraction of most vulnerable individuals.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- Now allow for dose distributions (f) and threshold distributions (g) with width.
- Key quantities:

$$oldsymbol{P}_k = \int_0^\infty \mathrm{d} d^* \, g(d^*) oldsymbol{P}\left(\sum_{j=1}^k d_j \geq d^*
ight) \, ext{where 1} \leq k \leq T.$$

- P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.
- ▶ e.g.,
 - P_1 = Probability that <u>one dose</u> will exceed the threshold of a random individual
 - = Fraction of most vulnerable individuals.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

► Expand around φ^{*} = 0 to find when spread from single seed is possible:

$$pP_1T \ge 1$$
 or $\Rightarrow p_c = 1/(TP_1)$

Very good:

- P₁T is the expected number of vulnerables the initial infected individual meets before recovering.
- pP₁T is ∴ the expected number of successful infections (equivalent to R₀).
- Observe: p_c may exceed 1 meaning no spreading from a small seed.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around \(\phi^* = 0\) to find when spread from single seed is possible:

$$pP_1T \ge 1$$
 or $\Rightarrow p_c = 1/(TP_1)$

Very good:

- P₁T is the expected number of vulnerables the initial infected individual meets before recovering.
- pP₁T is ∴ the expected number of successful infections (equivalent to R₀).
- Observe: p_c may exceed 1 meaning no spreading from a small seed.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around \(\phi^* = 0\) to find when spread from single seed is possible:

$$\begin{array}{|c|c|} \hline pP_1T \geq 1 \end{array} \quad \text{or} \quad \hline \Rightarrow p_c = 1/(TP_1) \end{array}$$

Very good:

- P₁ T is the expected number of vulnerables the initial infected individual meets before recovering.
- pP₁T is ∴ the expected number of successful infections (equivalent to R₀).
- Observe: p_c may exceed 1 meaning no spreading from a small seed.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around \(\phi^* = 0\) to find when spread from single seed is possible:

$$\begin{array}{c} \hline pP_1T \geq 1 \end{array} \quad \text{or} \quad \boxed{\Rightarrow p_c = 1/(TP_1)} \end{array}$$

Very good:

- 1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.
- 2. pP_1T is \therefore the expected number of successful infections (equivalent to R_0).
- Observe: p_c may exceed 1 meaning no spreading from a small seed.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around \(\phi^* = 0\) to find when spread from single seed is possible:

$$\begin{array}{c} \hline pP_1T \geq 1 \end{array} \quad \text{or} \quad \boxed{\Rightarrow p_c = 1/(TP_1)} \end{array}$$

Very good:

- 1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.
- *pP*₁*T* is ∴ the expected number of successful infections (equivalent to *R*₀).
- Observe: p_c may exceed 1 meaning no spreading from a small seed.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around \(\phi^* = 0\) to find when spread from single seed is possible:

$$\begin{array}{c} \hline pP_1T \geq 1 \end{array} \quad \text{or} \quad \boxed{\Rightarrow p_c = 1/(TP_1)} \end{array}$$

Very good:

- 1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.
- *pP*₁*T* is ∴ the expected number of successful infections (equivalent to *R*₀).
- Observe: p_c may exceed 1 meaning no spreading from a small seed.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Next: Determine slope of fixed point curve at critical point p_c.

- Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- ► Find slope depends on (P₁ P₂/2)^[5] (see appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find <u>three</u> basic universal classes of contagion models...

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Next: Determine slope of fixed point curve at critical point p_c.
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- ► Find slope depends on (P₁ P₂/2)^[5] (see appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find <u>three</u> basic universal classes of contagion models...

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Next: Determine slope of fixed point curve at critical point p_c.
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- ► Find slope depends on (P₁ P₂/2)^[5] (see appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find <u>three</u> basic universal classes of contagion models...

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Next: Determine slope of fixed point curve at critical point p_c.
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- ► Find slope depends on (P₁ P₂/2)^[5] (see appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find <u>three</u> basic universal classes of contagion models...

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

- Next: Determine slope of fixed point curve at critical point p_c.
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- ► Find slope depends on (P₁ P₂/2)^[5] (see appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find <u>three</u> basic universal classes of contagion models...

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 49/63 日 のへで

- Next: Determine slope of fixed point curve at critical point p_c.
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- ► Find slope depends on (P₁ P₂/2)^[5] (see appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find <u>three</u> basic universal classes of contagion models...

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Next: Determine slope of fixed point curve at critical point p_c.
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- ► Find slope depends on (P₁ P₂/2)^[5] (see appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find <u>three</u> basic universal classes of contagion models...

