Branching Networks II Complex Networks, Course 303A, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Outline

Horton \Leftrightarrow Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 2/74

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- *R_n*, *R_a*, *R_ℓ*, and *R_s* versus *T*₁ and *R_T*. One simple redundancy: *R_ℓ* = *R_s*. Insert question from assignment 1 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ▶ Known result: Tokunaga → Horton^[18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- *R_n*, *R_a*, *R_ℓ*, and *R_s* versus *T*₁ and *R_T*. One simple redundancy: *R_ℓ* = *R_s*. Insert question from assignment 1 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ▶ Known result: Tokunaga → Horton^[18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- *R_n*, *R_a*, *R_ℓ*, and *R_s* versus *T*₁ and *R_T*. One simple redundancy: *R_ℓ* = *R_s*.
 Insert question from assignment 1 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ▶ Known result: Tokunaga → Horton^[18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- *R_n*, *R_a*, *R_ℓ*, and *R_s* versus *T*₁ and *R_T*. One simple redundancy: *R_ℓ* = *R_s*. Insert question from assignment 1 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ▶ Known result: Tokunaga → Horton^[18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- *R_n*, *R_a*, *R_ℓ*, and *R_s* versus *T*₁ and *R_T*. One simple redundancy: *R_ℓ* = *R_s*. Insert question from assignment 1 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ▶ Known result: Tokunaga → Horton^[18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- *R_n*, *R_a*, *R_ℓ*, and *R_s* versus *T*₁ and *R_T*. One simple redundancy: *R_ℓ* = *R_s*. Insert question from assignment 1 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ▶ Known result: Tokunaga \rightarrow Horton^[18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- *R_n*, *R_a*, *R_ℓ*, and *R_s* versus *T*₁ and *R_T*. One simple redundancy: *R_ℓ* = *R_s*. Insert question from assignment 1 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ▶ Known result: Tokunaga → Horton^[18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:
 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- ▶ In terms of basin characteristics:

$$ho_{
m dd}\simeq rac{\sum {
m stream segment lengths}}{{
m basin area}} = rac{\sum {
m out}}{{
m basin}}
ho_{
m dd}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

We need one more ingredient: Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:
 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream segment lengths}}{{
m basin area}} = rac{\sum_{\omega=1}^{\Omega} n_{\omega}}{a_{\Omega}}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

We need one more ingredient: Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:
 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$ho_{\rm dd} \simeq rac{\sum {
m stream segment lengths}}{{
m basin area}} = rac{\sum_{\omega=1}^{\Omega}}{a_{\rm d}}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

We need one more ingredient: Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:
 Drainage density ρ_{dd} = inverse of typical distant between channels in a landscape.
- In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream segment lengths}}{{
m basin area}} = rac{\sum_{w=1}^{\Omega}}{{
m basin area}}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

We need one more ingredient: Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.

In terms of basin characteristics:

$$\rho_{\rm dd} \simeq rac{\sum {\rm stream \ segment \ lengths}}{{\rm basin \ area}} = rac{{\sum _{\omega = 1}^{\Omega } n_\omega \bar s_\omega }}{a_\Omega}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

We need one more ingredient: Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.

In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} =$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

We need one more ingredient: Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.

In terms of basin characteristics:

$$\rho_{\rm dd} \simeq rac{\sum {\rm stream \ segment \ lengths}}{{
m basin \ area}} = rac{{\sum _{\omega = 1}^{\Omega } {\it n}_{\omega} \bar{\it s}_{\omega}}}{{\it a}_{\Omega}}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n.$
- Estimate n_ω, the number of streams of order ω in terms of other n_{ω'}, ω' > ω.
- Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega + 1...$
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\omega}^{\prime} T_{\omega^{\prime} = \omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Estimate n_ω, the number of streams of order ω in terms of other n_{ω'}, ω' > ω.
- Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega + 1...$
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\rm c}^{\prime}T_{\rm cl}$, streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_ω, the number of streams of order ω in terms of other n_{ω'}, ω' > ω.
- Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega + 1...$
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $\succ n'_{\omega}T_{\omega'-\omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_ω, the number of streams of order ω in terms of other n_{ω'}, ω' > ω.
- Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega + 1...$

 $\cdot 2n_{\omega+1}$ streams of order ω do this

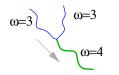
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$
 - $n'_{\omega}T_{\omega'-\omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_ω, the number of streams of order ω in terms of other n_{ω'}, ω' > ω.
- Observe that each stream of order ω terminates by either:



1. Running into another stream of order ω and generating a stream of order $\omega + 1...$

▶ $2n_{\omega+1}$ streams of order ω do this

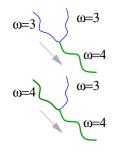
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$
 - $n'_{\omega}T_{\omega'-\omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_ω, the number of streams of order ω in terms of other n_{ω'}, ω' > ω.
- Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega + 1...$
 - $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...

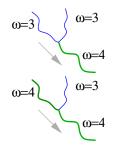
• $n'_{\omega}T_{\omega'-\omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_ω, the number of streams of order ω in terms of other n_{ω'}, ω' > ω.
- Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega + 1...$
 - $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...

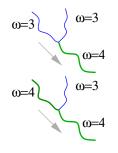
• $n'_{\omega}T_{\omega'-\omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_ω, the number of streams of order ω in terms of other n_{ω'}, ω' > ω.
- Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega + 1...$
 - $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n'_{\omega} T_{\omega'-\omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Putting things together:

- Use Tokunaga's law and manipulate expression to create R_n's.
- ► Insert question from assignment 1 (⊞)

► Solution:

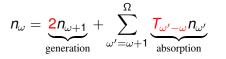
$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Putting things together:



- Use Tokunaga's law and manipulate expression to create R_n's.
- ► Insert question from assignment 1 (⊞)
- ► Solution:

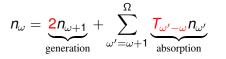
$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Putting things together:



- Use Tokunaga's law and manipulate expression to create R_n's.
- ► Insert question from assignment 1 (⊞)

► Solution:

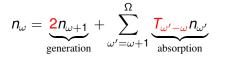
$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Putting things together:



- Use Tokunaga's law and manipulate expression to create R_n's.
- ► Insert question from assignment 1 (⊞)

Solution:

$$R_n = rac{(2+R_T+T_1)\pm\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

(The larger value is the one we want.)

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance 1/p_{dd}.
- For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$ar{s}_\omega \simeq
ho_{
m dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1}
ight) \propto R_T^{\,\omega}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance 1/p_{dd}.
- For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$ar{s}_\omega \simeq
ho_{
m dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1}
ight) \propto R_T^{\omega}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd}.
- Assume side streams are roughly separated by distance 1/p_{dd}.
- For an order ω stream segment, expected length is

$$\bar{\boldsymbol{s}}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$ar{m{s}}_\omega \simeq
ho_{
m dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1}
ight) \propto R_T^{\,\omega}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd}.
- Assume side streams are roughly separated by distance 1/p_{dd}.
- For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{\mathbf{s}}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance 1/p_{dd}.
- For an order ω stream segment, expected length is

$$ar{s}_{\omega} \simeq
ho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k
ight)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{\mathbf{s}}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

• Recall
$$R_{\ell} = R_s$$
 so

 $R_{\ell} = R_T$

And from before:

$$R_n = \frac{(2+R_T+T_1) + \sqrt{(2+R_T+T_1)^2 - 8R_T}}{2}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 8/74

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

• Recall $R_{\ell} = R_s$ so

 $R_{\ell} = R_T$

And from before:

$$R_n = rac{(2+R_T+T_1)+\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 8/74

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

• Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_T$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 8/74

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

• Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_T$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 8/74

- P ~ ~ ~

Some observations:

- R_n and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. ^[3, 4]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Some observations:

- R_n and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. ^[3, 4]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Some observations:

- R_n and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. ^[3, 4]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Some observations:

