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Contagion models

Some large questions concerning network
contagion:

1. For a given spreading mechanism on a given
network, what’s the probability that there will be
global spreading?

2. If spreading does take off, how far will it go?
3. How do the details of the network affect the

outcome?
4. How do the details of the spreading mechanism

affect the outcome?
5. What if the seed is one or many nodes?

I Next up: We’ll look at some fundamental kinds of
spreading on generalized random networks.
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Spreading mechanisms

uninfected
infected

I General spreading
mechanism:
State of node i depends
on history of i and i ’s
neighbors’ states.

I Doses of entity may be
stochastic and
history-dependent.

I May have multiple,
interacting entities
spreading at once.
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Spreading on Random Networks

I For random networks, we know local structure is
pure branching.

I Successful spreading is ∴ contingent on single
edges infecting nodes.

Success Failure:

I Focus on binary case with edges and nodes either
infected or not.
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Contagion condition
I We need to find:

r = the average # of infected edges that one random
infected edge brings about.

I Define βk as the probability that a node of degree k
is infected by a single infected edge.

I

r =
∞∑

k=0

kPk

〈k〉︸︷︷︸
prob. of
connecting to
a degree k node

· βk︸︷︷︸
Prob. of
infection

· (k − 1)︸ ︷︷ ︸
# outgoing
infected
edges

+
∞∑

k=0

︷︸︸︷
kPk

〈k〉
· (1− βk )︸ ︷︷ ︸

Prob. of
no infection

· 0︸︷︷︸
# outgoing
infected
edges

Contagion

Basic Contagion
Models

Social Contagion
Models
Network version

All-to-all networks

Theory

References

Frame 7/58

Contagion condition

I Our contagion condition is then:

r =
∞∑

k=0

(k − 1)kPk

〈k〉
βk > 1.

I Case 1: If βk = 1 then

r =
〈k(k − 1)〉

〈k〉
> 1.

I Good: This is just our giant component condition
again.
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Contagion condition

I Case 2: If βk = β < 1 then

r = β
〈k(k − 1)〉

〈k〉
> 1.

I A fraction (1-β) of edges do not transmit infection.
I Analogous phase transition to giant component case

but critical value of 〈k〉 is increased.
I Aka bond percolation.
I Resulting degree distribution P ′

k :

P ′
k = βk

∞∑
i=k

(
i
k

)
(1− β)i−kPi .

I We can show FP′(x) = FP(βx + 1− β).
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Contagion condition

I Cases 3, 4, 5, ...: Now allow βk to depend on k
I Asymmetry: Transmission along an edge depends

on node’s degree at other end.
I Possibility: βk increases with k ... unlikely.
I Possibility: βk is not monotonic in k ... unlikely.
I Possibility: βk decreases with k ... hmmm.
I βk ↘ is a plausible representation of a simple kind of

social contagion.
I The story:

More well connected people are harder to influence.
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Contagion condition

I Example: βk = 1/k .
I

r =
∞∑

k=1

(k − 1)kPk

〈k〉
βk =

∞∑
k=1

(k − 1)kPk

〈k〉k

=
∞∑

k=1

(k − 1)Pk

〈k〉
=
〈k〉 − 1
〈k〉

= 1− 1
〈k〉

I Since r is always less than 1, no spreading can
occur for this mechanism.

I Decay of βk is too fast.
I Result is independent of degree distribution.
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Contagion condition

I Example: βk = H( 1
k − φ)

where 0 < φ ≤ 1 is a threshold and H is the
Heaviside function.

I Infection only occurs for nodes with low degree.
I Call these nodes vulnerables:

they flip when only one of their friends flips.
I

r =
∞∑

k=1

(k − 1)kPk

〈k〉
βk =

∞∑
k=1

(k − 1)kPk

〈k〉
H(

1
k
− φ)

=

b 1
φ
c∑

k=1

(k − 1)kPk

〈k〉
where b·c means floor.
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Contagion condition

I The contagion condition:

r =

b 1
φ
c∑

k=1

(k − 1)kPk

〈k〉
> 1.

I As φ → 1, all nodes become resilient and r → 0.
I As φ → 0, all nodes become vulnerable and the

contagion condition matches up with the giant
component condition.

I Key: If we fix φ and then vary 〈k〉, we may see two
phase transitions.

I Added to our standard giant component transition,
we will see a cut off in spreading as nodes become
more connected.
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Social Contagion

Some important models (recap from CSYS 300)

I Tipping models—Schelling (1971) [8, 9, 10]

I Simulation on checker boards.
I Idea of thresholds.

