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Generalized contagion model

Basic questions about contagion

I How many types of contagion are there?
I How can we categorize real-world contagions?
I Can we connect models of disease-like and social

contagion?
I Focus: mean field models.
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Mathematical Epidemiology (recap)

The standard SIR model [10]

I = basic model of disease contagion
I Three states:

1. S = Susceptible
2. I = Infective/Infectious
3. R = Recovered or Removed or Refractory

I S(t) + I(t) + R(t) = 1
I Presumes random interactions (mass-action

principle)
I Interactions are independent (no memory)
I Discrete and continuous time versions
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Independent Interaction Models

Discrete time automata example:

I

R

S
βI

1 − ρ

ρ

1 − βI

r
1 − r

Transition Probabilities:

β for being infected given
contact with infected
r for recovery
ρ for loss of immunity
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Independent Interaction Models

Original models attributed to

I 1920’s: Reed and Frost
I 1920’s/1930’s: Kermack and McKendrick [7, 9, 8]

I Coupled differential equations with a mass-action
principle
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Independent Interaction models

Differential equations for continuous model

d
dt

S = −βIS + ρR

d
dt

I = βIS − rI

d
dt

R = rI − ρR

β, r , and ρ are now rates.

Reproduction Number R0:

I R0 = expected number of infected individuals
resulting from a single initial infective

I Epidemic threshold: If R0 > 1, ‘epidemic’ occurs.
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Reproduction Number R0

Discrete version:
I Set up: One Infective in a randomly mixing

population of Susceptibles
I At time t = 0, single infective random bumps into a

Susceptible
I Probability of transmission = β

I At time t = 1, single Infective remains infected with
probability 1− r

I At time t = k , single Infective remains infected with
probability (1− r)k
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Reproduction Number R0

Discrete version:
I Expected number infected by original Infective:

R0 = β + (1− r)β + (1− r)2β + (1− r)3β + . . .

= β
(

1 + (1− r) + (1− r)2 + (1− r)3 + . . .
)

= β
1

1− (1− r)
= β/r

I Similar story for continuous model.
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Independent Interaction models

Example of epidemic threshold:
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I Continuous phase transition.
I Fine idea from a simple model.
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Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:

I Adoption of ideas/beliefs (Goffman & Newell,
1964) [6]

I Spread of rumors (Daley & Kendall, 1964, 1965) [2, 3]

I Diffusion of innovations (Bass, 1969) [1]

I Spread of fanatical behavior (Castillo-Chávez &
Song, 2003)
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Granovetter’s model (recap of recap)

I Action based on perceived behavior of others.

0 1
0

0.2

0.4

0.6

0.8

1

φ
i
∗

A

φ
i,t

Pr
(a

i,t
+

1=
1)

0 0.5 1
0

0.5

1

1.5

2

2.5
B

φ∗

f (
φ∗ )

0 0.5 1
0

0.2

0.4

0.6

0.8

1

φ
t

φ t+
1 =

 F
 (

φ t)

C

I Two states: S and I.
I Recovery now possible (SIS).
I φ = fraction of contacts ‘on’ (e.g., rioting).
I Discrete time, synchronous update.
I This is a Critical mass model.
I Interdependent interaction model.
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Some (of many) issues

I Disease models assume independence of infectious
events.

I Threshold models only involve proportions:
3/10 ≡ 30/100.

I Threshold models ignore exact sequence of
influences

I Threshold models assume immediate polling.
I Mean-field models neglect network structure
I Network effects only part of story:

media, advertising, direct marketing.
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Generalized model

Basic ingredients:

I Incorporate memory of a contagious element [4, 5]

I Population of N individuals, each in state S, I, or R.
I Each individual randomly contacts another at each

time step.
I φt = fraction infected at time t

= probability of contact with infected individual
I With probability p, contact with infective

leads to an exposure.
I If exposed, individual receives a dose of size d

drawn from distribution f . Otherwise d = 0.



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 14/63

Generalized model

Basic ingredients:

I Incorporate memory of a contagious element [4, 5]

I Population of N individuals, each in state S, I, or R.
I Each individual randomly contacts another at each

time step.
I φt = fraction infected at time t

= probability of contact with infected individual
I With probability p, contact with infective

leads to an exposure.
I If exposed, individual receives a dose of size d

drawn from distribution f . Otherwise d = 0.