- R_n and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. ^[3, 4]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Some observations:

- R_n and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. ^[3, 4]

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 9/74

୍ର୍ର୍୍

The other way round

► Note: We can invert the expressions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T=R_\ell,$$

$$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)... Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

The other way round

► Note: We can invert the expressions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell,$$

$$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)... Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

The other way round

► Note: We can invert the expressions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

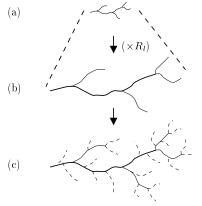
$$R_T = R_\ell,$$

$$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)... Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

From Horton to Tokunaga^[2]

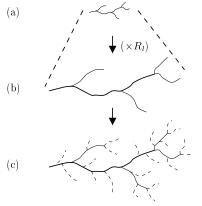


- Assume Horton's laws hold for number and length
- Start with an order ω stream
- Scale up by a factor of *Rℓ*, orders increment
- Maintain drainage density by adding new order 1 streams

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

From Horton to Tokunaga^[2]

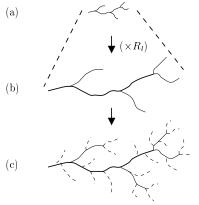


- Assume Horton's laws hold for number and length
 - Start with an order ω stream
- Scale up by a factor of *Rℓ*, orders increment
- Maintain drainage density by adding new order 1 streams

Branching Networks II

Horton ⇔ Tokunaga Reducing Hortor Scaling relations Fluctuations Models Nutshell References

From Horton to Tokunaga^[2]

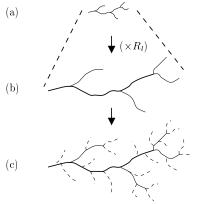


- Assume Horton's laws hold for number and length
- Start with an order ω stream
- Scale up by a factor of *Rℓ*, orders increment
- Maintain drainage density by adding new order 1 streams

Branching Networks II

Horton ⇔ Tokunaga Reducing Hortor Scaling relations Fluctuations Models Nutshell References

From Horton to Tokunaga^[2]



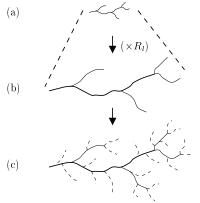
- Assume Horton's laws hold for number and length
- Start with an order ω stream
- Scale up by a factor of *Rℓ*, orders increment
- Maintain drainage density by adding new order 1 streams

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 11/74 日 のへへ

From Horton to Tokunaga^[2]



- Assume Horton's laws hold for number and length
- Start with an order ω stream
- Scale up by a factor of *Rℓ*, orders increment
- Maintain drainage density by adding new order 1 streams

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

... and in detail:

- Must retain same drainage density.
- ► Add an extra (R_ℓ 1) first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{l=1}^{k} T_l + 1 \right).$$

For large ω, Tokunaga's law is the solution—let's check...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

... and in detail:

- Must retain same drainage density.
- ► Add an extra (R_ℓ 1) first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

For large ω, Tokunaga's law is the solution—let's check...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

... and in detail:

- Must retain same drainage density.
- ► Add an extra (R_ℓ 1) first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right).$$

For large ω, Tokunaga's law is the solution—let's check...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

... and in detail:

- Must retain same drainage density.
- ► Add an extra (R_ℓ 1) first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1}=(R_{\ell}-1)\left(\sum_{i=1}^{k}T_{i}+1\right).$$

For large ω, Tokunaga's law is the solution—let's check...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

... and in detail:

- Must retain same drainage density.
- ► Add an extra (R_ℓ 1) first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1}=(R_{\ell}-1)\left(\sum_{i=1}^{k}T_{i}+1\right).$$

For large ω, Tokunaga's law is the solution—let's check...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$
$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

 $\simeq (R_\ell - 1) T_1 rac{R_\ell^{\,\, \kappa}}{R_\ell - 1} = T_1 R_\ell^k$... yep.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$
$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

$$\simeq (R_{\ell} - 1)T_1 \frac{R_{\ell}^{\wedge}}{R_{\ell} - 1} = T_1 R_{\ell}^k$$
 ... yep.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$
$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

 $\simeq (R_{\ell} - 1)T_1 \frac{R_{\ell}^{\ \kappa}}{R_{\ell} - 1} = T_1 R_{\ell}^{\kappa}$... yep.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 13/74 日 つくへ

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$
$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

$$\simeq (R_\ell - 1)T_1 \frac{R_\ell}{R_\ell - 1} = T_1 R_\ell^k$$
 ... yep.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

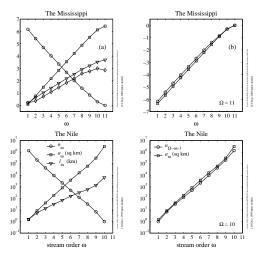
$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$
$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

$$\simeq (R_{\ell} - 1)T_1 \frac{R_{\ell}}{R_{\ell} - 1} = T_1 R_{\ell}^k$$
 ... yep.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton's laws of area and number:



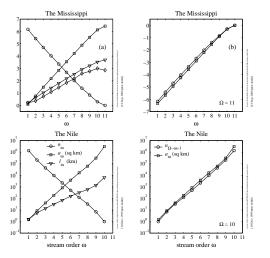
Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

 In right plots, stream number graph has been flipped vertically.

• Highly suggestive that $R_n \equiv R_a$...

Horton's laws of area and number:



Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

- In right plots, stream number graph has been flipped vertically.
- Highly suggestive that $R_n \equiv R_a$...

Measuring Horton ratios is tricky:

How robust are our estimates of ratios?

 Rule of thumb: discard data for two smallest and two largest orders. Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 15/74

Measuring Horton ratios is tricky:

- How robust are our estimates of ratios?
- Rule of thumb: discard data for two smallest and two largest orders.

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 15/74

Mississippi:

ω range	R _n	R _a	R_ℓ	R_s	R_a/R_n
[2,3]	5.27	5.26	2.48	2.30	1.00
[2,5]	4.86	4.96	2.42	2.31	1.02
[2,7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3 , 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4,6]	4.69	4.81	2.40	2.36	1.02
[4,8]	4.57	4.77	2.38	2.34	1.05
[5,7]	4.68	4.83	2.36	2.29	1.03
[6,7]	4.63	4.76	2.30	2.16	1.03
[7,8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 16/74 団 のくで

Amazon:

ω range	R _n	R _a	R_ℓ	Rs	R_a/R_n
[2,3]	4.78	4.71	2.47	2.08	0.99
[2,5]	4.55	4.58	2.32	2.12	1.01
[2,7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3 , 7]	4.35	4.49	2.20	2.10	1.03
[4,6]	4.38	4.54	2.22	2.18	1.03
[5,6]	4.38	4.62	2.22	2.21	1.06
[6,7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 17/74 日 のくへ

Rough first effort to show $R_n \equiv R_a$:

• $a_{\Omega} \propto$ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)

► So:

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Rough first effort to show $R_n \equiv R_a$:

 a_Ω ∝ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)

► So:

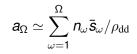
Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Rough first effort to show $R_n \equiv R_a$:

 a_Ω ∝ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)

So:



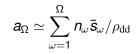
Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Rough first effort to show $R_n \equiv R_a$:

 a_Ω ∝ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)

So:



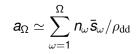
Branching Networks II

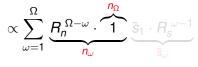
Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Rough first effort to show $R_n \equiv R_a$:

 a_Ω ∝ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)

So:





Branching Networks II

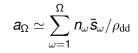
Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

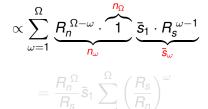
Frame 18/74 日 のへへ

Rough first effort to show $R_n \equiv R_a$:

 a_Ω ∝ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)

So:





Branching Networks II

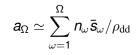
Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

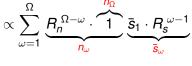
Frame 18/74 日 のへで

Rough first effort to show $R_n \equiv R_a$:

 a_Ω ∝ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)

So:





$$=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{\omega=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Continued ...

