

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Generalized contagion model

Basic questions about contagion

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?
- Focus: mean field models.

Outline

Generalized

Contagion

ntroduction

ndependent

nteraction models

nteraction models

Generalized Mode

Frame 1/63

B 990

Generalized

Contagion

Introduction

ndependent

nteraction models

nteraction models

Generalized Mode

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Heterogeneous version

Appendix

References

Mathematical Epidemiology (recap)

The standard SIR model [10]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- ► S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction Independent Interaction models

Interdependent interaction models

Generalized Mode Homogeneous version

Appendix References

> Generalized Contagion

ntroduction

Independent Interaction models

Interdependent interaction model

Generalized Mode

nnendix

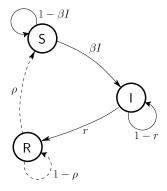
References

Frame <u>3/63</u>

B 990

Independent Interaction Models

Discrete time automata example:



Transition Probabilities:

 β for being infected given contact with infected *r* for recovery ρ for loss of immunity

Independent Interaction models

Differential equations for continuous model

$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta IS + \rho R$$
$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta IS - rI$$
$$\frac{\mathrm{d}}{\mathrm{d}t}R = rI - \rho R$$

 β , *r*, and ρ are now rates.

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective
- Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

Generalized Contagion Introduction Independent Interaction models Interdependent interaction models Generalized Model Homogeneous version Heterogeneous version Appendix References

Frame 5/63

Generalized

Contagion

ntroduction

Independent

Interaction models

nteraction model

Generalized Mode

Frame 7/63

B 990

nterdependent

Independent Interaction Models

Original models attributed to

- ▶ 1920's: Reed and Frost
- 1920's/1930's: Kermack and McKendrick^[7, 9, 8]
- Coupled differential equations with a mass-action principle

Reproduction Number R₀

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective random bumps into a Susceptible
- Probability of transmission = β
- ► At time t = 1, single Infective remains infected with probability 1 - r
- At time t = k, single Infective remains infected with probability $(1 r)^k$

Generalized Contagion

Frame 6/63

日 りへで

Generalized

Contagion

ntroduction

Independent

Interaction model

nteraction mode

Generalized Mod

Introduction Independent Interaction model

Interdependent interaction models

Generalized Mode

Appendix

References

日 りへで

Reproduction Number R₀

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1 - r)\beta + (1 - r)^2\beta + (1 - r)^3\beta + \dots$$
$$= \beta \left(1 + (1 - r) + (1 - r)^2 + (1 - r)^3 + \dots \right)$$
$$= \beta \frac{1}{1 - (1 - r)} = \frac{\beta}{r}$$

Similar story for continuous model.

Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[6]
- ▶ Spread of rumors (Daley & Kendall, 1964, 1965)^[2, 3]
- Diffusion of innovations (Bass, 1969)^[1]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

Generalized

Contagion

ntroduction

Independent

Frame 11/63

 \mathcal{O}

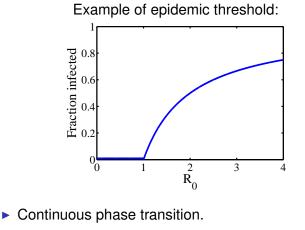
Interaction models

nterdependent

nteraction model

Generalized Mode

Independent Interaction models



► Fine idea from a simple model.

Generalized

Contagion

ntroduction

Independent

Interaction model

nterdependent

nteraction mode

Generalized Mod

Action based on perceived behavior of others.

в Α С 0.8 0.8 $\Pr(a_{i,t+l}=1) = 0.0$ $F(\phi_{t})$ (1.5 *⊕) _ 1 0.6 П ð 0.2 0.5 $\phi_i^* \phi_{i,t}$ 0.5 0.5 1 φ, φ*

- Two states: S and I.
- Recovery now possible (SIS).
- Discrete time, synchronous update.
- This is a Critical mass model.
- Interdependent interaction model.