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 14/63

Generalized model

Basic ingredients:

I Incorporate memory of a contagious element [4, 5]

I Population of N individuals, each in state S, I, or R.
I Each individual randomly contacts another at each

time step.
I φt = fraction infected at time t

= probability of contact with infected individual
I With probability p, contact with infective

leads to an exposure.
I If exposed, individual receives a dose of size d

drawn from distribution f . Otherwise d = 0.



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 14/63

Generalized model

Basic ingredients:

I Incorporate memory of a contagious element [4, 5]

I Population of N individuals, each in state S, I, or R.
I Each individual randomly contacts another at each

time step.
I φt = fraction infected at time t

= probability of contact with infected individual
I With probability p, contact with infective

leads to an exposure.
I If exposed, individual receives a dose of size d

drawn from distribution f . Otherwise d = 0.



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 14/63

Generalized model

Basic ingredients:

I Incorporate memory of a contagious element [4, 5]

I Population of N individuals, each in state S, I, or R.
I Each individual randomly contacts another at each

time step.
I φt = fraction infected at time t

= probability of contact with infected individual
I With probability p, contact with infective

leads to an exposure.
I If exposed, individual receives a dose of size d

drawn from distribution f . Otherwise d = 0.



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 14/63

Generalized model

Basic ingredients:

I Incorporate memory of a contagious element [4, 5]

I Population of N individuals, each in state S, I, or R.
I Each individual randomly contacts another at each

time step.
I φt = fraction infected at time t

= probability of contact with infected individual
I With probability p, contact with infective

leads to an exposure.
I If exposed, individual receives a dose of size d

drawn from distribution f . Otherwise d = 0.



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 15/63

Generalized model—ingredients

S ⇒ I

I Individuals ‘remember’ last T contacts:

Dt ,i =
t∑

t ′=t−T+1

di(t ′)

I Infection occurs if individual i ’s ‘threshold’ is
exceeded:

Dt ,i ≥ d∗
i

I Threshold d∗
i drawn from arbitrary distribution g at

t = 0.
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Generalized model—ingredients

I ⇒ R
When Dt ,i < d∗

i ,
individual i recovers to state R with probability r .

R ⇒ S
Once in state R, individuals become susceptible again
with probability ρ.
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A visual explanation

b

dt−T+1 dt−1 dtdt−T

contactφt
receive

dose d > 0infective

a
p

1 − p
1 − φt

receive

no dose

︸ ︷︷ ︸
∑

=Dt,i

I

S
1 if Dt,i ≥ d∗i

1 − ρ

1 if Dt,i < d∗i

c

R
1 − r if Dt,i < d∗i

1 if Dt,i ≥ d∗i

ρ

r(1 − ρ) if Dt,i < d∗i

rρ if Dt,i < d∗i
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Generalized mean-field model

Study SIS-type contagion first:

I Recovered individuals are immediately susceptible
again:

r = ρ = 1.

I Look for steady-state behavior as a function of
exposure probability p.

I Denote fixed points by φ∗.

Homogeneous version:

I All individuals have threshold d∗

I All dose sizes are equal: d = 1
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Homogeneous, one hit models:

Fixed points for r < 1, d∗ = 1, and T = 1:

I r < 1 means recovery is probabilistic.
I T = 1 means individuals forget past interactions.
I d∗ = 1 means one positive interaction will infect an

individual.
I Evolution of infection level:

φt+1 = pφt︸︷︷︸
a

+ φt(1− pφt)︸ ︷︷ ︸
b

(1− r)︸ ︷︷ ︸
c

.

a: Fraction infected between t and t + 1, independent of
past state or recovery.

b: Probability of being infected and not being reinfected.

c: Probability of not recovering.
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Homogeneous, one hit models:

Fixed points for r < 1, d∗ = 1, and T = 1:

I Set φt = φ∗:

φ∗ = pφ∗ + (1− pφ∗)φ∗(1− r)

⇒ 1 = p + (1− pφ∗)(1− r), φ∗ 6= 0,

⇒ φ∗ =
1− r/p
1− r

and φ∗ = 0.