 $\boldsymbol{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{\boldsymbol{s}}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$ $= \frac{R_n^{\Omega}}{R_s} \bar{\boldsymbol{s}}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)}$ $\geq R_n^{\Omega-1} \bar{\boldsymbol{s}}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \neq$

So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Branching Networks II

Continued ...

 $\boldsymbol{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{\boldsymbol{s}}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$ $= \frac{R_n^{\Omega}}{R_s} \bar{\boldsymbol{s}}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)}$ $\geq R_n^{\Omega - 1} \bar{\boldsymbol{s}}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \neq$

So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Branching Networks II

Continued ...

 $\begin{aligned} \mathbf{a}_{\Omega} &\propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ &= \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \\ &\sim R_n^{\Omega - 1} \bar{s}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow \end{aligned}$

So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Branching Networks II

Continued ...

 $\begin{aligned} \mathbf{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ &= \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \\ &\sim R_n^{\Omega - 1} \bar{\mathbf{s}}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow \end{aligned}$

• So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Branching Networks II

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- ► Insert question from assignment 1 (⊞)

Branching Networks II

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.

► Insert question from assignment 1 (⊞)

Branching Networks II

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- ► Insert question from assignment 1 (⊞)

Branching Networks II

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω.
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = ext{const}}$$

Reason:

$$n_\omega \propto (R_n)^{-\omega}$$

 $ar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1}$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω.
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.

► Story:

$$R_n \equiv R_a \Rightarrow n_\omega \bar{a}_\omega = ext{const}$$

Reason:

 $n_\omega \propto (R_n)^{-\omega}$ $ar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1}$ Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω.
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \mathrm{const}}$$

Reason:

 $n_\omega \propto (R_n)^{-\omega}$ $ar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1}$ Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω.
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \mathrm{const}}$$

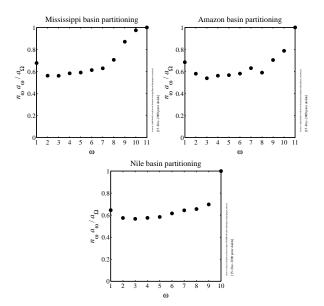
Reason:

$$egin{aligned} n_\omega \propto (R_n)^{-\omega} \ ar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1} \end{aligned}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Equipartitioning: Some examples:



Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks II

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks II

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks II

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the *p*'s drainage basin has area *a*? *P*(*a*) ∝ *a*⁻⁺ for large *a*
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∝ ℓ → for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 24/74 団 のへへ

A little further...

Ignore stream ordering for the moment

- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the *p*'s drainage basin has area *a*? *P*(*a*) ∝ *a*⁻⁺ for large *a*
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∝ ℓ → for large ℓ
- \blacktriangleright Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 24/74

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the *p*'s drainage basin has area *a*? *P*(*a*) ∝ *a*⁻⁺ for large *a*
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∝ ℓ=↑ for large ℓ
- \blacktriangleright Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 24/74

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the *p*'s drainage basin has area *a*? *P*(*a*) ∝ *a*⁻⁺ for large *a*
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∝ ℓ=↑ for large ℓ
- \blacktriangleright Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the *p*'s drainage basin has area *a*? *P*(*a*) ∝ *a*⁻⁺ for large *a*
- ► Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∝ ℓ=↑ for large ℓ
- \blacktriangleright Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the *p*'s drainage basin has area *a*? *P*(*a*) ∝ *a*⁻⁺ for large *a*
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∝ ℓ^{-γ} for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the *p*'s drainage basin has area *a*? *P*(*a*) ∝ *a*^{-τ} for large *a*
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∝ ℓ^{-γ} for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the *p*'s drainage basin has area *a*? *P*(*a*) ∝ *a*^{-τ} for large *a*
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∝ ℓ^{-γ} for large ℓ
- \blacktriangleright Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the *p*'s drainage basin has area *a*? *P*(*a*) ∝ *a*^{-τ} for large *a*
- ► Q: What is probability that the longest stream from *p* has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- \blacktriangleright Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 24/74

Probability distributions with power-law decays

- ▶ We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^{[2}
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Probability distributions with power-law decays

We see them everywhere:

- Earthquake magnitudes (Gutenberg-Richter law)
- City sizes (Zipf's law)
- Word frequency (Zipf's law)^[2]
- Wealth (maybe not—at least heavy tailed)
- Statistical mechanics (phase transitions)
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[2]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[2]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]

A big part of the story of complex systems

Arise from mechanisms: growth, randomness, optimization, ...

Our task is always to illuminate the mechanism...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[17, 1, 2]
- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[17, 1, 2]
- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[17, 1, 2]
- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[17, 1, 2]
- ► Let's work on P(ℓ)...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[17, 1, 2]
- ► Let's work on *P*(*ℓ*)...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[17, 1, 2]
- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[17, 1, 2]
- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[17, 1, 2]
- ► Let's work on *P*(*ℓ*)...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[17, 1, 2]
- Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks II

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distribution
- The complementary cumulative distribution turns out to be most useful:

$$P_>(\ell_*)=P(\ell>\ell_*)=\int_{\ell=\ell_*}^{\ell_{\sf max}}P(\ell){
m d}\ell$$

 $P_>(\ell_*)=1-P(\ell<\ell_*)$

Also known as the exceedance probability.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$\mathcal{P}_{>}(\ell_{*})=\mathcal{P}(\ell>\ell_{*})=\int_{\ell=\ell_{*}}^{\ell_{\mathsf{max}}}\mathcal{P}(\ell)\mathrm{d}\ell$$

$$P_>(\ell_*)=1-P(\ell<\ell_*)$$

Also known as the exceedance probability.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$\mathcal{P}_{>}(\ell_{*})=\mathcal{P}(\ell>\ell_{*})=\int_{\ell=\ell_{*}}^{\ell_{\mathsf{max}}}\mathcal{P}(\ell)\mathrm{d}\ell$$

$$P_>(\ell_*)=1-P(\ell<\ell_*)$$

Also known as the exceedance probability.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$\mathcal{P}_{>}(\ell_{*})=\mathcal{P}(\ell>\ell_{*})=\int_{\ell=\ell_{*}}^{\ell_{\mathsf{max}}}\mathcal{P}(\ell)\mathrm{d}\ell$$

$$P_>(\ell_*)=1-P(\ell<\ell_*)$$

Also known as the exceedance probability.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$\mathcal{P}_{>}(\ell_{*})=\mathcal{P}(\ell>\ell_{*})=\int_{\ell=\ell_{*}}^{\ell_{\mathsf{max}}}\mathcal{P}(\ell)\mathrm{d}\ell$$

$$P_>(\ell_*) = 1 - P(\ell < \ell_*)$$

Also known as the exceedance probability.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

The connection between P(x) and P_>(x) when P(x) has a power law tail is simple:

• Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$${\sf P}_{>}(\ell_*)=\int_{\ell=\ell_*}^{\ell_{\sf max}}{\sf P}(\ell)\,{
m d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\max}} \ell^{-\gamma} \mathrm{d}\ell$$

$$= \frac{\ell^{-\gamma+1}}{-\gamma+1} \Big|_{\ell=\ell_*}^{\ell_{\max}}$$

$$\propto \ell_*^{-\gamma+1}$$
 for $\ell_{\mathsf{max}} \gg \ell_*$

Branching Networks II

Finding γ :

- The connection between P(x) and P_>(x) when P(x) has a power law tail is simple:
- Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$\mathcal{P}_{>}(\ell_{*})=\int_{\ell=\ell_{*}}^{\ell_{\mathsf{max}}}\mathcal{P}(\ell)\,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\max}} \ell^{-\gamma} \mathrm{d}\ell$$

$$= \left. \frac{\ell^{-\gamma+1}}{-\gamma+1} \right|_{\ell=\ell_*}^{\ell_{\max}}$$

$$\propto \ell_*^{-\gamma+1}$$
 for $\ell_{\mathsf{max}} \gg \ell_*$

Branching Networks II

Finding γ :

