

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Contagion models

Some large questions concerning network contagion:

- 1. For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
- Next up: We'll look at some fundamental kinds of spreading on generalized random networks.

Contagion

Basic Contagion Models Social Contagion Models Network version Al-to-all networks Theory References

Frame 3/58

ð

Outline

Basic Contagion Models

Social Contagion Models

Network version All-to-all networks Theory

References

Spreading mechanisms

- General spreading mechanism:
 State of node *i* depends on history of *i* and *i*'s neighbors' states.
- Doses of entity may be stochastic and history-dependent.
- May have multiple, interacting entities spreading at once.

Basic Contagior

Contagion

Social Contagion Models Network version All-to-all networks

References

Vodels

Contagion

Basic Contagion Models

Social Contagion Models Network version All-to-all networks Theory

Spreading on Random Networks

- > For random networks, we know local structure is pure branching.
- Successful spreading is ... contingent on single edges infecting nodes.

Success

Failure:

Focus on binary case with edges and nodes either infected or not.

Contagion condition

Our contagion condition is then:

$$r = \sum_{k=0}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} \beta_k > 1.$$

Case 1: If $\beta_k = 1$ then

$$r = \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1.$$

Good: This is just our giant component condition again.

Contagion **Basic Contagion** Models Social Contagion Models References

Frame 7/58

B 990

Frame 5/58

B 990

Contagion

Basic Contagion

Models

Models

Contagion condition

We need to find:

r = the average # of infected edges that one random infected edge brings about.

- Define β_k as the probability that a node of degree k is infected by a single infected edge.
 - $r = \sum_{k=0}^{\infty}$ Prob. of # outgoing prob. of infection infected connecting to edges a degree \bar{k} node 0 # outgoing infected no infection edges
- Frame 6/58

Contagion condition

▶ Case 2: If $\beta_k = \beta < 1$ then

$$r = \beta \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1.$$

- A fraction $(1-\beta)$ of edges do not transmit infection.
- Analogous phase transition to giant component case but critical value of $\langle k \rangle$ is increased.
- Aka bond percolation.
- Resulting degree distribution P'_{k} :

$$P'_k = \beta^k \sum_{i=k}^{\infty} {i \choose k} (1-\beta)^{i-k} P_i.$$

• We can show
$$F_{P'}(x) = F_P(\beta x + 1 - \beta)$$
.

Models Models

日 りへで

Contagion

Basic Contagion Models

Social Contagion **Nodels**

References

Frame 8/58

Basic Contagion

Contagion condition

- Cases 3, 4, 5, ...: Now allow β_k to depend on k
- Asymmetry: Transmission along an edge depends on node's degree at other end.
- Possibility: β_k increases with k... unlikely.
- Possibility: β_k is not monotonic in *k*... unlikely.
- Possibility: β_k decreases with k... hmmm.
- β_k \sqrssim is a plausible representation of a simple kind of social contagion.
- ► The story:

More well connected people are harder to influence.

Contagion condition

- Example: $\beta_k = H(\frac{1}{k} \phi)$ where $0 < \phi \le 1$ is a threshold and *H* is the Heaviside function.
- Infection only occurs for nodes with low degree.
- Call these nodes vulnerables: they flip when only one of their friends flips.

r

$$=\sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} \beta_k = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} H(\frac{1}{k} - \phi)$$
$$=\sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} \frac{(k-1)kP_k}{\langle k \rangle} \quad \text{where } \lfloor \cdot \rfloor \text{ means floor.}$$

Contagion condition

Contagion

Basic Contagion

Social Contagion

Models

Models

References

Frame 9/58

B 990

Contagion

Basic Contagion

Social Contagion

Models

Models

References

Frame 11/58

B 990

• Example: $\beta_k = 1/k$.

$$r = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} \beta_k = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle k}$$
$$= \sum_{k=1}^{\infty} \frac{(k-1)P_k}{\langle k \rangle} = \frac{\langle k \rangle - 1}{\langle k \rangle} = 1 - \frac{1}{\langle k \rangle}$$

- Since r is always less than 1, no spreading can occur for this mechanism.
- Decay of β_k is too fast.
- Result is independent of degree distribution.