I Critical point at p = pc = r .
I Spreading takes off if p/r > 1
I Find continuous phase transition as for SIR model.
I Goodness: Matches Ro = β/γ > 1 condition.
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Simple homogeneous examples

Fixed points for r = 1, d∗ = 1, and T > 1

I r = 1 means recovery is immediate.
I T > 1 means individuals remember at least 2

interactions.
I d∗ = 1 means only one positive interaction in past T

interactions will infect individual.
I Effect of individual interactions is independent from

effect of others.
I Call φ∗ the steady state level of infection.
I Pr(infected) = 1 - Pr(uninfected):

φ∗ = 1− (1− pφ∗)T .
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φ∗ = 1− (1− pφ∗)T .
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Homogeneous, one hit models:
Fixed points for r = 1, d∗ = 1, and T > 1

I Closed form expression for φ∗:

φ∗ = 1− (1− pφ∗)T .

I Look for critical infection probability pc .
I As φ∗ → 0, we see

φ∗ ' pTφ∗ ⇒ pc = 1/T .

I Again find continuous phase transition...
I Note: we can solve for p but not φ∗:

p = (φ∗)−1[1− (1− φ∗)1/T ].
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Homogeneous, one hit models:
Fixed points for r ≤ 1, d∗ = 1, and T ≥ 1

I Start with r = 1, d∗ = 1, and T ≥ 1 case we have
just examined:

φ∗ = 1− (1− pφ∗)T .

I For r < 1, add to right hand side fraction who:
1. Did not receive any infections in last T time steps,
2. And did not recover from a previous infection.

I Define corresponding dose histories. Example:

H1 = {. . . , dt−T−2, dt−T−1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
T 0’s

},

I With history H1, probability of being infected (not
recovering in one time step) is 1− r .
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Homogeneous, one hit models:
Fixed points for r ≤ 1, d∗ = 1, and T ≥ 1

I In general, relevant dose histories are:

Hm+1 = {. . . , dt−T−m−1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m 0’s

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
T 0’s

}.

I Overall probabilities for dose histories occurring:

P(H1) = pφ∗(1− pφ∗)T (1− r),

P(Hm+1) = pφ∗︸︷︷︸
a

(1− pφ∗)T+m︸ ︷︷ ︸
b

(1− r)m+1︸ ︷︷ ︸
c

.

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
c: Pr(no recovery in m chances)



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 25/63

Homogeneous, one hit models:
Fixed points for r ≤ 1, d∗ = 1, and T ≥ 1

I In general, relevant dose histories are:

Hm+1 = {. . . , dt−T−m−1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m 0’s

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
T 0’s

}.

I Overall probabilities for dose histories occurring:

P(H1) = pφ∗(1− pφ∗)T (1− r),

P(Hm+1) = pφ∗︸︷︷︸
a

(1− pφ∗)T+m︸ ︷︷ ︸
b

(1− r)m+1︸ ︷︷ ︸
c

.

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
c: Pr(no recovery in m chances)



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 25/63

Homogeneous, one hit models:
Fixed points for r ≤ 1, d∗ = 1, and T ≥ 1

I In general, relevant dose histories are:

Hm+1 = {. . . , dt−T−m−1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m 0’s

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
T 0’s

}.

I Overall probabilities for dose histories occurring:

P(H1) = pφ∗(1− pφ∗)T (1− r),

P(Hm+1) = pφ∗︸︷︷︸
a

(1− pφ∗)T+m︸ ︷︷ ︸
b

(1− r)m+1︸ ︷︷ ︸
c

.

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
c: Pr(no recovery in m chances)



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 25/63

Homogeneous, one hit models:
Fixed points for r ≤ 1, d∗ = 1, and T ≥ 1

I In general, relevant dose histories are:

Hm+1 = {. . . , dt−T−m−1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m 0’s

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
T 0’s

}.

I Overall probabilities for dose histories occurring:

P(H1) = pφ∗(1− pφ∗)T (1− r),

P(Hm+1) = pφ∗︸︷︷︸
a

(1− pφ∗)T+m︸ ︷︷ ︸
b

(1− r)m+1︸ ︷︷ ︸
c

.

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
c: Pr(no recovery in m chances)



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 25/63

Homogeneous, one hit models:
Fixed points for r ≤ 1, d∗ = 1, and T ≥ 1

I In general, relevant dose histories are:

Hm+1 = {. . . , dt−T−m−1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m 0’s

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
T 0’s

}.