- The connection between P(x) and P_>(x) when P(x) has a power law tail is simple:
- Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$\mathcal{P}_{>}(\ell_{*})=\int_{\ell=\ell_{*}}^{\ell_{\mathsf{max}}}\mathcal{P}(\ell)\,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\text{max}}} \frac{\ell^{-\gamma} \mathrm{d} \ell}{}$$

$$= \left. \frac{\ell^{-\gamma+1}}{-\gamma+1} \right|_{\ell=\ell_*}^{\ell_{\max}}$$

$$\propto \ell_*^{-\gamma+1}$$
 for $\ell_{\mathsf{max}} \gg \ell_*$

Branching Networks II

Finding γ :

- The connection between P(x) and P_>(x) when P(x) has a power law tail is simple:
- Given P(ℓ) ~ ℓ^{-γ} large ℓ then for large enough ℓ_{*}

$$\mathcal{P}_{>}(\ell_{*})=\int_{\ell=\ell_{*}}^{\ell_{\mathsf{max}}}\mathcal{P}(\ell)\,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\max}} {\ell^{-\gamma} \mathrm{d} \ell}$$

$$= \frac{\ell^{-\gamma+1}}{-\gamma+1} \bigg|_{\ell=\ell_*}^{\ell_{\max}}$$

 $\propto \ell_*^{-\gamma+1}$ for $\ell_{ ext{max}} \gg \ell_*$

Branching Networks II

Finding γ :

- The connection between P(x) and P_>(x) when P(x) has a power law tail is simple:
- Given P(ℓ) ~ ℓ^{-γ} large ℓ then for large enough ℓ_{*}

$$\mathcal{P}_{>}(\ell_{*})=\int_{\ell=\ell_{*}}^{\ell_{\mathsf{max}}}\mathcal{P}(\ell)\,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\max}} {\ell^{-\gamma} \mathrm{d} \ell}$$

$$= \left. \frac{\ell^{-\gamma+1}}{-\gamma+1} \right|_{\ell=\ell_*}^{\ell_{\max}}$$

 $\propto \ell_*^{-\gamma+1} \quad \text{for } \ell_{\text{max}} \gg \ell_*$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length > l_{*}
- ► Assume some spatial sampling resolution △
- Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ► Approximate P_>(ℓ_{*}) as

$$P_{>}(\ell_{*}) = rac{N_{>}(\ell_{*};\Delta)}{N_{>}(0;\Delta)}$$

where $N_>(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

► Use Horton's law of stream segments: s_ω/s_{ω-1} = R_s... Branching Networks II

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length > l_{*}
- Assume some spatial sampling resolution Δ
- Landscape is broken up into grid of $\Delta \times \Delta$ sites

► Approximate P_>(ℓ_{*}) as

$$\mathsf{P}_{>}(\ell_{*}) = rac{N_{>}(\ell_{*};\Delta)}{N_{>}(0;\Delta)}.$$

where $N_>(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

► Use Horton's law of stream segments: s_ω/s_{ω-1} = R_s... Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length > l_{*}
- ► Assume some spatial sampling resolution △
- Landscape is broken up into grid of $\Delta \times \Delta$ sites

► Approximate P_>(ℓ_{*}) as

$$\mathsf{P}_{>}(\ell_{*}) = rac{N_{>}(\ell_{*};\Delta)}{N_{>}(0;\Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

► Use Horton's law of stream segments: s_ω/s_{ω-1} = R_s... Branching Networks II

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length > l_{*}
- ► Assume some spatial sampling resolution △
- Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate P_>(ℓ_{*}) as

$$\mathsf{P}_{>}(\ell_{*})=rac{\mathit{N}_{>}(\ell_{*};\Delta)}{\mathit{N}_{>}(0;\Delta)}.$$

where $N_>(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

• Use Horton's law of stream segments: $s_{\omega}/s_{\omega-1} = R_s...$

Branching Networks II

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length > l_{*}
- Assume some spatial sampling resolution Δ
- Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate P_>(ℓ_{*}) as

$$\mathsf{P}_{>}(\ell_{*})=rac{\mathsf{N}_{>}(\ell_{*};\Delta)}{\mathsf{N}_{>}(0;\Delta)}.$$

where $N_>(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

► Use Horton's law of stream segments: $s_{\omega}/s_{\omega-1} = R_s...$

Branching Networks II

Finding γ :

• Set $\ell_* = \ell_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = rac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

► ∆'s cancel

• Denominator is $a_{\Omega}\rho_{dd}$, a constant.

So... using Horton's laws...

 $P_>(\ell_\omega) \propto \sum_{\omega'=\omega+1}^\Omega n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^\Omega \left(1 + 0 \right) \left(1 + 0 \right)$

Branching Networks II

Finding γ :

• Set
$$\ell_* = \ell_\omega$$
 for some $1 \ll \omega \ll \Omega$.

$$m{P}_{>}(\ell_{\omega}) = rac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

► ∆'s cancel

• Denominator is $a_{\Omega}\rho_{dd}$, a constant.

So... using Horton's laws...

$$P_>(\ell_\omega) \propto \sum_{\omega'=\omega+1}^\Omega n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^\Omega$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

► Set
$$\ell_* = \ell_\omega$$
 for some $1 \ll \omega \ll \Omega$.
► $P_>(\ell_\omega) = \frac{N_>(\ell_\omega; \Delta)}{N_>(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} / \Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'} / \Delta}$

► ∆'s cancel

• Denominator is $a_{\Omega}\rho_{dd}$, a constant.

So... using Horton's laws...

Branching Networks II

Finding γ :

► Set
$$\ell_* = \ell_\omega$$
 for some $1 \ll \omega \ll \Omega$.
► $P_>(\ell_\omega) = \frac{N_>(\ell_\omega; \Delta)}{N_*(\Omega; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'}}{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'}}$

$$= \frac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

\[\] \[

▶ So... using Horton's laws...

$$P_>(\ell_\omega) \propto \sum_{\omega'=\omega+1}^\Omega n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^\Omega$$

Branching Networks II

Tokunaga Scaling relations Models

Frame 30/74 a ~ ~ ~ ~ ~

Finding γ :

• Set
$$\ell_* = \ell_{\omega}$$
 for some 1 $\ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = \frac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

\[\Delta's cancel
\]

• Denominator is $a_{\Omega}\rho_{dd}$, a constant.

So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Hortor Scaling relations Fluctuations Models Nutshell References

Finding γ :

• Set
$$\ell_* = \ell_\omega$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = \frac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- \[\Delta's cancel
 \]
- Denominator is $a_{\Omega}\rho_{dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 + R_{\sigma}^{\alpha-\omega'})(s_{\sigma} + R_{\sigma}^{\alpha-\omega'})$$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

• Set
$$\ell_* = \ell_\omega$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = \frac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- \[\Delta's cancel
 \]
- Denominator is $a_{\Omega}\rho_{dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

• Set
$$\ell_* = \ell_\omega$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = \frac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- \[\Delta's cancel
 \]
- Denominator is $a_{\Omega}\rho_{dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (\mathbf{1} \cdot \boldsymbol{R}_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot \boldsymbol{R}_{s}^{\omega'-1})$$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

• Set
$$\ell_* = \ell_\omega$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = \frac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- \[\Delta's cancel
 \]
- Denominator is $a_{\Omega}\rho_{dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

► We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'})(ar{s}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

- Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from ω" = 0 to ω" = Ω − ω − 1 (equivalent to ω' = Ω down to ω' = ω + 1)

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

► We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'})(ar{s}_1 \cdot R_s^{\omega'-1}) \; ,$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(rac{R_s}{R_n}
ight)^{\omega'}$$