Generalized Contagion

Introduction

Independent Interaction models

interaction models Generalized Model

Homogeneous version

Appendix

References

ন ৩৫৫

Some (of many) issues

- Disease models assume independence of infectious events.
- Threshold models only involve proportions: $3/10 \equiv 30/100.$
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

Generalized model—ingredients

$S \Rightarrow I$

Individuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^t d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i^{s}$$

• Threshold d_i^* drawn from arbitrary distribution g at t = 0.

Contagion ntroduction ndependent nteraction models Interdependent interaction models Generalized Mode

Generalized

opendix

Frame 13/63

B 990

Generalized

Contagion

ntroduction

ndependent

nteraction models

nteraction models

Generalized Model

Frame 15/63

P

nterdependent

Generalized model

Basic ingredients:

- Incorporate memory of a contagious element^[4, 5]
- Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time t = probability of contact with infected individual
- With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

Frame 14/63 **日** りへで

Generalized

Contagion

ntroduction

ndependent nteraction model

iteraction mode

Generalized Mode

References

Generalized model-ingredients

$I \Rightarrow R$

When $D_{t,i} < d_i^*$, individual *i* recovers to state R with probability *r*.

$R \Rightarrow S$

Once in state R, individuals become susceptible again with probability ρ .

Generalized Contagion

ntroduction ndependent

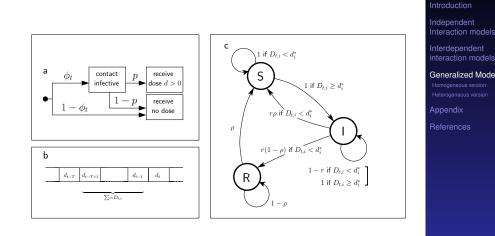
nteraction model

nterdependent teraction mode

Generalized Mode

Frame 16/63

A visual explanation



Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.</p>
- \blacktriangleright T = 1 means individuals forget past interactions.
- $d^* = 1$ means one positive interaction will infect an individual.
- Evolution of infection level:

 $\phi_{t+1} = \underbrace{p\phi_t}_{\mathbf{a}} + \underbrace{\phi_t(1-p\phi_t)}_{\mathbf{b}} \underbrace{(1-r)}_{\mathbf{c}}.$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Generalized mean-field model

Study SIS-type contagion first:

 Recovered individuals are immediately susceptible again:

 $r = \rho = 1.$

- Look for steady-state behavior as a function of exposure probability p.
- Denote fixed points by ϕ^* .

Homogeneous version:

- All individuals have threshold d*
- ► All dose sizes are equal: d = 1

Frame 18/63 **日** りへで

Generalized

Contagion

ntroduction

ndependent nteraction models

nteraction model

Generalized Mode

Homogeneous, one hit models:
Fixed points for $r < 1$, $d^* = 1$, and $T = 1$:
• Set $\phi_t = \phi^*$:
$\phi^* = \boldsymbol{p}\phi^* + (1-\boldsymbol{p}\phi^*)\phi^*(1-r)$

$$\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$$

 $\Rightarrow \phi^* = \frac{1 - r/p}{1 - r}$ and $\phi^* = 0$.

- Critical point at $p = p_c = r$.
- Spreading takes off if p/r > 1
- Find continuous phase transition as for SIR model.
- Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Contagion ntroduction

Generalized

ndependent nteraction model

nterdependent teraction mode

Generalized Mod

Frame 21/63

ntroduction ndependent nteraction models nterdependent nteraction models Generalized Mode

Frame 20/63

P

Frame 17/63

B 990

Generalized

Contagion

ł

Generalized

Contagion

Simple homogeneous examples

Fixed points for r = 1, $d^* = 1$, and T > 1

- > r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- d* = 1 means only one positive interaction in past T interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T$$

Homogeneous, one hit models:

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, d[∗] = 1, and T ≥ 1 case we have just examined:

$$\phi^* = \mathbf{1} - (\mathbf{1} - \boldsymbol{p}\phi^*)^T.$$

- ► For *r* < 1, add to right hand side fraction who:
 - Did not receive any infections in last T time steps,
 And did not recover from a previous infection.
- Define corresponding dose histories. Example:

$$H_{1} = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\},\$$

► With history *H*₁, probability of being infected (not recovering in one time step) is 1 − *r*.