I Threshold models—Granovetter (1978) [7]

I Herding models—Bikhchandani et al. (1992) [1, 2]

I Social learning theory, Informational cascades,...
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Threshold model on a network

Original work:

“A simple model of global cascades on random networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 [12]

I Mean field Granovetter model → network model
I Individuals now have a limited view of the world
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Threshold model on a network

I Interactions between individuals now represented by
a network

I Network is sparse
I Individual i has ki contacts
I Influence on each link is reciprocal and of unit weight
I Each individual i has a fixed threshold φi

I Individuals repeatedly poll contacts on network
I Synchronous, discrete time updating
I Individual i becomes active when

fraction of active contacts ai ≥ φiki

I Activation is permanent (SI)
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Threshold model on a network

t=1 t=2 t=3

c

a

b
c

e

a

b

e

a

b
c

e

d dd

I All nodes have threshold φ = 0.2.
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The most gullible

Vulnerables:
I Recall definition: individuals who can be activated by

just one contact being active are vulnerables.
I The vulnerability condition for node i : 1/ki ≥ φi .
I Means # contacts ki ≤ b1/φic.
I Key: For global cascades on random networks, must

have a global component of vulnerables [12]

I For a uniform threshold φ, our contagion condition
tells us when such a component exists:

r =

b 1
φ
c∑

k=1

(k − 1)kPk

〈k〉
> 1.
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Cascades on random networks

explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).

Watts PNAS ! April 30, 2002 ! vol. 99 ! no. 9 ! 5769
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( n.b., z = 〈k〉)

I Top curve: final fraction
infected if successful.

I Middle curve: chance of
starting a global
spreading event
(cascade).

I Bottom curve: fractional
size of vulnerable
subcomponent. [12]

I Cascades occur only if size of vulnerable
subcomponent > 0.

I System is robust-yet-fragile just below upper
boundary [3, 4, 11]

I ‘Ignorance’ facilitates spreading.
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Cascades on random networks

explicitly excluding the percolating cluster (when it exists) from the
sum !nqnxn. Using Eq. 3b, it follows that Sv " 1 # H0(1) " P #
G0(H1(1)), where H1(1) satisfies Eq. 3a. Outside the cascade
window, the only solution to Eq. 3a is H1(1) " 1, which yields Sv "
0 (and therefore no cascades) as expected. But inside the cascade
window, where the percolating vulnerable cluster exists, Eq. 3a has
an additional solution that corresponds to a non-zero value of Sv.
In the special case of a uniform random graph with homogeneous
thresholds, we obtain Sv " Q(K* $ 1, z) # ez(H1#1)Q(K* $ 1, zH1),
in which H1 satisfies H1 " 1 # Q(K*, z) $ ez(H1#1)Q(K*, zH1). We
contrast this expression with that for the size of the entire connected
component of the graph, S " 1 # e#zS (32), which is equivalent to
allowing K*3% (or !*3 0). In Fig. 2b we show the exact solutions
for both Sv (long-dashed line) and S (solid line) for the case of !*
" 0.18, and compare these quantities with the frequency and size
of global cascades observed in the full dynamical simulation of
10,000 nodes averaged over 1,000 random realizations of the
network and the initial condition. (The corresponding numerical
values for Sv and S are indistinguishable from the analytical curves,
except near the upper boundary of the window.)

The frequency of global cascades (open circles)—that is, cascades
that are ‘‘successful’’—is obviously related to the size of the
vulnerable component: the larger is Sv, the more likely a randomly
chosen initial site is to be a part of it. In particular, if Sv does not
percolate, then global cascades are impossible. Fig. 2b clearly
supports this intuition, but it is equally clear that, within the cascade
window, Sv seriously underestimates the likelihood of a global
cascade. The reason is that, according to our original decision rule,
an individual’s choice of state depends only on the states of its
neighbors; hence, even stable vertices, although they do not par-
ticipate in the initial stages of a global cascade, can still trigger them
as long as they are directly adjacent to the vulnerable cluster. The
true likelihood of a global cascade is therefore determined by the
size of what we call the extended vulnerable cluster Se, consisting of
the vulnerable cluster itself, and any stable vertices immediately
adjacent to it. We have not solved for Se exactly (although this may
be possible), but it is relatively simple to determine numerically, and
as the corresponding (dotted) curve in Fig. 2b demonstrates, the
average value of Se is an excellent approximation to the observed
frequency of global cascades.