Frame 10/58 日 のへへ

Contagion

Basic Contagior

Social Contagion

Models

Models

References

Contagion condition

► The contagion condition:

$$r = \sum_{k=1}^{\lfloor rac{1}{\phi}
floor} rac{(k-1)kP_k}{\langle k
angle} > 1.$$

- As $\phi \rightarrow 1$, all nodes become resilient and $r \rightarrow 0$.
- As φ → 0, all nodes become vulnerable and the contagion condition matches up with the giant component condition.
- Key: If we fix φ and then vary (k), we may see two phase transitions.
- Added to our standard giant component transition, we will see a cut off in spreading as nodes become more connected.

Models Social Contagion Models Network version All-to-all networks

All-to-all networks Theory References

Contagion

Basic Contagio

Social Contagion

Some important models (recap from CSYS 300)

- ► Tipping models—Schelling (1971)^[8, 9, 10]
 - Simulation on checker boards.
 - Idea of thresholds.
- ► Threshold models—Granovetter (1978)^[7]
- ▶ Herding models—Bikhchandani et al. (1992)^[1, 2]
 - Social learning theory, Informational cascades,...

Threshold model on a network

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has k_i contacts
- Influence on each link is reciprocal and of unit weight
- Each individual *i* has a fixed threshold ϕ_i
- Individuals repeatedly poll contacts on network
- Synchronous, discrete time updating
- Individual *i* becomes active when fraction of active contacts a_i ≥ φ_ik_i
- Activation is permanent (SI)

Contagion Basic Contagion Models Social Contagion Models Network version All to all networks Theory References

Frame 16/58

Frame 14/58

B 990

Contagion

Basic Contagion

Social Contagion

Models

Models

Network version

References

Threshold model on a network

Original work:

t=1

"A simple model of global cascades on random networks" D. J. Watts. Proc. Natl. Acad. Sci., 2002^[12]

- ▶ Mean field Granovetter model → network model
- Individuals now have a limited view of the world

Frame 15/58 日 のへへ

Contagion Basic Contagion Models Social Contagion Models Network version All-to-all networks Theory References

• All nodes have threshold $\phi = 0.2$.

t=2

Threshold model on a network

Basic Contagio Models

Contagion

Social Contagior Models Network version All-to-all networks Theory References

The most gullible

Vulnerables:

- Recall definition: individuals who can be activated by just one contact being active are vulnerables.
- The vulnerability condition for node *i*: $1/k_i \ge \phi_i$.
- Means # contacts $k_i \leq |1/\phi_i|$.
- Key: For global cascades on random networks, must have a global component of vulnerables^[12]
- For a uniform threshold ϕ , our contagion condition tells us when such a component exists:

$$r = \sum_{k=1}^{\lfloor rac{1}{\phi}
floor} rac{(k-1)kP_k}{\langle k
angle} > 1$$

Frame 18/58

B 990

Contagion

Frame 20/58

P

- System is robust-yet-fragile just below upper boundary [3, 4, 11]
- 'Ignorance' facilitates spreading.

- Middle curve: chance of starting a global spreading event (cascade).
- Bottom curve: fractional size of vulnerable subcomponent.^[12]

Frame 19/58 B 990

Cascades on random networks

$(n.b., z = \langle k \rangle)$

- Largest vulnerable component = critical mass.
- Now have endogenous mechanism for spreading from an individual to the critical mass and then beyond.

Cascade window for random networks

$(n.b., z = \langle k \rangle)$

Outline of cascade window for random networks.

Contagion

Basic Contagior Models Social Contagior **Indels**

References

B 990

Contagion

Basic Contagior

Social Contagion

Models

Models

Network version

Cascade window for random networks

Basic Contagion Models Social Contagion Models Network version Alt-to-all networks Theory References Frame 23/58

Contagion

Social Contagion

Granovetter's Threshold model-recap

 Assumes deterministic response functions

▶ φ_{*} = threshold of an individual.

- ► f(φ_{*}) = distribution of thresholds in a population.
- F(φ_{*}) = cumulative distribution = ∫^{φ_{*}}_{φ'_{*}=0} f(φ'_{*})dφ'_{*}
- \$\phi_t\$ = fraction of people 'rioting' at time step t.

Frame 25/58 日 のへへ

Social Sciences—Threshold models

• At time t + 1, fraction rioting = fraction with $\phi_* \leq \phi_t$.

$$\phi_{t+1} = \int_0^{\phi_t} f(\phi_*) \mathrm{d}\phi_* = F(\phi_*)|_0^{\phi_t} = F(\phi_t)$$

 \blacktriangleright \Rightarrow Iterative maps of the unit interval [0, 1].