I Overall probabilities for dose histories occurring:

P(H1) = pφ∗(1− pφ∗)T (1− r),

P(Hm+1) = pφ∗︸︷︷︸
a

(1− pφ∗)T+m︸ ︷︷ ︸
b

(1− r)m+1︸ ︷︷ ︸
c

.

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
c: Pr(no recovery in m chances)



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 25/63

Homogeneous, one hit models:
Fixed points for r ≤ 1, d∗ = 1, and T ≥ 1

I In general, relevant dose histories are:

Hm+1 = {. . . , dt−T−m−1, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
m 0’s

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
T 0’s

}.

I Overall probabilities for dose histories occurring:

P(H1) = pφ∗(1− pφ∗)T (1− r),

P(Hm+1) = pφ∗︸︷︷︸
a

(1− pφ∗)T+m︸ ︷︷ ︸
b

(1− r)m+1︸ ︷︷ ︸
c

.

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
c: Pr(no recovery in m chances)



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 26/63

Homogeneous, one hit models:

Fixed points for r ≤ 1, d∗ = 1, and T ≥ 1

I Pr(recovery) = Pr(seeing no doses for at least T time
steps and recovering)

= r
∞∑

m=0

P(HT+m) = r
∞∑

m=0

pφ∗(1− pφ∗)T+m(1− r)m

= r
pφ∗(1− pφ∗)T

1− (1− pφ∗)(1− r)
.

I Fixed point equation:

φ∗ = 1− r(1− pφ∗)T

1− (1− pφ∗)(1− r)
.
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Homogeneous, one hit models:

Fixed points for r ≤ 1, d∗ = 1, and T ≥ 1

I Fixed point equation (again):

φ∗ = 1− r(1− pφ∗)T

1− (1− pφ∗)(1− r)
.

I Find critical exposure probability by examining above
as φ∗ → 0.

I

⇒ pc =
1

T + 1/r − 1
=

1
T + τ

.

where τ = mean recovery time for simple relaxation
process.

I Decreasing r keeps individuals infected for longer
and decreases pc .
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I Find critical exposure probability by examining above
as φ∗ → 0.

I

⇒ pc =
1

T + 1/r − 1
=

1
T + τ

.

where τ = mean recovery time for simple relaxation
process.

I Decreasing r keeps individuals infected for longer
and decreases pc .
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Epidemic threshold:

Fixed points for d∗ = 1, r ≤ 1, and T ≥ 1

I φ∗ = 1− r(1−pφ∗)T

1−(1−pφ∗)(1−r)

I φ∗ = 0
I pc = 1/(T + τ)
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I Example details: T = 2 & r = 1/2 ⇒ pc = 1/3.
I Blue = stable, red = unstable, fixed points.
I τ = 1/r − 1 = characteristic recovery time = 1.
I T + τ ' average memory in system = 3.
I Phase transition can be seen as a transcritical

bifurcation. [11]
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Homogeneous, multi-hit models:

I All right: d∗ = 1 models correspond to simple
disease spreading models.

I What if we allow d∗ ≥ 2?
I Again first consider SIS with immediate recovery

(r = 1)
I Also continue to assume unit dose sizes

(f (d) = δ(d − 1)).
I To be infected, must have at least d∗ exposures in

last T time steps.
I Fixed point equation:

φ∗ =
T∑

i=d∗

(
T
i

)
(pφ∗)i(1− pφ∗)T−i .

I As always, φ∗ = 0 works too.
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Homogeneous, multi-hit models:

Fixed points for r = 1, d∗ > 1, and T ≥ 1

I Exactly solvable for small T .
I e.g., for d∗ = 2, T = 3:

I Fixed point equation:
φ∗ =
3p2φ∗2(1−pφ∗)+ p3φ∗3

I See new structure: see
a saddle node
bifurcation [11] appear
as p increases.

I (pb, φ∗) = (8/9, 27/32).
I See behavior akin to output of Granovetter’s

threshold model.
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Homogeneous, multi-hit models:

Fixed points for r = 1, d∗ > 1, and T ≥ 1
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I e.g., for d∗ = 2, T = 3:
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I See behavior akin to output of Granovetter’s
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Homogeneous, multi-hit models:
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I e.g., for d∗ = 2, T = 3:
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Homogeneous, multi-hit models:

I Another example:

Critical Mass Models

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 p

φ*

I r = 1, d∗ = 3, T = 12 Saddle-node bifurcation.
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Fixed points for r = 1, d∗ > 1, and T ≥ 1

I T = 24, d∗ = 1, 2, . . . 23.
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1

p

φ*

I d∗ = 1 → d∗ > 1:
jump between
continuous phase
transition and
pure critical mass
model.