Homogeneous, one hit models: Fixed points for r = 1, $d^* = 1$, and T > 1

• Closed form expression for ϕ^* :

$$\phi^* = \mathbf{1} - (\mathbf{1} - \mathbf{p}\phi^*)^T.$$

Look for critical infection probability p_c.
As φ^{*} → 0, we see

 $\phi^* \simeq \rho T \phi^* \Rightarrow \rho_c = 1/T.$

- Again find continuous phase transition...
- Note: we can solve for p but not ϕ^* :

$$p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

Generalized

Contagion

ntroduction

ndependent Interaction models

nteraction mode

Generalized Mod

Homogeneous, one hit models: Fixed points for r < 1, $d^* = 1$, and T > 1

► In general, relevant dose histories are:

$$H_{m+1} = \{\ldots, d_{t-T-m-1}, 1, \underbrace{0, 0, \ldots, 0, 0}_{m \ 0's}, \underbrace{0, 0, \ldots, 0, 0}_{T \ 0's}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1 - p\phi^*)^T(1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1-p\phi^*)^{T+m}}_{b} \underbrace{(1-r)^{m+1}}_{c}.$$

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
c: Pr(no recovery in m chances)

Contagion

Generalized

Independent Interaction model

nteraction models Generalized Mode Homogeneous version Heterogeneous version

Appendix

Introduction Independent Interaction models Interdependent interaction models Generalized Model Homogeneous version Appendix References

Homogeneous version Heterogeneous version Appendix References

Generalized

Contagion

ntroduction

ndependent

nteraction models

nteraction model

Generalized Mode

Generalized

Contagion

Homogeneous, one hit models:

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m}) = r \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$
$$= r \frac{p \phi^* (1 - p \phi^*)^T}{1 - (1 - p \phi^*)(1 - r)}.$$

Fixed point equation:

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}$$

Fixed points for
$$d^* = 1, r \le 1$$
, and $T \ge 1$
• $\phi^* = 1 - \frac{r(1-p\phi^*)^T}{1-(1-p\phi^*)(1-r)}$
• $\phi^* = 0$
• $p_c = 1/(T + \tau)$
• $\phi^* = 0/2$
• $p_c = 1/(T + \tau)$

- Example details: $T = 2 \& r = 1/2 \Rightarrow p_c = 1/3$.
- Blue = stable, red = unstable, fixed points.
- $\tau = 1/r 1$ = characteristic recovery time = 1.
- $T + \tau \simeq$ average memory in system = 3.
- Phase transition can be seen as a transcritical bifurcation.^[11]

Frame 28/63

Generalized

Contagion

ntroduction

ndependent

Interaction model

nteraction mode

Generalized Mod

opendix

Frame 26/63

B 990

Homogeneous, one hit models:

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

 Find critical exposure probability by examining above as *φ*^{*} → 0.

$$\Rightarrow \quad p_c = \frac{1}{T+1/r-1} = \frac{1}{T+\tau}.$$

where τ = mean recovery time for simple relaxation process.

 Decreasing r keeps individuals infected for longer and decreases p_c.

Generalized

Contagion

ntroduction

ndependent

nteraction model

teraction mod

Generalized Mod

Homogeneous, multi-hit models:

- All right: d* = 1 models correspond to simple disease spreading models.
- What if we allow $d^* \ge 2$?
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d* exposures in last T time steps.
- Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

• As always, $\phi^* = 0$ works too.

Generalized Contagion

Introduction Independent

Interaction models

Interdependent interaction model Generalized Mod

Heterogeneous v

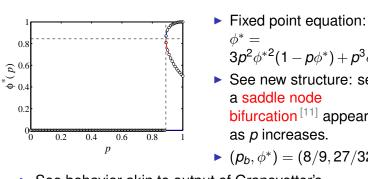
_ .