The average size of global cascades (solid circles) is clearly not
governed either by the size of the vulnerable cluster Sv, or by Se, but
by S, the connectivity of the network as a whole. This is a surprising
result, the reason for which is not entirely clear, but a plausible
explanation is as follows. If a global cascade is triggered by an
initially small seed striking the extended vulnerable cluster, it is
guaranteed to occupy the entire vulnerable cluster, and therefore a
finite fraction of even an infinite network. At this stage, the
small-seed condition no longer holds, and so nodes that are still in
the off state can now have multiple (early-adopting) neighbors in
the on state. Hence, even individuals that were originally classified
as stable (the early and late majority) can now be toppled, allowing
the cascade to occupy not just the vulnerable component that
allowed the cascade to spread initially, but the entire connected
component of the graph. That the activation of a percolating

Fig. 1. Cascade windows for the threshold model. The dashed line encloses
the region of the (!

*
, z) plane in which the cascade condition (Eq. 5) is satisfied

for a uniform random graph with a homogenous threshold distribution f(!) "
"(! # !

*
). The solid circles outline the region in which global cascades occur for

the same parameter settings in the full dynamical model for n " 10,000
(averaged over 100 random single-node perturbations).

Fig. 2. Cross section of the cascade window from Fig. 1, at !
*

" 0.18. (a) The
average time required for a cascade to terminate diverges at both the lower and
upper boundaries of the cascade window, indicating two phase transitions. (b)
Comparison between connected components of the network and the properties
of global cascades. The frequency of global cascades in the numerical model
(open circles) is well approximated by the fractional size of theextended vulner-
able cluster (short dashes). For comparison, the size of the vulnerable cluster is
also shown, both the exact solution derived in the text (long dashes) and the
average over 1,000 realizations of a random graph (crosses). The exact and
numerical solutions agree everywhere except at the upper phase transition,
where the finite size of the network (n " 10,000) affects the numerical results.
Finally, the average size of global cascades is shown (solid circles) and compared
with the exact solution for the largest connected component (solid line).

Watts PNAS ! April 30, 2002 ! vol. 99 ! no. 9 ! 5769
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( n.b., z = 〈k〉)

I Time taken for cascade
to spread through
network. [12]

I Two phase transitions.

I Largest vulnerable component = critical mass.
I Now have endogenous mechanism for spreading

from an individual to the critical mass and then
beyond.
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Cascade window for random networks

( n.b., z = 〈k〉)
I Outline of cascade window for random networks.
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Cascade window for random networks
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Social Contagion

Granovetter’s Threshold model—recap
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I Assumes deterministic
response functions

I φ∗ = threshold of an
individual.

I f (φ∗) = distribution of
thresholds in a population.

I F (φ∗) = cumulative
distribution =

∫ φ∗
φ′
∗=0 f (φ′

∗)dφ′
∗

I φt = fraction of people ‘rioting’
at time step t .
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Social Sciences—Threshold models

I At time t + 1, fraction rioting = fraction with φ∗ ≤ φt .
I

φt+1 =

∫ φt

0
f (φ∗)dφ∗ = F (φ∗)|φt

0 = F (φt)

I ⇒ Iterative maps of the unit interval [0, 1].
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Social Sciences—Threshold models

Action based on perceived behavior of others.
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C

I Two states: S and I
I Recover now possible (SIS)
I φ = fraction of contacts ‘on’ (e.g., rioting)
I Discrete time, synchronous update (strong

assumption!)
I This is a Critical mass model
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Social Sciences—Threshold models
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I Example of single stable state model
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Social Sciences—Threshold models

Implications for collective action theory:

1. Collective uniformity 6⇒ individual uniformity
2. Small individual changes ⇒ large global changes

Next:
I Connect mean-field model to network model.
I Single seed for network model: 1/N → 0.
I Comparison between network and mean-field model

sensible for vanishing seed size for the latter.
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All-to-all versus random networks
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Threshold contagion on random networks

Three key pieces to describe analytically:

1. The fractional size of the largest subcomponent of
vulnerable nodes, Svuln.

2. The chance of starting a global spreading event,
Ptrig = Strig.

3. The expected final size of any successful spread, S.
I n.b., the distribution of S is almost always bimodal.
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Threshold contagion on random networks

I First goal: Find the largest component of vulnerable
nodes.

I Recall that for finding the giant component’s size, we
had to solve:

Fπ(x) = xFP (Fρ(x)) and Fρ(x) = xFR (Fρ(x))

I We’ll find a similar result for the subset of nodes that
are vulnerable.

I This is a node-based percolation problem.
I For a general monotonic threshold distribution f (φ), a

degree k node is vulnerable with probability

βk =

∫ 1/k

0
f (φ)dφ .
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Threshold contagion on random networks

I Everything now revolves around the modified
generating function:

F (vuln)
P (x) =

∞∑
k=0

βkPkxk .