I Unstable curve for
d∗ = 2 does not
hit φ∗ = 0.

I See either simple phase transition or saddle-node
bifurcation, nothing in between.
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Fixed points for r = 1, d∗ > 1, and T ≥ 1

I Bifurcation points for example fixed T , varying d∗:
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 b

I T = 96 (M).
I T = 24 (.),
I T = 12 (/),
I T = 6 (�),
I T = 3 (©),
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Fun with amazon’s recommender system (�).
[amaznode.fladdict.net]

http://amaznode.fladdict.net/
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Fixed points for r < 1, d∗ > 1, and T ≥ 1
I For r < 1, need to determine probability of

recovering as a function of time since dose load last
dropped below threshold.

I Partially summed random walks:

Di(t) =
t∑

t ′=t−T+1

di(t ′)

I Example for T = 24, d∗ = 14:
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Fixed points for r < 1, d∗ > 1, and T ≥ 1
I For r < 1, need to determine probability of

recovering as a function of time since dose load last
dropped below threshold.

I Partially summed random walks:
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Fixed points for r < 1, d∗ > 1, and T ≥ 1

I Define γm as fraction of individuals for whom D(t)
last equaled, and his since been below, their
threshold m time steps ago,

I Fraction of individuals below threshold but not
recovered:

Γ(p, φ∗; r) =
∞∑

m=1

(1− r)mγm(p, φ∗).

I Fixed point equation:

φ∗ = Γ(p, φ∗; r) +
T∑

i=d∗

(
T
i

)
(pφ∗)i(1− pφ∗)T−i .



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 36/63

Fixed points for r < 1, d∗ > 1, and T ≥ 1

I Define γm as fraction of individuals for whom D(t)
last equaled, and his since been below, their
threshold m time steps ago,

I Fraction of individuals below threshold but not
recovered:

Γ(p, φ∗; r) =
∞∑

m=1

(1− r)mγm(p, φ∗).

I Fixed point equation:

φ∗ = Γ(p, φ∗; r) +
T∑

i=d∗

(
T
i

)
(pφ∗)i(1− pφ∗)T−i .



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 36/63

Fixed points for r < 1, d∗ > 1, and T ≥ 1
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Fixed points for r < 1, d∗ > 1, and T ≥ 1
Example: T = 3, d∗ = 2

I Want to examine how dose load can drop below
threshold of d∗ = 2:

Dn = 2 ⇒ Dn+1 = 1

I Two subsequences do this:
{dn−2, dn−1, dn, dn+1} = {1, 1, 0, 0}
and {dn−2, dn−1, dn, dn+1, dn+2} = {1, 0, 1, 0, 0}.

I Note: second sequence includes an extra 0 since
this is necessary to stay below d∗ = 2.

I To stay below threshold, observe acceptable
following sequences may be composed of any
combination of two subsequences:

a = {0} and b = {1, 0, 0}.
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Fixed points for r < 1, d∗ > 1, and T ≥ 1
I Determine number of sequences of length m that

keep dose load below d∗ = 2.
I Na = number of a = {0} subsequences.
I Nb = number of b = {1, 0, 0} subsequences.

m = Na · 1 + Nb · 3

Possible values for Nb:

0, 1, 2, . . . ,
⌊m

3

⌋
.

where b·c means floor.
I Corresponding possible values for Na:

m, m − 3, m − 6, . . . , m − 3
⌊m

3

⌋
.



Generalized
Contagion

Introduction

Independent
Interaction models

Interdependent
interaction models

Generalized Model
Homogeneous version

Heterogeneous version

Appendix

References

Frame 38/63

Fixed points for r < 1, d∗ > 1, and T ≥ 1
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Fixed points for r < 1, d∗ > 1, and T ≥ 1

I How many ways to arrange Na a’s and Nb b’s?
I Think of overall sequence in terms of subsequences:

{Z1, Z2, . . . , ZNa+Nb}

I Na + Nb slots for subsequences.
I Choose positions of either a’s or b’s:(

Na + Nb

Na

)
=

(
Na + Nb

Nb

)
.
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Fixed points for r < 1, d∗ > 1, and T ≥ 1

I Total number of allowable sequences of length m:

bm/3c∑
Nb=0

(
Nb + Na

Nb

)
=

bm/3c∑
k=0

(
m − 2k

k

)

where k = Nb and we have used m = Na + 3Nb.
I P(a) = (1− pφ∗) and P(b) = pφ∗(1− pφ∗)2

I Total probability of allowable sequences of length m:

χm(p, φ∗) =

bm/3c∑
k=0

(
m − 2k

k

)
(1− pφ∗)m−k (pφ∗)k .