Frame 26/58

P

Social Sciences—Threshold models

- Two states: S and I
- Recover now possible (SIS)
- ϕ = fraction of contacts 'on' (e.g., rioting)
- Discrete time, synchronous update (strong assumption!)
- This is a Critical mass model

Basic Contagion Models Social Contagion Models Network version All-to-all networks

Contagion

Theory References

ersion

All-to-all networks Theory References

Models

Nodels

Social Contagion

Contagion

Social Sciences—Threshold models

Example of single stable state model

All-to-all versus random networks

Social Sciences—Threshold models

Implications for collective action theory:

- 1. Collective uniformity \Rightarrow individual uniformity
- 2. Small individual changes \Rightarrow large global changes

Next:

Contagion

Basic Contagion

Social Contagion

Models

Models

All-to-all networks

References

Frame 28/58

Frame 30/58

P

B 990

- Connect mean-field model to network model.
- Single seed for network model: $1/N \rightarrow 0$.
- Comparison between network and mean-field model sensible for vanishing seed size for the latter.

Frame 29/58 日 のへへ

Threshold contagion on random networks

Three key pieces to describe analytically:

- 1. The fractional size of the largest subcomponent of vulnerable nodes, *S*_{vuln}.
- 2. The chance of starting a global spreading event, $P_{trig} = S_{trig}$.
- 3. The expected final size of any successful spread, S.
 - ▶ n.b., the distribution of *S* is almost always bimodal.

Basic Contagion Models Social Contagior Models

Contagion

Network version All-to-all networks Theory References

Contagion

Basic Contagio

Social Contagior

Models

Models

All-to-all network

Threshold contagion on random networks

- First goal: Find the largest component of vulnerable nodes.
- Recall that for finding the giant component's size, we had to solve:

$$F_{\pi}(x) = xF_{P}(F_{\rho}(x))$$
 and $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$

- We'll find a similar result for the subset of nodes that are vulnerable.
- > This is a node-based percolation problem.
- For a general monotonic threshold distribution f(φ), a degree k node is vulnerable with probability

$$\beta_k = \int_0^{1/k} f(\phi) \mathrm{d}\phi$$

Threshold contagion on random networks

 Functional relations for component size g.f.'s are almost the same...

$$F_{\pi}^{(\text{vuln})}(x) = \underbrace{1 - F_{P}^{(\text{vuln})}(1)}_{\substack{\text{central node} \\ \text{is not} \\ \text{vulnerable}}} + xF_{P}^{(\text{vuln})}\left(F_{\rho}^{(\text{vuln})}(x)\right)$$

$$F_{\rho}^{(\text{vuln})}(x) = \underbrace{1 - F_{R}^{(\text{vuln})}(1)}_{\text{first node}} + xF_{R}^{(\text{vuln})}\left(F_{\rho}^{(\text{vuln})}(x)\right)$$

• Can now solve as before to find
$$S_{\text{vuln}} = 1 - F_{\pi}^{(\text{vuln})}(1)$$
.

Threshold contagion on random networks

Everything now revolves around the modified generating function:

$$F_P^{(\mathrm{vuln})}(x) = \sum_{k=0}^\infty \beta_k P_k x^k.$$

 Generating function for friends-of-friends distribution is related in same way as before:

$$F_{R}^{(\mathrm{vuln})}(x) = rac{rac{\mathrm{d}}{\mathrm{d}x}F_{P}^{(\mathrm{vuln})}(x)}{rac{\mathrm{d}}{\mathrm{d}x}F_{P}^{(\mathrm{vuln})}(x)|_{x=1}}$$

Frame 34/58 日 のへへ

Contagion

Threshold contagion on random networks

- Second goal: Find probability of triggering largest vulnerable component.
- Assumption is first node is randomly chosen.
- Same set up as for vulnerable component except now we don't care if the initial node is vulnerable or not:

$$\mathcal{F}^{(ext{trig})}_{\pi}(x) = x \mathcal{F}_{\mathcal{P}}\left(\mathcal{F}^{(ext{vuln})}_{
ho}(x)
ight)$$

$$F_{\rho}^{(\mathrm{vuln})}(x) = 1 - F_{R}^{\nu}(1) + x F_{R}^{(\mathrm{vuln})}\left(F_{\rho}^{(\mathrm{vuln})}(x)\right)$$

Solve as before to find $P_{\text{trig}} = S_{\text{trig}} = 1 - F_{\pi}^{(\text{trig})}(1)$.