I Generating function for friends-of-friends distribution
is related in same way as before:

F (vuln)
R (x) =

d
dx F (vuln)

P (x)

d
dx F (vuln)

P (x)|x=1

.
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Threshold contagion on random networks

I Functional relations for component size g.f.’s are
almost the same...

F (vuln)
π (x) = 1− F (vuln)

P (1)︸ ︷︷ ︸
central node
is not
vulnerable

+xF (vuln)
P

(
F (vuln)

ρ (x)
)

F (vuln)
ρ (x) = 1− F (vuln)

R (1)︸ ︷︷ ︸
first node
is not
vulnerable

+xF (vuln)
R

(
F (vuln)

ρ (x)
)

I Can now solve as before to find Svuln = 1−F (vuln)
π (1).
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Threshold contagion on random networks

I Second goal: Find probability of triggering largest
vulnerable component.

I Assumption is first node is randomly chosen.
I Same set up as for vulnerable component except

now we don’t care if the initial node is vulnerable or
not:

F (trig)
π (x) = xFP

(
F (vuln)

ρ (x)
)

F (vuln)
ρ (x) = 1− F v)

R (1) + xF (vuln)
R

(
F (vuln)

ρ (x)
)

I Solve as before to find Ptrig = Strig = 1− F (trig)
π (1).
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Threshold contagion on random networks

I Third goal: Find expected fractional size of spread.
I Not obvious even for uniform threshold problem.
I Difficulty is in figuring out if and when nodes that

need ≥ 2 hits switch on.
I Problem solved for infinite seed case by Gleeson and

Cahalane:
“Seed size strongly affects cascades on random
networks,” Phys. Rev. E, 2007. [6]

I Developed further by Gleeson in “Cascades on
correlated and modular random networks,” Phys.
Rev. E, 2008. [5]
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Expected size of spread
Idea:

I Randomly turn on a fraction φ0 of nodes at time t = 0
I Capitalize on local branching network structure of

random networks (again)
I Now think about what must happen for a specific

node i to become active at time t :
• t = 0: i is one of the seeds (prob = φ0)
• t = 1: i was not a seed but enough of i ’s friends

switched on at time t = 0 so that i ’s threshold is now
exceeded.

• t = 2: enough of i ’s friends and friends-of-friends
switched on at time t = 0 so that i ’s threshold is now
exceeded.

• t = n: enough nodes within n hops of i switched on
at t = 0 and their effects have propagated to reach i .
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Expected size of spread

i

ϕ = 1/3

t=0
= active,
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Expected size of spread

i

ϕ = 1/3

t=4
= active at t=0

= active at t=1

= active at t=2

= active at t=3

= active at t=4
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Expected size of spread

Notes:
I Calculations are possible nodes do not become

inactive.
I Not just for threshold model—works for a wide range

of contagion processes.
I We can analytically determine the entire time

evolution, not just the final size.
I We can in fact determine Pr(node of degree k

switches on at time t).
I Asynchronous updating can be handled too.
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Expected size of spread

Pleasantness:
I Taking off from a single seed story is about

expansion away from a node.
I Extent of spreading story is about contraction at a

node.
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Expected size of spread

I Notation: Pr(node i becomes active at time t) = φi,t .
I Notation: βkj = Pr (a degree k node becomes active

if j neighbors are active).
I Our starting point: φi,0 = φ0.

I
(ki

j

)
φ j

0(1− φ0)
ki−j = Pr (j of node i ’s ki neighbors

were seeded at time t = 0).
I Probability node i was a seed at t = 0 is φ0 (as

above).
I Probability node i was not a seed at t = 0 is (1− φ0).
I Combining everything, we have:

φi,1 = φ0 + (1− φ0)

ki∑
j=0

(
ki

j

)
φ j

0(1− φ0)
ki−jβki j .
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Expected size of spread

I For general t , we need to know the probability an
edge coming into node i at time t is active.

I Notation: call this probability θt .
I We already know θ0 = φ0.
I Story analogous to t = 1 case:

φi,t+1 = φ0 + (1− φ0)

ki∑
j=0

(
ki

j

)
θ j

t (1− θt)
ki−jβki j .

I Average over all nodes to obtain expression for φt+1:

φt+1 = φ0 + (1− φ0)
∞∑

k=0

Pk

k∑
j=0

(
k
j

)
θ j

t (1− θt)
k−jβkj .