- Change summation order by substituting ω^{''} = Ω − ω['].
- Sum is now from ω" = 0 to ω" = Ω − ω − 1 (equivalent to ω' = Ω down to ω' = ω + 1)

Branching Networks II

Finding γ :

► We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'})(ar{s}_1 \cdot R_s^{\omega'-1}) \; ,$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(rac{R_s}{R_n}
ight)^{\omega}$$

- Change summation order by substituting ω" = Ω − ω'.
- Sum is now from ω" = 0 to ω" = Ω − ω − 1 (equivalent to ω' = Ω down to ω' = ω + 1)

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

► We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'})(ar{s}_1 \cdot R_s^{\omega'-1}) \; ,$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(rac{R_s}{R_n}
ight)^{\omega}$$

- Change summation order by substituting ω" = Ω − ω'.
- Sum is now from ω" = 0 to ω" = Ω − ω − 1 (equivalent to ω' = Ω down to ω' = ω + 1)

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

► We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'})(ar{s}_1 \cdot R_s^{\omega'-1}) \; ,$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(rac{R_s}{R_n}
ight)^{\omega}$$

- Change summation order by substituting ω'' = Ω − ω'.
- Sum is now from ω" = 0 to ω" = Ω − ω − 1 (equivalent to ω' = Ω down to ω' = ω + 1)

Branching Networks II

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}
ight)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}
ight)^{\omega''}$$

• Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using $\sum_{i=0}^{n-1}a^i=(a^n-1)/(a-1)$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 32/74

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}
ight)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}
ight)^{\omega''}$$

• Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)$$

again using $\sum_{i=0}^{n-1}a^i=(a^n-1)/(a-1)$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 32/74

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}
ight)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}
ight)^{\omega''}$$

• Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}
ight)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}
ight)^{\omega''}$$

• Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}
ight)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}
ight)^{\omega''}$$

• Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

Nearly there:

$$P_>(\ell_\omega) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

Need to express right hand side in terms of *ℓ*_ω.
 Recall that *ℓ*_ω ≃ *ℓ*₁*R*^{ω−1}_ℓ.

$$\ell_\omega \propto {\it R}_\ell^\omega = {\it R}_s^\omega = {\it e}^{\omega \ln {\it R}_s}$$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

Nearly there:

$$P_>(\ell_\omega) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

Need to express right hand side in terms of *ℓ*_ω.
 Recall that *ℓ*_ω ≃ *ℓ*₁*R*^{ω-1}_ℓ.

$$\ell_\omega \propto {\pmb R}_\ell^\omega = {\pmb R}_{\pmb s}^\omega = {\pmb e}^{\omega \ln {\pmb R}_{\pmb s}}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

Nearly there:

$$P_>(\ell_\omega) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

Need to express right hand side in terms of ℓ_ω.
 Recall that ℓ_ω ≃ ℓ
₁ R^{ω-1}_ℓ.

$$\ell_\omega \propto {\it R}_\ell^\omega = {\it R}_{\it s}^\omega = {\it e}^{\omega \ln {\it R}_{\it s}}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

Nearly there:

$$P_>(\ell_\omega) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

Need to express right hand side in terms of *ℓ*_ω.
 Recall that *ℓ*_ω ≃ *ℓ*₁*R*^{ω-1}_ℓ.

$$\ell_\omega \propto {m R}_\ell^\omega = {m R}_{m s}^\omega = {m e}^{\omega \ln {m R}_{m s}}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding γ :

► Nearly there:

$$P_>(\ell_\omega) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

• Need to express right hand side in terms of ℓ_{ω} . • Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\ell_\omega \propto {\it R}_\ell^\omega = {\it R}_{\it s}^\omega = {\it e}^{\,\omega\,{
m ln}\,{\it R}_{\it s}}$$

Branching Networks II

Horton ⇔ Tokunaga **Reducing Horton** Scaling relations Fluctuations Models References

Frame 33/74 a ୍ର୍ବ୍

► Therefore:

$$P_>(\ell_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s)/\ln R_s$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

► Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

► Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega}^{} - \ln(R_n/R_s)/\ln R_s$$

$$=\ell_\omega^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

► Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto {m \ell}_{\omega} - \ln({\it R}_{\it n}/{\it R}_{\it s})/\ln{\it R}_{\it s}$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

► Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto {m\ell}_{\omega} - \ln({\it R_n}/{\it R_s})/\ln{\it R_s}$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$-\gamma+1$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

► Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 34/74 日 のへへ

Finding γ :

And so we have:

 $\gamma = \ln \textit{R}_\textit{n} / \ln \textit{R}_\textit{s}$

Proceeding in a similar fashion, we can show

 $\tau = \mathbf{2} - \ln \mathbf{R}_s / \ln \mathbf{R}_n = \mathbf{2} - \mathbf{1} / \gamma$

Insert question from assignment 1 (\boxplus)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Branching Networks II

Finding γ :

And so we have:

$$\gamma = \ln \textit{R}_\textit{n} / \ln \textit{R}_\textit{s}$$

Proceeding in a similar fashion, we can show

$$\tau = \mathbf{2} - \ln \mathbf{R}_{s} / \ln \mathbf{R}_{n} = \mathbf{2} - \mathbf{1} / \gamma$$

Insert question from assignment 1 (\boxplus)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Branching Networks II

Finding γ :

And so we have:

$$\gamma = \ln \textit{R}_\textit{n} / \ln \textit{R}_\textit{s}$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1 / \gamma$$

Insert question from assignment 1 (\boxplus)

 Such connections between exponents are called scaling relations

Let's connect to one last relationship: Hack's law

Branching Networks II

Finding γ :

And so we have:

$$\gamma = \ln \textit{R}_\textit{n} / \ln \textit{R}_\textit{s}$$

Proceeding in a similar fashion, we can show

$$\tau = \mathbf{2} - \ln \mathbf{\textit{R}_s} / \ln \mathbf{\textit{R}_n} = \mathbf{2} - \mathbf{1} / \gamma$$

Insert question from assignment 1 (\boxplus)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Branching Networks II

Hack's law: [6]

 $\ell \propto a^h$

- Typically observed that $0.5 \leq h \leq 0.7$.
- ▶ Use Horton laws to connect *h* to Horton ratios:

 $\ell_\omega \propto {\it R}^\omega_s$ and ${\it a}_\omega \propto {\it R}^\omega_n$

Observe:

 $\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s / \ln R_n}$

 $\propto \left(R_n^\omega
ight)^{\ln R_s / \ln R_n} \propto a_\omega^{\ln R_s / \ln R_n} \Rightarrow h = \ln R_s / \ln R_n$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Hack's law: [6]

 $\ell \propto a^h$

• Typically observed that $0.5 \leq h \leq 0.7$.

Use Horton laws to connect h to Horton ratios:

 $\ell_\omega \propto {\it R}^\omega_s$ and ${\it a}_\omega \propto {\it R}^\omega_n$

Observe:

 $\ell_\omega \propto oldsymbol{e}^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s / \ln R_n}$

 $\propto \left(R_n^\omega
ight)^{\ln R_s/\ln R_n} \propto a_\omega^{\ln R_s/\ln R_n} \Rightarrow h = \ln R_s/\ln R_n$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Hack's law: [6]

 $\ell \propto a^h$

- Typically observed that $0.5 \leq h \leq 0.7$.
- Use Horton laws to connect h to Horton ratios:

 $\ell_{\omega} \propto R_s^{\omega}$ and $a_{\omega} \propto R_n^{\omega}$

Observe:

 $\ell_{\omega} \propto oldsymbol{e}^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s / \ln R_n}$

 $\propto \left(R_n^\omega
ight)^{\ln R_s/\ln R_n}\propto a_\omega^{\ln R_s/\ln R_n}\Rightarrow h=\ln R_s/\ln R_n$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Hack's law: [6]

 $\ell \propto a^h$

- Typically observed that $0.5 \leq h \leq 0.7$.
- Use Horton laws to connect h to Horton ratios:

 $\ell_{\omega} \propto R_s^{\omega}$ and $a_{\omega} \propto R_n^{\omega}$

Observe:

 $\ell_{\omega} \propto oldsymbol{e}^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s / \ln R_n}$

 $\propto (R_n^{\,\omega})^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Hack's law: [6]

 $\ell \propto a^h$

- Typically observed that $0.5 \leq h \leq 0.7$.
- Use Horton laws to connect h to Horton ratios:

 $\ell_{\omega} \propto R_s^{\omega}$ and $a_{\omega} \propto R_n^{\omega}$

Observe:

$$\ell_\omega \propto oldsymbol{e}^{\omega \ln R_s} \propto \left(oldsymbol{e}^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

 $\propto (R_n^{\,\omega})^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Hack's law: [6]

 $\ell \propto a^h$

- Typically observed that $0.5 \leq h \leq 0.7$.
- Use Horton laws to connect h to Horton ratios:

 $\ell_{\omega} \propto R_s^{\omega}$ and $a_{\omega} \propto R_n^{\omega}$

Observe:

$$\ell_\omega \propto oldsymbol{e}^{\omega \ln R_s} \propto \left(oldsymbol{e}^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

 $\propto \left(R_n^{\omega}\right)^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow h = \ln R_s/\ln R_n$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Hack's law: [6]

 $\ell \propto a^h$

- Typically observed that $0.5 \leq h \leq 0.7$.
- Use Horton laws to connect h to Horton ratios:

 $\ell_{\omega} \propto R_s^{\omega}$ and $a_{\omega} \propto R_n^{\omega}$

Observe:

$$\ell_\omega \propto {m e}^{\omega \ln R_s} \propto \left({m e}^{\omega \ln R_n}
ight)^{\ln R_s / \ln R_n}$$

$$\propto \left(R_n^\omega
ight)^{\ln R_s / \ln R_n} \propto a_\omega^{\ln R_s / \ln R_n} \Rightarrow h = \ln R_s / \ln R_n$$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Hack's law: [6]

 $\ell \propto a^h$

- Typically observed that $0.5 \leq h \leq 0.7$.
- Use Horton laws to connect h to Horton ratios:

 $\ell_{\omega} \propto R_s^{\omega}$ and $a_{\omega} \propto R_n^{\omega}$

Observe:

$$\ell_{\omega} \propto \boldsymbol{e}^{\omega \ln R_s} \propto \left(\boldsymbol{e}^{\omega \ln R_n}
ight)^{\ln R_s / \ln R_n}$$

$$\propto (R_n^{\omega})^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Connecting exponents Only 3 parameters are independent: e.g., take *d*, *R_n*, and *R_s*

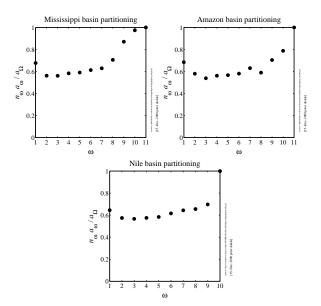
relation:	scaling relation/parameter: ^[2]
$\ell \sim L^d$	d
$T_k = T_1 (R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = R_s$
$n_{\omega}/n_{\omega+1}=R_n$	R _n
$ar{a}_{\omega+1}/ar{a}_{\omega}=R_a$	$R_a = R_n$
$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}=m{R}_\ell$	${\it R}_\ell = {\it R}_{\it s}$
$\ell \sim a^h$	$h = \log \frac{R_s}{\log R_n}$
$a\sim L^D$	D = d/h
$L_\perp \sim L^H$	H = d/h - 1
$P(a) \sim a^{- au}$	$ au = 2 - \mathbf{h}$
${\it P}(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^eta$	$\beta = 1 + h$
$\lambda \sim L^{arphi}$	$arphi = oldsymbol{d}$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 37/74 日 りへへ

Equipartitioning reexamined: Recall this story:



Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 38/74

Equipartitioning

• What about $P(a) \sim a^{-\tau}$?

Since $\tau > 1$, suggests no equipartitioning:

 $aP(a) \sim a^{-\tau+1} \neq \text{const}$

P(*a*) overcounts basins within basins...
while stream ordering separates basins...

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Equipartitioning

What about
 P(a) ~ a^{-τ} ?
 Since τ > 1, suggests no equipartitioning:
 aP(a) ~ a^{-τ+1} ≠ const

P(*a*) overcounts basins within basins...
while stream ordering separates basins...

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 39/74

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$
 ?

Since $\tau > 1$, suggests no equipartitioning:

 $aP(a) \sim a^{-\tau+1} \neq \text{const}$

P(a) overcounts basins within basins...

while stream ordering separates basins...

Branching Networks II

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$
 ?

Since $\tau > 1$, suggests no equipartitioning:

 $aP(a) \sim a^{-\tau+1} \neq \text{const}$

- P(a) overcounts basins within basins...
- while stream ordering separates basins...

Branching Networks II

Moving beyond the mean:

 Both Horton's laws and Tokunaga's law relate average properties, e.g.,

 $ar{s}_{\omega}/ar{s}_{\omega-1}=oldsymbol{R}_s$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Branching Networks II

Moving beyond the mean:

 Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_s$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Branching Networks II

Moving beyond the mean:

 Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_s$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 40/74 日 のへで

Moving beyond the mean:

 Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_s$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Branching Networks II

Moving beyond the mean:

 Both Horton's laws and Tokunaga's law relate average properties, e.g.,

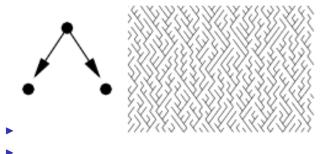
$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_s$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Branching Networks II

A toy model—Scheidegger's model

Directed random networks [11, 12]



$$P(\searrow) = P(\swarrow) = 1/2$$

- Flow is directed downwards
- Useful and interesting test case—more later...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

 $\quad \bullet \quad \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$ $\quad \bullet \quad \bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell Beferences

- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

$$\blacktriangleright \ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$

• $\bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$

Branching Networks II

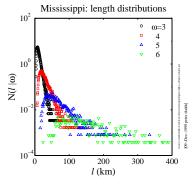
Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

$$\bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$

$$\bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$$



Scaling collapse works well for intermediate orders

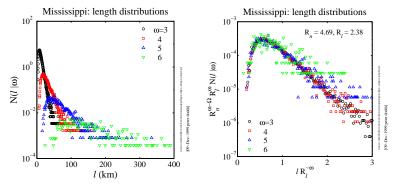
All moments grow exponentially with order

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

Frame 42/74

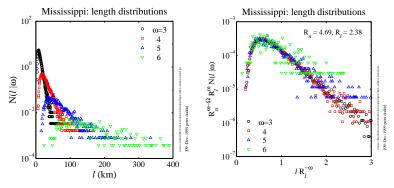


Scaling collapse works well for intermediate orders

All moments grow exponentially with order

Branching Networks II

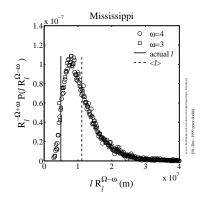
Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References



- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Branching Networks II

How well does overall basin fit internal pattern?

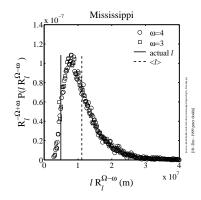


- Actual length = 4920 km (at 1 km res)
- Predicted Mean length
 = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %

Okay.

Branching Networks II

How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- Predicted Mean length
 = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %

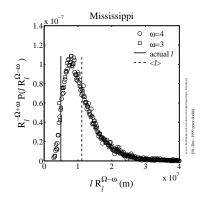
Okay.

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 43/74

How well does overall basin fit internal pattern?



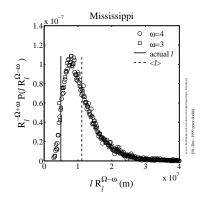
- Actual length = 4920 km (at 1 km res)
- Predicted Mean length
 = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %

Okay.

