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Random walks on networks—basics:

I Imagine a single random walker moving around on a
network.

I At t = 0, start walker at node j and take time to be
discrete.

I Q: What’s the long term probability distribution for
where the walker will be?

I Define pi(t) as the probability that at time step t , our
walker is at node i .

I We want to characterize the evolution of ~p(t).
I First task: connect ~p(t + 1) to ~p(t).
I Let’s call our walker Barry.
I Unfortunately for Barry, he lives on a high

dimensional graph and is far from home.
I Worse still: Barry is hopelessly drunk.
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Where is Barry?
I Consider simple undirected networks with an edges

either present of absent.
I Represent network by a symmetric adjacency matrix

A where

aij = 1 if i and j are connected,
aij = 0 otherwise.

I Barry is at node i at time t with probability pi(t).
I In the next time step he randomly lurches toward one

of i ’s neighbors.
I Equation-wise:

pj(t + 1) =
n∑

i=1

1
ki

ajipi(t).

where ki is i ’s degree. Note: ki =
∑n

j=1 aij .
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Where is Barry?

I Linear algebra-based excitement:
pj(t + 1) =

∑n
i=1

1
ki

ajipi(t) is more usefully viewed as

~p(t + 1) = AK−1~p(t)

where [Kij ] = [δijki ] has node degrees on the main
diagonal and zeros everywhere else.

I So... we need to find the dominant eigenvalue of
AK−1.

I Expect this eigenvalue will be 1 (doesn’t make sense
for total probability to change).

I The corresponding eigenvector will be the limiting
probability distribution (or invariant measure).

I Extra concerns: multiplicity of eigenvalue = 1, and
network connectedness.
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Where is Barry?

I By inspection, we see that

~p(∞) =
1∑n

i=1 ki

~k

satisfies ~p(∞) = AK−1~p(∞) with eigenvalue 1.
I We will find Barry at node i with probability

proportional to its degree ki .
I Nice implication: probability of finding Barry travelling

along any edge is uniform.
I Diffusion in real space smooths things out.
I On networks, uniformity occurs on edges.
I So in fact, diffusion in real space is about the edges

too but we just don’t see that.
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Other pieces:

I Good news: AK−1 is similar to a real symmetric
matrix.

I Consider the transformation M = K−1/2:

K−1/2AK−1K 1/2 = K−1/2AK−1/2.

I Since AT = A, we have

(K−1/2AK−1/2)T = K−1/2AK−1/2.

I Upshot: AK−1 has real eigenvalues and a complete
set of orthogonal eigenvectors.

I Can also show that maximum eigenvalue magnitude
is indeed 1.

I Other goodies: next time round.
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