I So we need to compute θt ... massive excitement...
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Expected size of spread

First connect θ0 to θ1:

I θ1 = φ0+

(1− φ0)
∞∑

k=1

kPk

〈k〉

k−1∑
j=0

(
k − 1

j

)
θ j

0 (1− θ0)
k−1−jβkj

I kPk
〈k〉 = Rk = Pr (edge connects to a degree k node).

I
∑k−1

j=0 piece gives Pr(degree node k activates) of its
neighbors k − 1 incoming neighbors are active.

I φ0 and (1− φ0) terms account for state of node at
time t = 0.

I See this all generalizes to give θt+1 in terms of θt ...
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Expected size of spread

Two pieces:

1. θt+1 = φ0+

(1− φ0)
∞∑

k=1

kPk

〈k〉

k−1∑
j=0

(
k − 1

j

)
θ j

t (1− θt)
k−1−jβkj

with θ0 = φ0.
2. φt+1 = φ0+

(1− φ0)
∞∑

k=0

Pk

k∑
j=0

(
k
j

)
θ j

t (1− θt)
k−jβkj .
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Comparison between theory and simulations

z. The theory shows excellent agreement with simulations.
Note the smooth transition from !!0 to !!1 near z=1, and
the discontinuous transition back to !!0 at larger z values.
The z location of the upper transition clearly depends sensi-
tively on the initial activated fraction !0.

A global cascade occurs with high probability when a
small seed !0 results in a large value of !. Writing G"q# as
$!=0

" C!q! with coefficients

C! = $
k=!+1

"

$
n=0

! %k − 1

!
&%!

n
&"− 1#!+nk

z
pkF%n

k
& , "4#

and linearizing Eq. "2# near q=0 gives a "first-order# condi-
tion for global cascades to occur: "1−!0#C1#1, since this
guarantees that qn increases with n, at least initially. This
cascade condition may also be written as

$
k=1

"
k"k − 1#

z
pk'F%1

k
& − F"0#( #

1
1 − !0

. "5#

In the limit !0→0 and with F"0#=0, this reduces to the
condition derived by Watts using percolation arguments )13*.
On the R ,z plane of Fig. 1"a# the condition "5# is satisfied
inside the solid line; for R=0.18 in Fig. 1"b#, "5# predicts
cascade transitions at z values between 5.7 and 5.8 for both

!0=10−3 and 10−2 "close to the z value marked by the arrow#,
but the simulations and full theory show that the respective
transitions are actually near z!6.4 and 9.2. Condition "5#
clearly does not accurately represent the effects of finite seed
size )nor of nonzero F"0#; see below*, because the function
G is not well approximated by a straight line near the critical
parameters for cascade transitions.

We seek an improved cascade condition by extending the
series for G"q# to order q2. This approximation results in a
quadratic equation for the fixed point q" which we represent
as aq"

2 +bq"+c=0. Under the approximation of small q val-
ues, we interpret the existence of a positive root of this qua-
dratic equation to imply q"$1, and hence the impossibility
of global cascades. Note that the first-order approximation
"5# requires b#0 for global cascades. However, when the
nonlinear behavior of G is important, it is still possible for
global cascades to occur when b is negative, provided that
the full solution of the quadratic equation precludes positive
real roots. We therefore extend the cascade boundary to in-
clude regions where either b#0 "as in "5## or b2−4ac%0,
the latter giving "to first order in !0#

"C1 − 1#2 − 4C0C2 + 2!0"C1 − C1
2 − 2C2 + 4C0C2# % 0.

"6#

It is straightforward to plot this extended cascade condition:
the dashed lines in Figs. 1"a# and 2"a# clearly give much
improved approximations to the actual boundaries for global
cascades.

R

z

0 0.1 0.2 0.3
0

5

10

15 (a)

0

1

0.5

0 2 4 6 8 10
0

0.5

1

z

ρ

(b)

FIG. 1. "Color online# Average density ! of active nodes in a
Poisson random graph of mean degree z and uniform threshold
value R. "a# Color-coded values of ! from Eq. "1# on the R ,z plane
with seed fraction !0=10−2. Lines show approximations to the glo-
bal cascade boundaries: the solid line encloses the region where "5#
is satisfied; the dashed line represents the extended cascade bound-
ary from Eq. "6#. "b# Values of ! at R=0.18 from Eq. "1# "lines# and
numerical simulations "symbols#, averaged over 100 realizations
with N=105. Seed fractions are !0=10−3 "solid#, 5&10−3 "dashed#,
and 10−2 "dot-dashed#. The arrow marks the cascade boundary
given by Eq. "5# in the limit of zero seed fraction.
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FIG. 2. "Color online# As Fig. 1, but threshold distribution is
Gaussian with mean R and standard deviation 0.2, and seed fraction
!0=0. "a# Cascade boundaries as in Fig. 1; the arrow marks the
critical point "Rc ,zc# described in the text; "b# theory and numerical
simulation results "N=105, average over 100 realizations# at R
=0.2 "solid#, 0.362 "dashed#, and 0.38 "dash-dotted#.
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From Gleeson and Cahalane [6]

I Pure random networks
with simple threshold
responses

I R = uniform threshold
(our φ∗); z = average
degree; ρ = φ; q = θ;
N = 105.