Models Social Contagion Models Network version

Basic Contagion

Theory References

Frame 36/58

ମ୍ବ ୬୯୯

Frame 33/58

D 200

Contagion

Basic Contagion

Social Contagion

Models

Nodels

Theory

References

Frame 35/58

200

Contagion

Basic Contagion

Basic Contagior Models

Social Contagion

/lodels

Threshold contagion on random networks

- Third goal: Find expected fractional size of spread.
- Not obvious even for uniform threshold problem.
- Difficulty is in figuring out if and when nodes that need ≥ 2 hits switch on.
- Problem solved for infinite seed case by Gleeson and Cahalane:

"Seed size strongly affects cascades on random networks," Phys. Rev. E, 2007.^[6]

 Developed further by Gleeson in "Cascades on correlated and modular random networks," Phys. Rev. E, 2008.^[5]

Contagion Basic Contagion Models Social Contagion Models Network version Alt-oal networks Theory References

Expected size of spread

Idea:

Contagion

Basic Contagion

Social Contagion

/lodels

Models

Theory

References

Frame 37/58

B 990

- ▶ Randomly turn on a fraction ϕ_0 of nodes at time t = 0
- Capitalize on local branching network structure of random networks (again)
- Now think about what must happen for a specific node *i* to become active at time *t*:
- t = 0: *i* is one of the seeds (prob = ϕ_0)
- *t* = 1: *i* was not a seed but enough of *i*'s friends switched on at time *t* = 0 so that *i*'s threshold is now exceeded.
- *t* = 2: enough of *i*'s friends and friends-of-friends switched on at time *t* = 0 so that *i*'s threshold is now exceeded.
- t = n: enough nodes within n hops of i switched on at t = 0 and their effects have propagated to reach i.

Frame 38/58

Models Social Contagion Models Network version All-to-all networks

References

Basic Contagior

Expected size of spread

Notes:

- Calculations are possible nodes do not become inactive.
- Not just for threshold model—works for a wide range of contagion processes.
- We can analytically determine the entire time evolution, not just the final size.
- We can in fact determine **Pr**(node of degree k switches on at time t).
- Asynchronous updating can be handled too.

Contagion

Basic Contagion Models Social Contagion Models Network version All-to-all networks Theory References

Expected size of spread

Pleasantness:

- Taking off from a single seed story is about expansion away from a node.
- Extent of spreading story is about contraction at a node.

Contagion

Basic Contagion Models Social Contagion Models Network version All-to-all networks Theory

References

- For general t, we need to know the probability an edge coming into node i at time t is active.
- Notation: call this probability θ_t .
- We already know $\theta_0 = \phi_0$.

Expected size of spread

Story analogous to t = 1 case:

$$\phi_{i,t+1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{k_i} {k_i \choose j} \theta_t^j (1 - \theta_t)^{k_i - j} \beta_{k_i j}.$$

• Average over all nodes to obtain expression for ϕ_{t+1} :

$$\phi_{t+1} = \phi_0 + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{j=0}^k \binom{k}{j} \theta_t^j (1 - \theta_t)^{k-j} \beta_{kj}.$$

So we need to compute θ_t ... massive excitement...

Expected size of spread

- Notation: **Pr**(node *i* becomes active at time *t*) = $\phi_{i,t}$.
- Notation: $\beta_{kj} = \mathbf{Pr}$ (a degree k node becomes active if j neighbors are active).
- Our starting point: $\phi_{i,0} = \phi_0$.
- $\binom{k_i}{j}\phi_0^j(1-\phi_0)^{k_i-j} = \mathbf{Pr}$ (*j* of node *i*'s k_i neighbors were seeded at time t = 0).
- Probability node *i* was a seed at t = 0 is \u03c6₀ (as above).
- Probability node *i* was not a seed at t = 0 is $(1 \phi_0)$.
- Combining everything, we have:

$$\phi_{i,1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{k_i} {\binom{k_i}{j} \phi_0^j (1 - \phi_0)^{k_i - j} \beta_{k_i j}}.$$

Basic Contagion Models Social Contagion Models Network version All-to-all networks Theory References

Frame 43/58

Frame 41/58

B 990

Contagion

Basic Contagio

Social Contagior

Models

Nodels

Expected size of spread

First connect θ_0 to θ_1 :

► $\theta_1 = \phi_0 +$

$$(1-\phi_0)\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\sum_{j=0}^{k-1}\binom{k-1}{j}\theta_0^{j}(1-\theta_0)^{k-1-j}\beta_{kj}$$

- $\frac{kP_k}{\langle k \rangle} = R_k = \mathbf{Pr}$ (edge connects to a degree k node).
- ► ∑_{j=0}^{k-1} piece gives **Pr**(degree node k activates) of its neighbors k − 1 incoming neighbors are active.
- See this all generalizes to give θ_{t+1} in terms of θ_t ...