Frame 29/63

Homogeneous, multi-hit models:

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

- Exactly solvable for small *T*.
- ▶ e.g., for *d** = 2, *T* = 3:



 See behavior akin to output of Granovetter's threshold model.

$$P^{(4)} + p^{3} \phi^{*3}$$

Here: see
Appear
 $p_{1}, 27/32).$

Generalized

Contagion

Generalized

Contagion

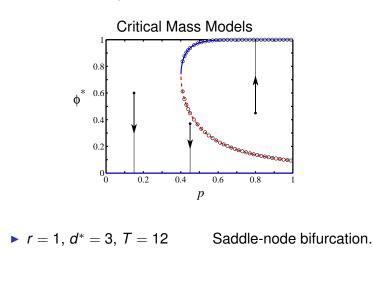
ntroduction

ndependent nteraction models

teraction mode

Homogeneous, multi-hit models:

Another example:

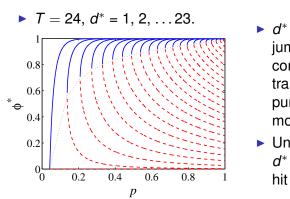


Introduction Independent Interaction models Interdependent interaction models Generalized Model Homogeneous version Heterogeneous version Appendix References

Generalized

Contagion

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$



- $d^* = 1 \rightarrow d^* > 1$: jump between continuous phase transition and pure critical mass model.
- ► Unstable curve for d* = 2 does not hit φ* = 0.
- See either simple phase transition or saddle-node bifurcation, nothing in between.

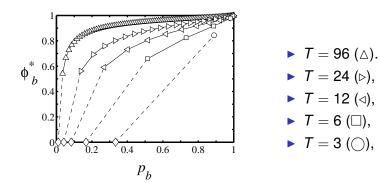
Introduction Independent Interaction models Interdependent interaction models Generalized Model Homogeneous version Heterogeneous version Appendix References

Frame 32/63

日 うくで

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

▶ Bifurcation points for example fixed *T*, varying *d**:



Independent Interaction models

ntroduction

interaction models Generalized Model

opendix

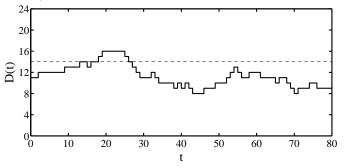
eferences

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.
- Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^t d_i(t')$$

• Example for T = 24, $d^* = 14$:



Fixed points for r < 1, $d^* > 1$, and $T \ge 1$ Example: T = 3, $d^* = 2$

Want to examine how dose load can drop below threshold of d* = 2:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

• Two subsequences do this: $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$

and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, 0, 0\}.$

- Note: second sequence includes an extra 0 since this is necessary to stay below d* = 2.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

 $a = \{0\}$ and $b = \{1, 0, 0\}.$

Frame 37/63

Generalized

Contagion

ntroduction

ndependent

nteraction models

teraction mode

Generalized Mod

opendix

Frame 35/63

D 200

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- Define γ_m as fraction of individuals for whom D(t) last equaled, and his since been below, their threshold m time steps ago,
- Fraction of individuals below threshold but not recovered:

$$\Gamma(\boldsymbol{p},\phi^*;\boldsymbol{r})=\sum_{m=1}^{\infty}(1-\boldsymbol{r})^m\gamma_m(\boldsymbol{p},\phi^*).$$

Fixed point equation:

$$\phi^* = \Gamma(\boldsymbol{\rho}, \phi^*; r) + \sum_{i=d^*}^T \binom{T}{i} (\boldsymbol{\rho}\phi^*)^i (1 - \boldsymbol{\rho}\phi^*)^{T-i}.$$

Frame 36/63 日 のへへ

Generalized

Contagion

ntroduction

ndependent nteraction model

nterdependent

teraction mod

eneralized Mod

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- Determine number of sequences of length *m* that keep dose load below d* = 2.
- N_a = number of $a = \{0\}$ subsequences.
- N_b = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0, 1, 2, \ldots, \left\lfloor \frac{m}{3} \right\rfloor$$

where $\lfloor \cdot \rfloor$ means floor.