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- Memory span: T = 10.
- Thresholds are uniformly set at

1.
$$d_* = 0.5$$

2. $d_* = 1.6$

- 3. $d_* = 3$
- Spread of dose sizes matters, details are not important.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- Memory span: T = 10.
- Thresholds are uniformly set at

```
1. d_* = 0.5
2. d_* = 1.6
3. d_* = 3
```

 Spread of dose sizes matters, details are not important.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 50/63 日 のへへ

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- Memory span: T = 10.
- Thresholds are uniformly set at

1.
$$d_* = 0.5$$

2. $d_* = 1.6$
3. $d_* = 3$

Spread of dose sizes matters, details are not important.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 50/63 日 のへへ

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- Memory span: T = 10.
- Thresholds are uniformly set at

1.
$$d_* = 0.5$$

2. $d_* = 1.6$
3. $d_* = 3$

 Spread of dose sizes matters, details are not important.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Three universal classes

- ► Epidemic threshold: ▶ Vanishing critical mass: $P_1 < P_2/2$, $p_c = 1/(TP_1) < 1$
- ▶ Pure critical mass:

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Heterogeneous version

References

Frame 51/63 ୍ର୍ବ୍ର୍ P

Three universal classes

- Epidemic threshold:
- Pure critical mass:

 $P_1 > P_2/2, p_c = 1/(TP_1) < 1$ ▶ Vanishing critical mass: $P_1 < P_2/2$, $p_c = 1/(TP_1) < 1$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Heterogeneous version

References

Frame 51/63 ୍ର୍ବ୍ର୍ P

Three universal classes

- Epidemic threshold:
- Vanishing critical mass:
- Pure critical mass:

 $P_1 > P_2/2, p_c = 1/(TP_1) < 1$ $P_1 < P_2/2, p_c = 1/(TP_1) < 1$ $P_1 < P_2/2, p_c = 1/(TP_1) > 1$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 51/63
Three universal classes

- Epidemic threshold:
- Vanishing critical mass:
- Pure critical mass:

 $P_1 > P_2/2, p_c = 1/(TP_1) < 1$ $P_1 < P_2/2, p_c = 1/(TP_1) < 1$ $P_1 < P_2/2, p_c = 1/(TP_1) > 1$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 51/63

Heterogeneous case

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- ▶ II-III transition generalizes: $p_c = 1/[P_1(T + \tau)]$ where $\tau = 1/r 1$ = expected recovery time
- I-II transition less pleasant analytically.

More complicated models

- Three classes based on behavior for small seeds.
- Same model classification holds: I, II, and III.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 53/63 බ ආද ල

Hysteresis in vanishing critical mass models

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Memory is a natural ingredient.

- Three universal classes of contagion processes:
 - 1. I. Epidemic Threshold
 - 2. II. Vanishing Critical Mass
 - 3. III. Critical Mass
- Dramatic changes in behavior possible.
- To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (*T*, *r*, *ρ*, *P*₁, and/or *P*₂).
- To change behavior given model: 'adjust' probability of exposure (*p*) and/or initial number infected (φ₀).

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Memory is a natural ingredient.
- Three universal classes of contagion processes:
 - 1. I. Epidemic Threshold
 - 2. II. Vanishing Critical Mass
 - 3. III. Critical Mass
- Dramatic changes in behavior possible.
- To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (*T*, *r*, *ρ*, *P*₁, and/or *P*₂).
- To change behavior given model: 'adjust' probability of exposure (*p*) and/or initial number infected (φ₀).

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Memory is a natural ingredient.
- Three universal classes of contagion processes:
 - 1. I. Epidemic Threshold
 - 2. II. Vanishing Critical Mass
 - 3. III. Critical Mass
- Dramatic changes in behavior possible.
- To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (*T*, *r*, *ρ*, *P*₁, and/or *P*₂).
- ► To change behavior given model: 'adjust' probability of exposure (*p*) and/or initial number infected (φ₀).

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Memory is a natural ingredient.
- Three universal classes of contagion processes:
 - 1. I. Epidemic Threshold
 - 2. II. Vanishing Critical Mass
 - 3. III. Critical Mass
- Dramatic changes in behavior possible.
- To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (*T*, *r*, *ρ*, *P*₁, and/or *P*₂).
- ► To change behavior given model: 'adjust' probability of exposure (*p*) and/or initial number infected (φ₀).

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Memory is a natural ingredient.
- Three universal classes of contagion processes:
 - 1. I. Epidemic Threshold
 - 2. II. Vanishing Critical Mass
 - 3. III. Critical Mass
- Dramatic changes in behavior possible.
- To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (*T*, *r*, *ρ*, *P*₁, and/or *P*₂).
- ► To change behavior given model: 'adjust' probability of exposure (*p*) and/or initial number infected (φ₀).