Comparison between theory and simulations

- Pure random networks with simple threshold responses
- *R* = uniform threshold (our φ_{*}); *z* = average degree; ρ = φ; q = θ; *N* = 10⁵.
- $\phi_0 = 10^{-3}, 0.5 \times 10^{-2},$ and 10^{-2} .
- Cascade window is for $\phi = 10^{-2}$ case.
- Sensible expansion of cascade window as φ₀ increases.

Expected size of spread

Two pieces:

Notes:

Contagion

Basic Contagion

Social Contagion

Models

Models

Theory References

Frame 45/58

D 200

Contagion

Basic Contagion

Social Contagion

Models

Models

Theory

References

Frame 47/58

ন ৩৫৫

1.
$$\theta_{t+1} = \phi_0 + \phi_0$$

$$(1-\phi_0)\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\sum_{j=0}^{k-1}\binom{k-1}{j}\theta_t^{j}(1-\theta_t)^{k-1-j}\beta_{kj}$$

with
$$\theta_0 = \phi_0$$
.
2. $\phi_{t+1} = \phi_0 +$

$$(1-\phi_0)\sum_{k=0}^{\infty}P_k\sum_{j=0}^k \binom{k}{j} heta_t^j(1- heta_t)^{k-j}eta_{kj}.$$

Frame 46/58 日 のへへ

- ► Retrieve cascade condition for spreading from a single seed in limit φ₀ → 0.
- Depends on map $\theta_{t+1} = G(\theta_t; \phi_0)$.
- First: if self-starters are present, some activation is assured:

$$G(0;\phi_0) = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \beta_{k0} > 0.$$

meaning $\beta_{k0} > 0$ for at least one value of $k \ge 1$.

If θ = 0 is a fixed point of G (i.e., G(0; φ₀) = 0) then spreading occurs if

$$G'(0;\phi_0)=rac{1}{\langle k
angle}\sum_{k=0}^{\infty}(k-1)kP_keta_{k1}>1.$$

Insert question from assignment 5 (\boxplus)

Contagion

Basic Contagion Models Social Contagion Models Network version All-to-all networks Theory

References

Frame 48/58

日 りくぐ

Basic Contagior

Social Contagion

Models

/lodels

Notes:

In words:

- If G(0; φ₀) > 0, spreading must occur because some nodes turn on for free.
- If G has an unstable fixed point at θ = 0, then cascades are also always possible.

Non-vanishing seed case:

- Cascade condition is more complicated for $\phi_0 > 0$.
- If G has a stable fixed point at θ = 0, and an unstable fixed point for some 0 < θ_∗ < 1, then for θ₀ > θ_∗, spreading takes off.
- Tricky point: G depends on φ₀, so as we change φ₀, we also change G.

Comparison between theory and simulations

From Gleeson and Cahalane^[6]

 Now allow thresholds to be distributed according to a Gaussian with mean *R*.

- R = 0.2, 0.362, and 0.38; σ = 0.2.
- Now see a (nasty) discontinuous phase transition for low (k).

ase $\langle k \rangle$.

Contagion

/lodels

Models

Theory

References

Frame 49/58

Contagion

Basic Contagion

Social Contagion

Vodels

/lodels

Theory

General fixed point story:

• Given $\theta_0 (= \phi_0)$, θ_∞ will be the nearest stable fixed point, either above or below.

- n.b., adjacent fixed points must have opposite stability types.
- Important: Actual form of G depends on ϕ_0 .
- So choice of \u03c6₀ dictates both G and starting point—can't start anywhere for a given G.

Contagion

Social Contagion

/lodels

Theory

References

Contagion

Basic Contagio

Models Social Contagion

/lodels

References

Comparison between theory and simulations

From Gleeson and Cahalane^[6]

Basic Contagion Models

• Plots of stability points for $\theta_{t+1} = G(\theta_t; \phi_0)$.