Corresponding possible values for N_a:

$$m, m-3, m-6, \ldots, m-3\left\lfloor \frac{m}{3} \right\rfloor.$$

Contagion

Generalized

ntroduction

ndependent

nteraction model

nteraction mod

eneralized Mo

opendix

Frame 38/63

ମ୍ବ ୬୯୯

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- How many ways to arrange N_a a's and N_b b's?
- Think of overall sequence in terms of subsequences:

Generalized

Contagion

ntroduction

ndependen

nteraction model

nteraction mod

Generalized Mo

Frame 39/63 日 のへへ

Generalized

Contagion

ntroduction

ndependent

nteraction model

nterdependent

alized Mod

41/63

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

 $\{Z_1, Z_2, \ldots, Z_{N_a+N_b}\}$

- $N_a + N_b$ slots for subsequences.
- Choose positions of either *a*'s or *b*'s:

$$\binom{N_a+N_b}{N_a} = \binom{N_a+N_b}{N_b}$$

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- Nearly there... must account for details of sequence endings.
- Three endings \Rightarrow Six possible sequences:

$$\begin{array}{ll} D_{1} = \{1,1,0,0,D_{m-1}^{a,b}\} \\ D_{2} = \{1,1,0,0,D_{m-2}^{a,b},1\} \\ D_{3} = \{1,1,0,0,D_{m-3}^{a,b},1,0\} \\ D_{4} = \{1,0,1,0,0,D_{m-2}^{a,b}\} \\ D_{5} = \{1,0,1,0,0,D_{m-3}^{a,b},1\} \\ D_{6} = \{1,0,1,0,0,D_{m-4}^{a,b},1,0\} \end{array} \begin{array}{ll} P_{1} = (p\phi)^{2}(1-p\phi)^{2}\chi_{m-1}(p,\phi) \\ P_{2} = (p\phi)^{3}(1-p\phi)^{2}\chi_{m-2}(p,\phi) \\ P_{3} = (p\phi)^{3}(1-p\phi)^{3}\chi_{m-3}(p,\phi) \\ P_{4} = (p\phi)^{2}(1-p\phi)^{3}\chi_{m-2}(p,\phi) \\ P_{5} = (p\phi)^{3}(1-p\phi)^{3}\chi_{m-3}(p,\phi) \\ P_{6} = (p\phi)^{3}(1-p\phi)^{4}\chi_{m-4}(p,\phi) \end{array} \begin{array}{l} \text{Fram} \\ \mathbb{P}_{1} = (p\phi)^{2}(1-p\phi)^{2}\chi_{m-1}(p,\phi) \\ \mathbb{P}_{2} = (p\phi)^{3}(1-p\phi)^{3}\chi_{m-2}(p,\phi) \\ \mathbb{P}_{3} = (p\phi)^{3}(1-p\phi)^{4}\chi_{m-4}(p,\phi) \end{array} \right]$$

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

► Total number of allowable sequences of length *m*:

$$\sum_{N_b=0}^{\lfloor m/3 \rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$.

- $P(a) = (1 p\phi^*)$ and $P(b) = p\phi^*(1 p\phi^*)^2$
- ► Total probability of allowable sequences of length *m*:

$$\chi_m(\boldsymbol{p},\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-\boldsymbol{p}\phi^*)^{m-k} (\boldsymbol{p}\phi^*)^k.$$

Notation: Write a randomly chosen sequence of a's and b's of length m as D^{a,b}_m.