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

How well does overall basin fit internal pattern?



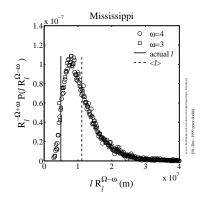
- Actual length = 4920 km (at 1 km res)
- Predicted Mean length
 = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %

Okay.

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- Predicted Mean length
 = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %

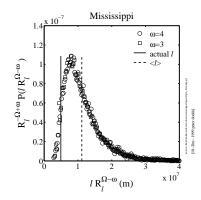
Okay.

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 43/74

How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- Predicted Mean length
 = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %
- Okay.

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 43/74

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10³ km):

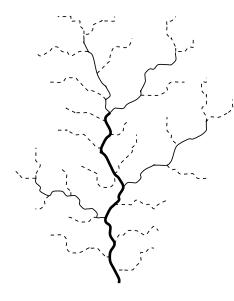
basin:	ℓ_{Ω}	$ar{\ell}_{\Omega}$	σ_ℓ	$\ell/ar{\ell}_\Omega$	$\sigma_\ell/ar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	а	\bar{a}_{Ω}	σ_{a}	$a/ar{a}_{\Omega}$	σ_a/\bar{a}_Ω
		75	°α		$\sigma_{a/a\Omega}$
Mississippi	2.74	7.55	5.58	0.36	0.74
Mississippi Amazon	2.74 5.40		~	,	•
		7.55	5.58	0.36	0.74
Amazon	5.40	7.55 9.07	5.58 8.04	0.36 0.60	0.74 0.89

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 44/74

Combining stream segments distributions:

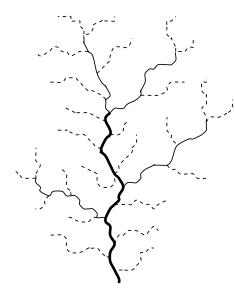


 Stream segments sum to give main stream lengths

$$\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$$

 P(l_ω) is a convolution of distributions for the s_ω Branching Networks II

Combining stream segments distributions:



 Stream segments sum to give main stream lengths

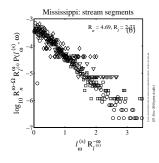
$$\ell_\omega = \sum_{\mu=1}^{\mu=\omega} s_\mu$$

P(ℓ_ω) is a convolution of distributions for the s_ω

Branching Networks II

Sum of variables ℓ_ω = ∑^{µ=ω}_{µ=1} s_µ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



$$egin{aligned} \mathcal{N}(s|\omega) &= rac{1}{R_n^\omega R_\ell^\omega} F\left(s/R_\ell^\omega
ight) \ F(x) &= e^{-x/\xi} \ \mathrm{ssissippi:} \ arepsilon &\simeq 900 \ \mathrm{m.} \end{aligned}$$

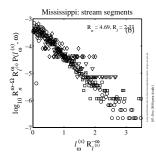
Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 46/74

Sum of variables ℓ_ω = ∑^{µ=ω}_{µ=1} s_µ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



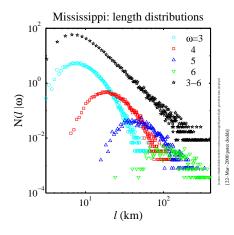
$$egin{aligned} \mathcal{N}(m{s}|\omega) &= rac{1}{R_n^\omega R_\ell^\omega} F\left(m{s}/R_\ell^\omega
ight) \ & F(x) &= e^{-x/\xi} \end{aligned}$$
 Mississippi: $\xi \simeq 900$ m.

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 46/74

 Next level up: Main stream length distributions must combine to give overall distribution for stream length



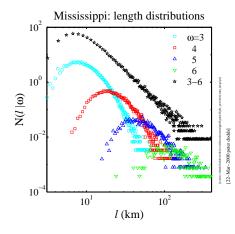
▶ $P(\ell) \sim \ell^{-\gamma}$

- Another round of convolutions^[3]
- Interesting...

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

 Next level up: Main stream length distributions must combine to give overall distribution for stream length



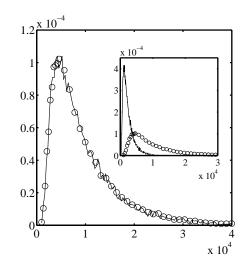
► $P(\ell) \sim \ell^{-\gamma}$

- Another round of convolutions^[3]
- Interesting...

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

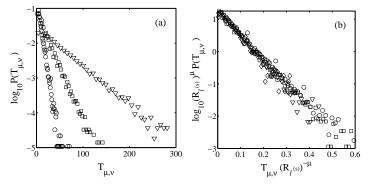
Number and area distributions for the Scheidegger model $P(n_{1,6})$ versus $P(a_6)$.



Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Scheidegger:



- Observe exponential distributions for $T_{\mu,\nu}$
- Scaling collapse works using R_s

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 49/74

Mississippi: (a) (b) $\log_{10} P(T_{\mu,v})$ Ľ, $\log_{10}({
m R}_l^{(s)})^{-v} P(T)$ 2 Ъ -ക 0 ച്ലറ്യായ യാറ 0.5 ∞ 0 0 000 000 0 80 0 0 20 60 40 0.5L $T_{\mu,\nu}^{2} \left(R_{l}^{\overline{3}}\right)^{\nu}$ 4 5 Т 'μ.v

Same data collapse for Mississippi...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 50/74 日 のへで

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- Exponentials arise from randomness.
- Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

Branching Networks II

Network architecture:

- Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

и

 $\mu - 1$

 $\mu - 2$

Frame 52/74

 Follow streams segments down stream from their beginning

Probability (or rate) of an order µ stream segment terminating is constant:

$$\widetilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- \blacktriangleright \Rightarrow random spatial distribution of stream segments

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order µ stream segment terminating is constant:

$$ilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

- Probability decays exponentially with stream order
 Inter-tributary lengths exponentially distributed
- \blacktriangleright \Rightarrow random spatial distribution of stream segments

Branching Networks II

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order µ stream segment terminating is constant:

$$ilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- \blacktriangleright \Rightarrow random spatial distribution of stream segments

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order µ stream segment terminating is constant:

$$ilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- \blacktriangleright \Rightarrow random spatial distribution of stream segments

Branching Networks II

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order µ stream segment terminating is constant:

$$ilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- \blacktriangleright \Rightarrow random spatial distribution of stream segments

Branching Networks II

 Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu,
u}) = ilde{
ho}_{\mu} inom{s_{\mu} - 1}{T_{\mu,
u}} p_{
u}^{T_{\mu,
u}} (1 -
ho_{
u} - ilde{
ho}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

where

- $p_{\nu} =$ probability of absorbing an order ν side stream
- $\tilde{\rho}_{\mu}$ = probability of an order μ stream terminating
- Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Branching Networks II

 Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu,
u}) = ilde{
ho}_{\mu} inom{s_{\mu} - 1}{T_{\mu,
u}} p_{
u}^{T_{\mu,
u}} (1 -
ho_{
u} - ilde{
ho}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

where

- p_{ν} = probability of absorbing an order ν side stream
- $\tilde{\rho}_{\mu} = \text{probability of an order } \mu$ stream terminating
- Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Branching Networks II

 Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu,
u}) = ilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu,
u}} p_{
u}^{T_{\mu,
u}} (1 - p_{
u} - ilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

where

- p_{ν} = probability of absorbing an order ν side stream
- $\tilde{\rho}_{\mu} =$ probability of an order μ stream terminating
- Approximation: depends on distance units of s_µ
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Branching Networks II

Now deal with thing:

$$P(s_{\mu}, T_{\mu, \nu}) = ilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu, \nu}} p_{
u}^{T_{\mu,
u}} (1 - p_{
u} - ilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

Set (x, y) = (s_µ, T_{µ,ν}) and q = 1 − p_ν − p̃_µ, approximate liberally.