I φ0 = 10−3, 0.5× 10−2,
and 10−2.

I Cascade window is for
φ = 10−2 case.

I Sensible expansion of
cascade window as φ0
increases.
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Notes:
I Retrieve cascade condition for spreading from a

single seed in limit φ0 → 0.
I Depends on map θt+1 = G(θt ;φ0).
I First: if self-starters are present, some activation is

assured:

G(0;φ0) =
∞∑

k=1

kPk

〈k〉
βk0 > 0.

meaning βk0 > 0 for at least one value of k ≥ 1.
I If θ = 0 is a fixed point of G (i.e., G(0;φ0) = 0) then

spreading occurs if

G′(0;φ0) =
1
〈k〉

∞∑
k=0

(k − 1)kPkβk1 > 1.

Insert question from assignment 5 (�)

http://www.uvm.edu/~pdodds/teaching/courses/2009-01UVM-303/docs/2009-01UVM-303assignment05.pdf
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Notes:

In words:
I If G(0;φ0) > 0, spreading must occur because some

nodes turn on for free.
I If G has an unstable fixed point at θ = 0, then

cascades are also always possible.

Non-vanishing seed case:

I Cascade condition is more complicated for φ0 > 0.
I If G has a stable fixed point at θ = 0, and an unstable

fixed point for some 0 < θ∗ < 1, then for θ0 > θ∗,
spreading takes off.

I Tricky point: G depends on φ0, so as we change φ0,
we also change G.
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General fixed point story:

0
0

1

1
θt

θ
t+

1
=

G
(θ

t;
φ

0
)

0
0

1

1
θt

θ
t+

1
=

G
(θ

t;
φ

0
)

0
0

1

1
θt

θ
t+

1
=

G
(θ

t;
φ

0
)

I Given θ0(= φ0), θ∞ will be the nearest stable fixed
point, either above or below.

I n.b., adjacent fixed points must have opposite
stability types.

I Important: Actual form of G depends on φ0.
I So choice of φ0 dictates both G and starting

point—can’t start anywhere for a given G.
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Comparison between theory and simulations

z. The theory shows excellent agreement with simulations.
Note the smooth transition from !!0 to !!1 near z=1, and
the discontinuous transition back to !!0 at larger z values.
The z location of the upper transition clearly depends sensi-
tively on the initial activated fraction !0.

A global cascade occurs with high probability when a
small seed !0 results in a large value of !. Writing G"q# as
$!=0

" C!q! with coefficients

C! = $
k=!+1

"

$
n=0

! %k − 1

!
&%!

n
&"− 1#!+nk

z
pkF%n

k
& , "4#

and linearizing Eq. "2# near q=0 gives a "first-order# condi-
tion for global cascades to occur: "1−!0#C1#1, since this
guarantees that qn increases with n, at least initially. This
cascade condition may also be written as

$
k=1

"
k"k − 1#

z
pk'F%1

k
& − F"0#( #

1
1 − !0

. "5#

In the limit !0→0 and with F"0#=0, this reduces to the
condition derived by Watts using percolation arguments )13*.
On the R ,z plane of Fig. 1"a# the condition "5# is satisfied
inside the solid line; for R=0.18 in Fig. 1"b#, "5# predicts
cascade transitions at z values between 5.7 and 5.8 for both

!0=10−3 and 10−2 "close to the z value marked by the arrow#,
but the simulations and full theory show that the respective
transitions are actually near z!6.4 and 9.2. Condition "5#
clearly does not accurately represent the effects of finite seed
size )nor of nonzero F"0#; see below*, because the function
G is not well approximated by a straight line near the critical
parameters for cascade transitions.