Fixed points for
$$r < 1$$
, $d^* = 2$, and $T = 3$

F.P. Eq:
$$\phi^* = \Gamma(\rho, \phi^*; r) + \sum_{i=d^*}^T {T \choose i} (\rho \phi^*)^i (1 - \rho \phi^*)^{T-i}$$
.

where $\Gamma(p, \phi^*; r) =$

$$(1-r)(p\phi)^2(1-p\phi)^2 + \sum_{m=1}^{\infty}(1-r)^m(p\phi)^2(1-p\phi)^2 \times$$

$$\left[\chi_{m-1} + \chi_{m-2} + 2p\phi(1-p\phi)\chi_{m-3} + p\phi(1-p\phi)^2\chi_{m-4}\right]$$

and

$$\chi_m(\boldsymbol{p},\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-\boldsymbol{p}\phi^*)^{m-k} (\boldsymbol{p}\phi^*)^k.$$

Note: $(1 - r)(p\phi)^2(1 - p\phi)^2$ accounts for $\{1, 0, 1, 0\}$ sequence.

Fram<u>e 42/63</u>

ଟ୍ କୁ ରଟ୍ତ

Generalized Contagion

ntroduction

ndependen

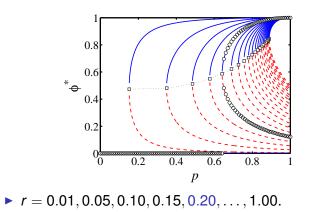
nteraction mode

nterdependent

opendix

Fixed points for
$$r < 1$$
, $d^* > 1$, and $T \ge 1$

 $T = 3, d^* = 2$



What we have now:

- Two kinds of contagion processes:
 - 1. Continuous phase transition: SIR-like.
 - 2. Saddle-node bifurcation: threshold model-like.
- $d^* = 1$: spreading from small seeds possible.
- \blacktriangleright $d^* > 1$: critical mass model.
- ► Are other behaviors possible?

Generalized Contagion
Introduction
Independent Interaction models
Interdependent interaction models
Generalized Model Homogeneous version Heterogeneous version
Appendix
References
_
Frame 43/63
ା ଆ ଏ ଏ ୯

Generalized

Contagion

ntroduction

ndependent

nteraction model

teraction mode

Generalized Mode

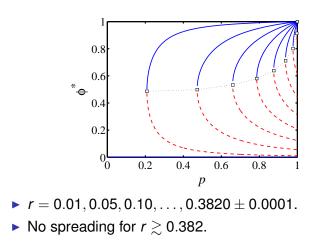
Frame 45/63

B 990

nterdependent

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

$$T = 2, d^* = 2$$



Frame 44/63

Generalized model

- Now allow for dose distributions (f) and threshold distributions (g) with width.
- Key quantities:

$$m{P}_k = \int_0^\infty \mathrm{d} d^* \, g(d^*) m{P}\left(\sum_{j=1}^k d_j \geq d^*
ight) \, ext{where 1} \leq k \leq T$$

- P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.
- ▶ e.g.,
 - P_1 = Probability that <u>one dose</u> will exceed the threshold of a random individual = Fraction of most vulnerable individuals.

ntroduction

nteraction model

Generalized Contagion

teraction mode

References

日 りへで

Generalized Contagion

ntroduction ndependent

. nteraction model

nterdependent teraction mode

Generalized Mod

Heterogeneous versio

Generalized model—heterogeneity, r = 1Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (\boldsymbol{p}\phi^*)^k (1 - \boldsymbol{p}\phi^*)^{T-k} \underline{\boldsymbol{P}_k}$$

• Expand around $\phi^* = 0$ to find when spread from single seed is possible:

> $\Rightarrow p_c = 1/(TP_1)$ $pP_1T \geq 1$ or

- Very good:
 - 1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.
 - 2. pP_1T is \therefore the expected number of successful infections (equivalent to R_0).
- Observe: p_c may exceed 1 meaning no spreading from a small seed.

Heterogeneous case

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- Memory span: T = 10.
- Thresholds are uniformly set at
 - 1. $d_* = 0.5$
 - 2. $d_* = 1.6$
 - 3. $d_* = 3$
- Spread of dose sizes matters, details are not important.