I Notation: Write a randomly chosen sequence of a’s
and b’s of length m as Da,b

m .
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Fixed points for r < 1, d∗ > 1, and T ≥ 1

I Nearly there... must account for details of sequence
endings.

I Three endings ⇒ Six possible sequences:

D1 = {1, 1, 0, 0, Da,b
m−1}

P1 = (pφ)2(1− pφ)2χm−1(p, φ)

D2 = {1, 1, 0, 0, Da,b
m−2, 1}

P2 = (pφ)3(1− pφ)2χm−2(p, φ)

D3 = {1, 1, 0, 0, Da,b
m−3, 1, 0}

P3 = (pφ)3(1− pφ)3χm−3(p, φ)

D4 = {1, 0, 1, 0, 0, Da,b
m−2}

P4 = (pφ)2(1− pφ)3χm−2(p, φ)

D5 = {1, 0, 1, 0, 0, Da,b
m−3, 1}

P5 = (pφ)3(1− pφ)3χm−3(p, φ)

D6 = {1, 0, 1, 0, 0, Da,b
m−4, 1, 0}

P6 = (pφ)3(1− pφ)4χm−4(p, φ)
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Fixed points for r < 1, d∗ = 2, and T = 3

F.P. Eq: φ∗ = Γ(p, φ∗; r) +
T∑

i=d∗

(
T
i

)
(pφ∗)i(1− pφ∗)T−i .

where Γ(p, φ∗; r) =

(1− r)(pφ)2(1− pφ)2 +
∞∑

m=1

(1− r)m(pφ)2(1− pφ)2×

[
χm−1 + χm−2 + 2pφ(1− pφ)χm−3 + pφ(1− pφ)2χm−4

]
and

χm(p, φ∗) =

bm/3c∑
k=0

(
m − 2k

k

)
(1− pφ∗)m−k (pφ∗)k .

Note: (1− r)(pφ)2(1−pφ)2 accounts for {1, 0, 1, 0} sequence.
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Fixed points for r < 1, d∗ > 1, and T ≥ 1

T = 3, d∗ = 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

φ*

I r = 0.01, 0.05, 0.10, 0.15, 0.20, . . . , 1.00.
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Fixed points for r < 1, d∗ > 1, and T ≥ 1

T = 2, d∗ = 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

φ*

I r = 0.01, 0.05, 0.10, . . . , 0.3820± 0.0001.
I No spreading for r & 0.382.
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What we have now:

I Two kinds of contagion processes:
1. Continuous phase transition: SIR-like.
2. Saddle-node bifurcation: threshold model-like.

I d∗ = 1: spreading from small seeds possible.
I d∗ > 1: critical mass model.
I Are other behaviors possible?
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Generalized model

I Now allow for dose distributions (f ) and threshold
distributions (g) with width.

I Key quantities:

Pk =

∫ ∞

0
dd∗ g(d∗)P

 k∑
j=1

dj ≥ d∗

 where 1 ≤ k ≤ T .

I Pk = Probability that the threshold of
a randomly selected individual
will be exceeded by k doses.

I e.g.,
P1 = Probability that one dose will exceed

the threshold of a random individual
= Fraction of most vulnerable individuals.
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Generalized model—heterogeneity, r = 1
I Fixed point equation:

φ∗ =
T∑

k=1

(
T
k

)
(pφ∗)k (1− pφ∗)T−kPk

I Expand around φ∗ = 0 to find when spread from
single seed is possible:

pP1T ≥ 1 or ⇒ pc = 1/(TP1)

I Very good:
1. P1T is the expected number of vulnerables the initial

infected individual meets before recovering.
2. pP1T is ∴ the expected number of successful

infections (equivalent to R0).
I Observe: pc may exceed 1 meaning no spreading

from a small seed.
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2. pP1T is ∴ the expected number of successful

infections (equivalent to R0).
I Observe: pc may exceed 1 meaning no spreading

from a small seed.
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Heterogeneous case

I Next: Determine slope of fixed point curve at critical
point pc .