We seek an improved cascade condition by extending the
series for G"q# to order q2. This approximation results in a
quadratic equation for the fixed point q" which we represent
as aq"

2 +bq"+c=0. Under the approximation of small q val-
ues, we interpret the existence of a positive root of this qua-
dratic equation to imply q"$1, and hence the impossibility
of global cascades. Note that the first-order approximation
"5# requires b#0 for global cascades. However, when the
nonlinear behavior of G is important, it is still possible for
global cascades to occur when b is negative, provided that
the full solution of the quadratic equation precludes positive
real roots. We therefore extend the cascade boundary to in-
clude regions where either b#0 "as in "5## or b2−4ac%0,
the latter giving "to first order in !0#

"C1 − 1#2 − 4C0C2 + 2!0"C1 − C1
2 − 2C2 + 4C0C2# % 0.

"6#

It is straightforward to plot this extended cascade condition:
the dashed lines in Figs. 1"a# and 2"a# clearly give much
improved approximations to the actual boundaries for global
cascades.

R

z

0 0.1 0.2 0.3
0

5

10

15 (a)

0

1

0.5

0 2 4 6 8 10
0

0.5

1

z

ρ

(b)

FIG. 1. "Color online# Average density ! of active nodes in a
Poisson random graph of mean degree z and uniform threshold
value R. "a# Color-coded values of ! from Eq. "1# on the R ,z plane
with seed fraction !0=10−2. Lines show approximations to the glo-
bal cascade boundaries: the solid line encloses the region where "5#
is satisfied; the dashed line represents the extended cascade bound-
ary from Eq. "6#. "b# Values of ! at R=0.18 from Eq. "1# "lines# and
numerical simulations "symbols#, averaged over 100 realizations
with N=105. Seed fractions are !0=10−3 "solid#, 5&10−3 "dashed#,
and 10−2 "dot-dashed#. The arrow marks the cascade boundary
given by Eq. "5# in the limit of zero seed fraction.
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FIG. 2. "Color online# As Fig. 1, but threshold distribution is
Gaussian with mean R and standard deviation 0.2, and seed fraction
!0=0. "a# Cascade boundaries as in Fig. 1; the arrow marks the
critical point "Rc ,zc# described in the text; "b# theory and numerical
simulation results "N=105, average over 100 realizations# at R
=0.2 "solid#, 0.362 "dashed#, and 0.38 "dash-dotted#.
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From Gleeson and Cahalane [6]

I Now allow thresholds to
be distributed according
to a Gaussian with
mean R.

I R = 0.2, 0.362, and
0.38; σ = 0.2.

I φ0 = 0 but some nodes
have thresholds ≤ 0 so
effectively φ0 > 0.

I Now see a (nasty)
discontinuous phase
transition for low 〈k〉.
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Comparison between theory and simulations

Figure 2!a" shows ! on Poisson random graphs with
thresholds drawn from a Gaussian distribution of mean R and
standard deviation "=0.2. Unlike the assumption in #13$ that
F!0"=0, a Gaussian distribution necessarily implies the pres-
ence of negative-valued thresholds among the population, so
F!0"#0. Negative-threshold agents act as a natural seed,
since they activate regardless of the states of their neighbors.
The presence of these innovators #13$ allows us to set !0
=0 in this case. The extended cascade condition !6" again
gives a good approximation to the discontinuous ! transition
at high z values. Figure 2!b" focuses on the low-z transition
and highlights the existence of a discontinuous transition in z
for certain threshold distributions. This is qualitatively dif-
ferent from the previously-studied case #13$ where only con-
tinuous low-z transitions were found.

Bifurcation analysis of Eq. !2" elucidates this result. In
Fig. 3 we plot the roots of the fixed-point equations G!q"
−q=0 !recall that !0=0 here; extension to nonzero !0 is
straightforward" as functions of z, for different values of the
mean threshold R. Thick solid and dashed lines denote stable
and unstable fixed points respectively #24$. The PAP means
the value of q$ achieved at a given z is that of the lowest
stable branch above q=!0. The occurrence of triple roots as
R is increased causes the smooth low-z transition seen in Fig.
3!a" to become discontinuous #as shown by the thin solid line
in Fig. 3!b"$, as previously seen in the numerical simulations
of Fig. 2!b". The discontinuous low-z transition occurs for
R#Rc, where the critical coordinates !Rc ,zc" and the value
q=qc where the triple root appears are found by numerical

root finding for the system of three equations q=!0
+ !1−!0"G!q", !1−!0"G!!q"=1, and G"!q"=0. For "=0.2
this yields !Rc ,zc"= !0.3543,3.136"; this point is marked with
an arrow in Fig. 2!a". We remark that the discontinuous tran-
sition from q$%1 to q$%0 #which induces a similar transi-
tion in ! through Eq. !1"$ occurs due to a saddle-node bifur-
cation #24$. This behavior is quite generic, occurring for a
wide variety of parameters, with the exception of the special
case studied by Watts. For !0=0 and F!0"=0 as in #13$, the
coefficient C0 is zero and the fixed-point equation always has
a root at q=0, with transcritical bifurcations on the q=0 line
giving rise to the observed transitions. However, any nonzero
seed size replaces the transcritical bifurcations with saddle-
node bifurcations as described above. We have confirmed the
accuracy of these results #and Eq. !1"$ against numerical
simulations on other configuration model network topologies
#1$, including power-law degree distributions !with exponen-
tial cutoff": pk%k−& exp!−k /'" #17$.