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Single seed infects others if $pP_1(T + \tau) \ge 1$.
- Key quantity: $p_c = 1/[P_1(T + \tau)]$
- If $p_c < 1 \Rightarrow$ contagion can spread from single seed.

Depends only on:

- 1. System Memory $(T + \tau)$.
- 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant: Many threshold and dose distributions give same P_k.
- Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Single seed infects others if $pP_1(T + \tau) \ge 1$.
- Key quantity: $p_c = 1/[P_1(T + \tau)]$
- If $p_c < 1 \Rightarrow$ contagion can spread from single seed.

Depends only on:

- 1. System Memory $(T + \tau)$.
- 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant: Many threshold and dose distributions give same P_k.
- Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Single seed infects others if $pP_1(T + \tau) \ge 1$.
- Key quantity: $p_c = 1/[P_1(T + \tau)]$
- If $p_c < 1 \Rightarrow$ contagion can spread from single seed.
- Depends only on:
 - 1. System Memory $(T + \tau)$
 - 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant: Many threshold and dose distributions give same P_k.
- Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Single seed infects others if $pP_1(T + \tau) \ge 1$.
- Key quantity: $p_c = 1/[P_1(T + \tau)]$
- If $p_c < 1 \Rightarrow$ contagion can spread from single seed.
- Depends only on:
 - 1. System Memory $(T + \tau)$.
 - 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant: Many threshold and dose distributions give same P_k.
- Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Single seed infects others if $pP_1(T + \tau) \ge 1$.
- Key quantity: $p_c = 1/[P_1(T + \tau)]$
- If $p_c < 1 \Rightarrow$ contagion can spread from single seed.
- Depends only on:
 - 1. System Memory $(T + \tau)$.
 - 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant: Many threshold and dose distributions give same P_k.
- Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

- Single seed infects others if $pP_1(T + \tau) \ge 1$.
- Key quantity: $p_c = 1/[P_1(T + \tau)]$
- If $p_c < 1 \Rightarrow$ contagion can spread from single seed.
- Depends only on:
 - 1. System Memory $(T + \tau)$.
 - 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant: Many threshold and dose distributions give same P_k.
- Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 56/63 日 のへで

$$\begin{split} \phi^* &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k (1 - p\phi^*)^{T-k}, \\ &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k \sum_{j=0}^{T-k} \binom{T-k}{j} (-p\phi^*)^j, \\ &= \sum_{k=1}^T \sum_{j=0}^{T-k} \binom{T}{k} \binom{T-k}{j} P_k (-1)^j (p\phi^*)^{k+j}, \\ &= \sum_{m=1}^T \sum_{k=1}^m \binom{T}{k} \binom{T-k}{m-k} P_k (-1)^{m-k} (p\phi^*)^m, \\ &= \sum_{m=1}^T C_m (p\phi^*)^m \end{split}$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

$$\begin{split} \phi^* &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k (1 - p\phi^*)^{T-k}, \\ &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k \sum_{j=0}^{T-k} \binom{T-k}{j} (-p\phi^*)^j, \\ &= \sum_{k=1}^T \sum_{j=0}^{T-k} \binom{T}{k} \binom{T-k}{j} P_k (-1)^j (p\phi^*)^{k+j}, \\ &= \sum_{m=1}^T \sum_{k=1}^m \binom{T}{k} \binom{T-k}{m-k} P_k (-1)^{m-k} (p\phi^*)^m, \\ &= \sum_{m=1}^T C_m (p\phi^*)^m \end{split}$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

$$\begin{split} \phi^* &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k (1 - p\phi^*)^{T-k}, \\ &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k \sum_{j=0}^{T-k} \binom{T-k}{j} (-p\phi^*)^j, \\ &= \sum_{k=1}^T \sum_{j=0}^{T-k} \binom{T}{k} \binom{T-k}{j} P_k (-1)^j (p\phi^*)^{k+j}, \\ &= \sum_{m=1}^T \sum_{k=1}^m \binom{T}{k} \binom{T-k}{m-k} P_k (-1)^{m-k} (p\phi^*)^m, \\ &= \sum_{m=1}^T C_m (p\phi^*)^m \end{split}$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

$$\begin{split} \phi^* &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k (1 - p\phi^*)^{T-k}, \\ &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k \sum_{j=0}^{T-k} \binom{T-k}{j} (-p\phi^*)^j, \\ &= \sum_{k=1}^T \sum_{j=0}^{T-k} \binom{T}{k} \binom{T-k}{j} P_k (-1)^j (p\phi^*)^{k+j}, \\ &= \sum_{m=1}^T \sum_{k=1}^m \binom{T}{k} \binom{T-k}{m-k} P_k (-1)^{m-k} (p\phi^*)^m, \\ &= \sum_{m=1}^T C_m (p\phi^*)^m \end{split}$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