- n.b.: 0 is not a fixed point here: θ₀ = 0 always takes off.
- Top to bottom: R = 0.35, 0.371, and 0.375.
- n.b.: higher values of θ₀ for (b) and (c) lead to higher fixed points of G.
- Saddle node bifurcations appear and merge (b and c).

Frame 52/58

Spreadarama

Bridging to single seed case:

- Consider largest vulnerable component as initial set of seeds.
- Not quite right as spreading must move through vulnerables.
- But we can usefully think of the vulnerable component as activating at time t = 0 because order doesn't matter.
- Rebuild ϕ_t and θ_t expressions...

Time-dependent solutions

Synchronous update

Done: Evolution of φ_t and θ_t given exactly by the maps we have derived.

Asynchronous updates

- Update nodes with probability α .
- ▶ As $\alpha \rightarrow$ 0, updates become effectively independent.
- Now can talk about $\phi(t)$ and $\theta(t)$.
- More on this later...

Spreadarama

Contagion

Basic Contagion

Social Contagion

Models

Models

Theory

References

Frame 53/58

B 990

Contagion

Basic Contagion

Social Contagion

Models

Models

Theory

References

Frame 55/58

P

Two pieces modified for single seed:

1.
$$\theta_{t+1} = \theta_{vuln} + \theta_{vuln}$$

$$(1 - \theta_{\text{vuln}}) \sum_{k=1}^{\infty} \frac{kP_k}{\langle k \rangle} \sum_{j=0}^{k-1} {\binom{k-1}{j}} \theta_t^{\ j} (1 - \theta_t)^{k-1-j} \beta_{kj}$$

with $\theta_0 = \theta_{\text{vuln}} = \mathbf{Pr}$ an edge leads to the giant vulnerable component (if it exists).

2.
$$\phi_{t+1} = S_{\text{vuln}} +$$

$$(1 - S_{\text{vuln}}) \sum_{k=0}^{\infty} P_k \sum_{j=0}^{k} {k \choose j} \theta_t^j (1 - \theta_t)^{k-j} \beta_{kj}.$$

Contagion

Basic Contagion

Social Contagion

Models

Nodels

References

Contagion

Basic Contagion Models

Social Contagion

/lodels

References

References I

- S. Bikhchandani, D. Hirshleifer, and I. Welch.
 A theory of fads, fashion, custom, and cultural change as informational cascades.
 J. Polit. Econ., 100:992–1026, 1992.
- S. Bikhchandani, D. Hirshleifer, and I. Welch.
 Learning from the behavior of others: Conformity, fads, and informational cascades.
 J. Econ. Perspect., 12(3):151–170, 1998. pdf (⊞)
- J. Carlson and J. Doyle.
 Highly optimized tolerance: A mechanism for power laws in design systems.
 Phys. Rev. Lett., 60(2):1412–1427, 1999. pdf (⊞)

Frame 56/58

References II

J. Carlson and J. Doyle. Highly optimized tolerance: Re

Highly optimized tolerance: Robustness and design in complex systems. *Phys. Rev. Lett.*, 84(11):2529–2532, 2000. pdf (⊞)

J. P. Gleeson.

Cascades on correlated and modular random networks.

Phys. Rev. E, 77:046117, 2008. pdf (⊞)

J. P. Gleeson and D. J. Cahalane. Seed size strongly affects cascades on random

networks. *Phys. Rev. E*, 75:056103, 2007. pdf (⊞)

M. Granovetter.

Threshold models of collective behavior. Am. J. Sociol., 83(6):1420-1443, 1978. pdf (\boxplus)

References IV

D. J. Watts.

A simple model of global cascades on random networks.

Proc. Natl. Acad. Sci., 99(9):5766–5771, 2002. pdf (⊞)

References III

T. Schelling.

Dynamic models of segregation. *J. Math. Sociol.*, 1:143–186, 1971.

T. C. Schelling.

Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. *J. Conflict Resolut.*, 17:381–428, 1973.

T. C. Schelling.

Micromotives and Macrobehavior. Norton, New York, 1978.

D. Sornette.

Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 2nd edition, 2003. Basic Contagion Models Social Contagion Models Network version All-to-all networks Theory References

Contagion

Frame 58/58

🗗 ୬୯୯

Contagion Basic Contagion Models Social Contagion Models Network version All-to-all networks Theory References

Contagion

Basic Contagion

Social Contagion

Models

Models

References

Frame 57/58

B 990