Frame 48/63

B 990

Generalized

Contagion

ntroduction

ndependent

nteraction models

nteraction models

Generalized Mode

Heterogeneous version

Frame 50/63

B 990

nterdependent

Heterogeneous case

- Next: Determine slope of fixed point curve at critical point p_c .
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- Find slope depends on $(P_1 P_2/2)^{[5]}$ (see appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find three basic universal classes of contagion models...

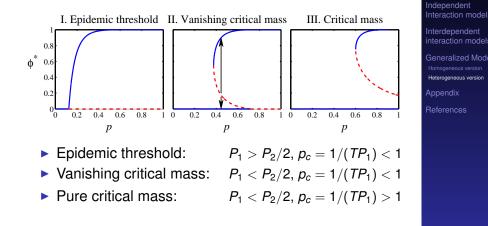
Frame 49/63 **日** りへで

Generalized

Contagion

ntroduction

Three universal classes



ntroduction

ndependent nteraction model

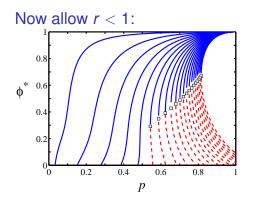
nteraction mode

Generalized Mod

Heterogeneous version

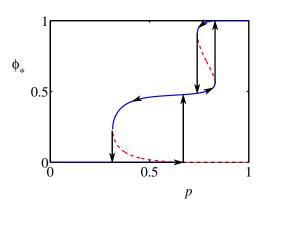
Frame 51/63

Heterogeneous case



- II-III transition generalizes: $p_c = 1/[P_1(T + \tau)]$ where $\tau = 1/r$ = expected recovery time
- I-II transition less pleasant analytically.

Hysteresis in vanishing critical mass models



Generalized

Contagion

Interaction models

nteraction model

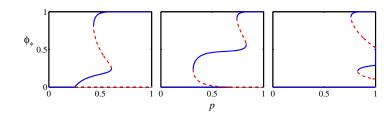
Generalized Mode

Heterogeneous version

Frame 52/63

ntroduction

More complicated models



- Due to heterogeneity in individual thresholds.
- Three classes based on behavior for small seeds.
- Same model classification holds: I, II, and III.

Introduction Independent Interaction models

interaction models Generalized Mode Homogeneous version Heterogeneous version Appendix

Frame 53/63 日 つくへ

> Generalized Contagion

ntroduction

Independent Interaction models

Interdependent interaction mode

Generalized Mode

Heterogeneous version

References

Discussion

- Memory is a natural ingredient.
- Three universal classes of contagion processes:
 - 1. I. Epidemic Threshold
 - 2. II. Vanishing Critical Mass
 - 3. III. Critical Mass
- Dramatic changes in behavior possible.
- To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (*T*, *r*, *ρ*, *P*₁, and/or *P*₂).
- To change behavior given model: 'adjust' probability of exposure (p) and/or initial number infected (\u03c6₀).

Frame 55/63

Discussion

- Single seed infects others if $pP_1(T + \tau) \ge 1$.
- Key quantity: $p_c = 1/[P_1(T + \tau)]$
- If $p_c < 1 \Rightarrow$ contagion can spread from single seed.
- Depends only on:
 - 1. 1. System Memory $(T + \tau)$.
 - 2. 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant: Many threshold and dose distributions give same P_k.
- Most vulnerable/gullible population may be more important than small group of super-spreaders or influentials.

Details for Class I-II transition:

$$C_m = (-1)^m \binom{T}{m} \sum_{k=1}^m (-1)^k \binom{m}{k} P_k,$$

since

$$\binom{T}{k} \binom{T-k}{m-k} = \frac{T!}{k!(T-k)!} \frac{(T-k)!}{(m-k)!(T-l)!}$$

$$= \frac{T!}{m!(T-m)!} \frac{m!}{k!(l-k)!}$$

$$= \binom{T}{m} \binom{m}{k}.$$

Generalized Contagion
Introduction
Independent Interaction models
Interdependent interaction models
Generalized Model Homogeneous version Heterogeneous version
Appendix
References
Frame 56/63
- 🗗 - ৩২.৫