We turn now to the derivation of Eqs. !1"–!3". Our ana-
lytical approach is based on methods introduced by Dhar et
al. to study the zero-temperature random-field Ising model
on Bethe lattices #22$. The RFIM is a spin-based model of
magnetic materials, and its zero-temperature limit has been
extensively studied as a model for systems exhibiting hyster-
esis and Barkhausen noise #21$. A Bethe lattice of coordina-
tion number z !for integer z" is an infinite tree where every
node has exactly z neighbors. Dhar et al. derive analytical
results valid on Bethe lattices, but their numerical simula-
tions show that the theory also applies very accurately to
random graphs where every node has exactly z neighbors,
provided that short-distance loops are rare. To analyze Watts’
model we extend the approach of #22$ in two ways. First, we
consider treelike random graphs with arbitrary degree distri-
butions, rather than the Bethe lattices of #22$. Second, we
account for the PAP, which is the essential difference be-
tween Watts’ update rule and standard RFIM dynamics. This
difference between the update rules is crucial to our deriva-
tion of the !0 dependence of the activated fraction !.

We begin by replacing the given random graph !with de-
gree distribution pk" by a tree structure. The top level of the
tree is a single node with degree k, and this is connected to
its k neighbors at the next lower level of the tree. Each of
these nodes is in turn connected to ki−1 neighbors at the next
lower level, where ki is the degree of node i. The degree
distribution of the nodes in the tree is given by p̃k= !k /z"pk,
which is the distribution for the number of nearest neighbors
in a connected graph #1,25$. To find the final density ! of
active nodes, we label the levels of the tree from n=0 at the
bottom, with the top node at an infinitely high level !n
→$". Define qn as the conditional probability that a node on
level n is active, conditioned on its parent !on level n+1"
being inactive. Consider updating a node on level n+1, as-
suming that the nodes on all lower levels have already been
updated. With probability p̃k the chosen node has k neigh-
bors: one of these is its parent !on level n+2", and the re-
maining k−1 are its children !on level n". Since a fraction !0
of nodes were initially set to be active, there is a probability
!0 that we have chosen one of these nodes. In this case the
state of the node remains unchanged. On the other hand, with
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FIG. 3. !Color online" Bifurcation diagrams as described in text
for dependence of q$ on z for "=0.2 and !0=0 at R= !a" 0.35, !b"
0.371, and !c" 0.375.
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From Gleeson and Cahalane [6]

I Plots of stability points
for θt+1 = G(θt ;φ0).

I n.b.: 0 is not a fixed
point here: θ0 = 0
always takes off.

I Top to bottom: R =
0.35, 0.371, and 0.375.

I n.b.: higher values of θ0
for (b) and (c) lead to
higher fixed points of G.

I Saddle node
bifurcations appear and
merge (b and c).
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Spreadarama

Bridging to single seed case:

I Consider largest vulnerable component as initial set
of seeds.

I Not quite right as spreading must move through
vulnerables.

I But we can usefully think of the vulnerable
component as activating at time t = 0 because order
doesn’t matter.

I Rebuild φt and θt expressions...
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Spreadarama

Two pieces modified for single seed:

1. θt+1 = θvuln +

(1− θvuln)
∞∑

k=1

kPk

〈k〉

k−1∑
j=0

(
k − 1

j

)
θ j

t (1− θt)
k−1−jβkj

with θ0 = θvuln = Pr an edge leads to the giant
vulnerable component (if it exists).

2. φt+1 = Svuln +

(1− Svuln)
∞∑

k=0

Pk

k∑
j=0

(
k
j

)
θ j

t (1− θt)
k−jβkj .
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Time-dependent solutions

Synchronous update

I Done: Evolution of φt and θt given exactly by the
maps we have derived.

Asynchronous updates

I Update nodes with probability α.
I As α → 0, updates become effectively independent.
I Now can talk about φ(t) and θ(t).
I More on this later...
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