$$\begin{split} \phi^* &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k (1 - p\phi^*)^{T-k}, \\ &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k \sum_{j=0}^{T-k} \binom{T-k}{j} (-p\phi^*)^j, \\ &= \sum_{k=1}^T \sum_{j=0}^{T-k} \binom{T}{k} \binom{T-k}{j} P_k (-1)^j (p\phi^*)^{k+j}, \\ &= \sum_{m=1}^T \sum_{k=1}^m \binom{T}{k} \binom{T-k}{m-k} P_k (-1)^{m-k} (p\phi^*)^m, \\ &= \sum_{m=1}^T C_m (p\phi^*)^m \end{split}$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

$$C_m = (-1)^m \binom{T}{m} \sum_{k=1}^m (-1)^k \binom{m}{k} P_k,$$

since

$$\binom{T}{k} \binom{T-k}{m-k} = \frac{T!}{k!(T-k)!} \frac{(T-k)!}{(m-k)!(T-m)!}$$
$$= \frac{T!}{m!(T-m)!} \frac{m!}{k!(m-k)!}$$
$$= \binom{T}{m} \binom{m}{k}.$$

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 58/63

Linearization gives

$$\phi^* \simeq C_1 \rho \phi^* + C_2 \rho_c^2 {\phi^*}^2.$$

where $C_1 = TP_1(=1/p_c)$ and $C_2 = {\binom{7}{2}}(-2P_1 + P_2)$. Using $p_c = 1/(TP_1)$:

$$\phi^* \simeq rac{C_1}{C_2 p_c^2} (p-p_c) = rac{T^2 P_1^3}{(T-1)(P_1-P_2/2)} (p-p_c).$$

Sign of derivative governed by $P_1 - P_2/2$.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Linearization gives

$$\phi^* \simeq C_1 \rho \phi^* + C_2 \rho_c^2 {\phi^*}^2.$$

where $C_1 = TP_1(=1/p_c)$ and $C_2 = {\binom{7}{2}}(-2P_1 + P_2)$. • Using $p_c = 1/(TP_1)$:

$$\phi^* \simeq rac{C_1}{C_2 \rho_c^2} (p - p_c) = rac{T^2 P_1^3}{(T - 1)(P_1 - P_2/2)} (p - p_c).$$

Sign of derivative governed by P₁ − P₂/2.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 59/63 日 かへへ

Linearization gives

$$\phi^* \simeq C_1 \rho \phi^* + C_2 \rho_c^2 {\phi^*}^2.$$

where $C_1 = TP_1(=1/p_c)$ and $C_2 = {\binom{7}{2}}(-2P_1 + P_2)$. • Using $p_c = 1/(TP_1)$:

$$\phi^* \simeq rac{C_1}{C_2 \rho_c^2} (p - p_c) = rac{T^2 P_1^3}{(T - 1)(P_1 - P_2/2)} (p - p_c).$$

Sign of derivative governed by $P_1 - P_2/2$.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

Frame 59/63 日 かへで

References I

[1] F. Bass.
A new product growth model for consumer durables.
Manage. Sci., 15:215–227, 1969. pdf (⊞)

- [2] D. J. Daley and D. G. Kendall. Epidemics and rumours. *Nature*, 204:1118, 1964.
- [3] D. J. Daley and D. G. Kendall. Stochastic rumours.

J. Inst. Math. Appl., 1:42–55, 1965.

 [4] P. S. Dodds and D. J. Watts. Universal behavior in a generalized model of contagion.
Phys. Rev. Lett., 92:218701, 2004. pdf (⊞)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

References II

[5] P. S. Dodds and D. J. Watts.
A generalized model of social and biological contagion.
J. Theor. Biol., 232:587–604, 2005. pdf (⊞)

- [6] W. Goffman and V. A. Newill. Generalization of epidemic theory: An application to the transmission of ideas. *Nature*, 204:225–228, 1964.
- [7] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics.

Proc. R. Soc. Lond. A, 115:700–721, 1927. pdf (⊞)

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

References III

[8] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity.

Proc. R. Soc. Lond. A, 141(843):94–122, 1927. pdf (⊞)

[9] W. O. Kermack and A. G. McKendrick.
Contributions to the mathematical theory of epidemics. II. The problem of endemicity.
Proc. R. Soc. Lond. A, 138(834):55–83, 1927. pdf (⊞)

[10] J. D. Murray.
Mathematical Biology.
Springer, New York, Third edition, 2002.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Appendix

References

References IV

[11] S. H. Strogatz.

Nonlinear Dynamics and Chaos. Addison Wesley, Reading, Massachusetts, 1994.

Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

References

Frame 63/63 Sac. P