Generalized

Contagion

ntroduction

ndependent

Interaction models

nteraction model

Generalized Mode

Appendix

Frame 58/63

日 りへで

Details for Class I-II transition:

$$\begin{split} \phi^* &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k (1 - p\phi^*)^{T-k}, \\ &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k \sum_{j=0}^{T-k} \binom{T-k}{j} (-p\phi^*)^j, \\ &= \sum_{k=1}^T \sum_{j=0}^{T-k} \binom{T}{k} \binom{T-k}{j} P_k (-1)^j (p\phi^*)^{k+j}, \\ &= \sum_{l=1}^T \sum_{k=1}^m \binom{T}{k} \binom{T-k}{m-k} P_k (-1)^{m-k} (p\phi^*)^m, \\ &= \sum_{m=1}^T C_m (p\phi^*)^m \end{split}$$

Details for Class I-II transition:

Linearization gives

 $\phi^* \simeq C_1 \rho \phi^* + C_2 \rho_c^2 \phi^{*2}.$

where $C_1 = TP_1(=1/p_c)$ and $C_2 = {T \choose 2}(-2P_1 + P_2)$. • Using $p_c = 1/(TP_1)$:

$$\phi^* \simeq rac{C_1}{C_2 \rho_c^2} (\rho - \rho_c) = rac{T^2 P_1^3}{(T-1)(P_1 - P_2/2)} (\rho - \rho_c).$$

Sign of derivative governed by $P_1 - P_2/2$.

Generalized Contagion

Independent Interaction models

ntroduction

Interdependent interaction models Generalized Mode

Appendix References

> Generalized Contagion

ntroduction ndependent

Interaction models

nteraction models Generalized Model

Appendix

Frame 59/63

References I

F. Bass. A new product growth model for consumer durables. Manage. Sci., 15:215–227, 1969. pdf (⊞)

- D. J. Daley and D. G. Kendall. Epidemics and rumours. *Nature*, 204:1118, 1964.
- D. J. Daley and D. G. Kendall.
 Stochastic rumours.
 J. Inst. Math. Appl., 1:42–55, 1965.
- P. S. Dodds and D. J. Watts. Universal behavior in a generalized model of contagion.

Phys. Rev. Lett., 92:218701, 2004. pdf (⊞)

References III

W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity. *Proc. R. Soc. Lond. A*, 141(843):94–122, 1927.

pdf (⊞)

W. O. Kermack and A. G. McKendrick.
 Contributions to the mathematical theory of epidemics. II. The problem of endemicity.
 Proc. R. Soc. Lond. A, 138(834):55–83, 1927. pdf (III)

J. D. Murray.

Mathematical Biology. Springer, New York, Third edition, 2002. Contagion Introduction Independent Interaction models Interdependent interaction models Generalized Model Homogeneous version Heterogeneous version References

Frame 60/63

B 990

Generalized

Contagion

ntroduction

ndependent

nteraction models

nteraction models

Generalized Mode

References

Frame 62/63

P

nterdependent

Generalized

References II

P. S. Dodds and D. J. Watts.

A generalized model of social and biological contagion. *J. Theor. Biol.*, 232:587–604, 2005. pdf (⊞)

W. Goffman and V. A. Newill. Generalization of epidemic theory: An application to the transmission of ideas. *Nature*, 204:225–228, 1964.

W. O. Kermack and A. G. McKendrick.
 A contribution to the mathematical theory of epidemics.
 Proc. R. Soc. Lond. A, 115:700–721, 1927. pdf (田)

Frame 61/63

Generalized

Contagion

ntroduction

ndependent

nteraction models

nteraction mode

Generalized Mod

References

References IV

S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, Reading, Massachusetts, 1994. Generalized Contagion

ntroduction

Interaction models

Interdependent interaction models

Generalized Mode Homogeneous version

ppendix

References

Frame 63/63