I Expand fixed point equation around (p, φ∗) = (pc , 0).
I Find slope depends on (P1 − P2/2) [5]

(see appendix).
I Behavior near fixed point depends on whether this

slope is
1. positive: P1 > P2/2 (continuous phase transition)
2. negative: P1 < P2/2 (discontinuous phase transition)

I Now find three basic universal classes of contagion
models...
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Heterogeneous case

Example configuration:

I Dose sizes are lognormally distributed with mean 1
and variance 0.433.

I Memory span: T = 10.
I Thresholds are uniformly set at

1. d∗ = 0.5
2. d∗ = 1.6
3. d∗ = 3

I Spread of dose sizes matters, details are not
important.
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Three universal classes
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I. Epidemic threshold
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p

III. Critical mass

0 0.2 0.4 0.6 0.8 1

p

II. Vanishing critical mass

I Epidemic threshold: P1 > P2/2, pc = 1/(TP1) < 1
I Vanishing critical mass: P1 < P2/2, pc = 1/(TP1) < 1
I Pure critical mass: P1 < P2/2, pc = 1/(TP1) > 1
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Heterogeneous case

Now allow r < 1:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

φ*

I II-III transition generalizes: pc = 1/[P1(T + τ)] where
τ = 1/r − 1 = expected recovery time

I I-II transition less pleasant analytically.
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More complicated models

0 0.5 10 0.5 1
p

0 0.5 1
0

0.5

1

φ
*

I Due to heterogeneity in individual thresholds.
I Three classes based on behavior for small seeds.
I Same model classification holds: I, II, and III.
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Hysteresis in vanishing critical mass models
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Discussion

I Memory is a natural ingredient.
I Three universal classes of contagion processes:

1. I. Epidemic Threshold
2. II. Vanishing Critical Mass
3. III. Critical Mass

I Dramatic changes in behavior possible.
I To change kind of model: ‘adjust’ memory, recovery,

fraction of vulnerable individuals (T , r , ρ, P1, and/or
P2).

I To change behavior given model: ‘adjust’ probability
of exposure (p) and/or initial number infected (φ0).
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Discussion

I Single seed infects others if pP1(T + τ) ≥ 1.
I Key quantity: pc = 1/[P1(T + τ)]

I If pc < 1 ⇒ contagion can spread from single seed.
I Depends only on:

1. System Memory (T + τ ).
2. Fraction of highly vulnerable individuals (P1).

I Details unimportant: Many threshold and dose
distributions give same Pk .

I Another example of a model where
vulnerable/gullible population may be more important
than a small group of super-spreaders or influentials.
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Details for Class I-II transition:

φ∗ =
T∑

k=1

(
T
k

)
Pk (pφ∗)k (1− pφ∗)T−k ,

=
T∑

k=1

(
T
k

)
Pk (pφ∗)k

T−k∑
j=0

(
T − k

j

)
(−pφ∗)j ,

=
T∑

k=1

T−k∑
j=0

(
T
k

)(
T − k

j

)
Pk (−1)j(pφ∗)k+j ,

=
T∑

m=1

m∑
k=1

(
T
k

)(
T − k
m − k

)
Pk (−1)m−k (pφ∗)m,

=
T∑

m=1

Cm(pφ∗)m
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Details for Class I-II transition:

Cm = (−1)m
(

T
m

) m∑
k=1

(−1)k
(

m
k

)
Pk ,

since(
T
k

)(
T − k
m − k

)
=

T !

k !(T − k)!

(T − k)!

(m − k)!(T −m)!

=
T !

m!(T −m)!

m!

k !(m − k)!

=

(
T
m

)(
m
k

)
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Details for Class I-II transition:

I Linearization gives

φ∗ ' C1pφ∗ + C2p2
cφ∗2.

where C1 = TP1(= 1/pc) and C2 =
(T

2

)
(−2P1 + P2).

I Using pc = 1/(TP1):

φ∗ ' C1

C2p2
c
(p − pc) =

T 2P3
1

(T − 1)(P1 − P2/2)
(p − pc).

I Sign of derivative governed by P1 − P2/2.
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