Obtain

$$P(x,y) = Nx^{-1/2} \left[F(y/x) \right]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}$$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 55/74

Now deal with thing:

$$P(s_{\mu}, T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu,\nu} - 1}$$

Set (x, y) = (s_µ, T_{µ,ν}) and q = 1 − p_ν − p̃_µ, approximate liberally.

Obtain

$$P(x,y) = Nx^{-1/2} \left[F(y/x) \right]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}$$

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 55/74

Now deal with thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu, \nu}} p_{
u}^{T_{\mu,
u}} (1 - p_{
u} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

Set (x, y) = (s_µ, T_{µ,ν}) and q = 1 − p_ν − p̃_µ, approximate liberally.

Obtain

$$P(x,y) = Nx^{-1/2} \left[F(y/x) \right]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

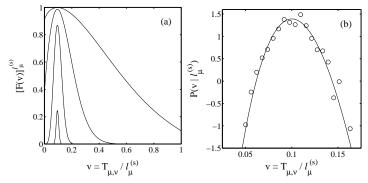
Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 55/74

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



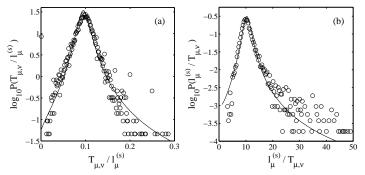
Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 56/74

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:

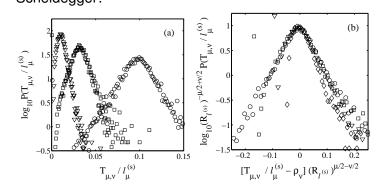


Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 57/74

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works: Scheidegger:



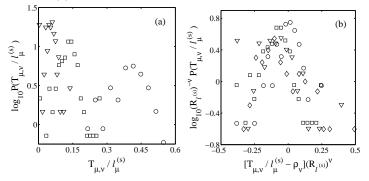
Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 58/74

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Mississippi:

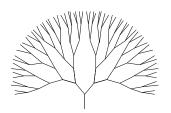


Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 59/74

Random subnetworks on a Bethe lattice [13]

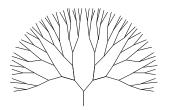


- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- ▶ So let's move on...

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- So let's move on...

Branching Networks II

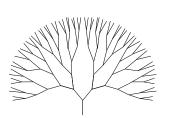
Random subnetworks on a Bethe lattice [13]

- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- ► So let's move on...

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Random subnetworks on a Bethe lattice [13]

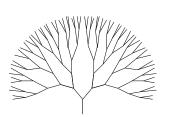


- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics ^[7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- So let's move on...

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Random subnetworks on a Bethe lattice [13]



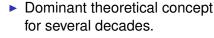
- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- So let's move on...

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

NAN.

Random subnetworks on a Bethe lattice [13]



- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- So let's move on...

Branching Networks II

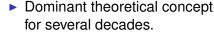
Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

৽৵৽

Frame 60/74

NN.

Random subnetworks on a Bethe lattice [13]



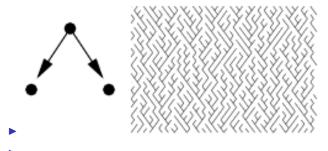
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- So let's move on...

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 60/74 日 のへへ

Directed random networks [11, 12]



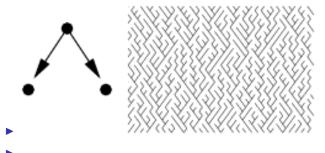
$P(\searrow) = P(\swarrow) = 1/2$

Functional form of all scaling laws exhibited but exponents differ from real world^[15, 16, 14] Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 61/74 日 のへで

Directed random networks [11, 12]



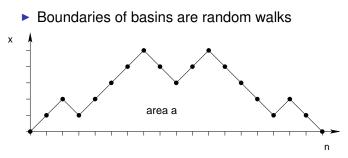
$$P(\searrow) = P(\swarrow) = 1/2$$

 Functional form of all scaling laws exhibited but exponents differ from real world ^[15, 16, 14] Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

A toy model—Scheidegger's model

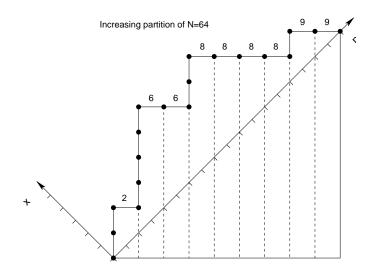
Random walk basins:



Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 62/74



Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

• Typical area for a walk of length *n* is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.

Note $\tau = 2 - h$ and $\gamma = 1/h$.

 \triangleright R_n and R_ℓ have not been derived analytically.

Branching Networks II

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n)\sim rac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

• Typical area for a walk of length *n* is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.

Note $\tau = 2 - h$ and $\gamma = 1/h$.

 \triangleright R_n and R_ℓ have not been derived analytically.

Branching Networks II

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n)\sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

• Typical area for a walk of length *n* is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.

• Note $\tau = 2 - h$ and $\gamma = 1/h$.

 \triangleright R_n and R_ℓ have not been derived analytically.

Branching Networks II

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n)\sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

• Typical area for a walk of length *n* is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.

• Note $\tau = 2 - h$ and $\gamma = 1/h$.

 \triangleright R_n and R_ℓ have not been derived analytically.

Branching Networks II

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n)\sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

• Typical area for a walk of length *n* is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.

• Note
$$\tau = 2 - h$$
 and $\gamma = 1/h$.

 \triangleright R_n and R_ℓ have not been derived analytically.

Branching Networks II

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n)\sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

• Typical area for a walk of length *n* is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- ▶ R_n and R_ℓ have not been derived analytically.

Branching Networks II

Rodríguez-Iturbe, Rinaldo, et al.^[10]

Landscapes h(x) evolve such that energy dissipation \vec{\vec{\vec{k}}} is minimized, where

$$\dot{arepsilon} \propto \int {
m d}ec{r}$$
 (flux) $imes$ (force) $\sim \sum_i a_i
abla h_i \sim \sum_i a_i^2$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

Branching Networks II

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes h(x) evolve such that energy dissipation \varepsilon is minimized, where

$$\dot{arepsilon} \propto \int \mathrm{d}ec{r} \ (\mathrm{flux}) imes (\mathrm{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

Branching Networks II

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes h(x) evolve such that energy dissipation \varepsilon is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d}ec{r} ext{ (flux)} imes ext{ (force)} \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

Branching Networks II

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes h(x) evolve such that energy dissipation \varepsilon is minimized, where

$$\dot{arepsilon} \propto \int {
m d}ec{r} ~({
m flux}) imes ({
m force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^2$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

Branching Networks II

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes h(x) evolve such that energy dissipation \varepsilon is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d}ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

Branching Networks II

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes h(x) evolve such that energy dissipation \varepsilon is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d}ec{r} ~(\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

Branching Networks II

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes h(x) evolve such that energy dissipation \varepsilon is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d}ec{r} ~(\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

Branching Networks II

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes h(x) evolve such that energy dissipation \varepsilon is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d}ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8]

Branching Networks II

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5–0.7	1.0–1.2

 $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity). Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 66/74

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ► Can take R_n, R_ℓ, and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and *d* are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ► Can take R_n, R_ℓ, and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and *d* are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Branching Networks II

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ► Can take R_n, R_ℓ, and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and *d* are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Branching Networks II

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ► Can take R_n, R_ℓ, and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and *d* are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Branching Networks II

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ► Can take R_n, R_ℓ, and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and *d* are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Branching Networks II

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ► Can take R_n, R_ℓ, and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only *h* = ln *R*_ℓ / ln *R_n* and *d* are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Branching Networks II

References I

- [1] H. de Vries, T. Becker, and B. Eckhardt.
 Power law distribution of discharge in ideal networks.
 Water Resources Research, 30(12):3541–3543,
 December 1994.
- [2] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. *Physical Review E*, 59(5):4865–4877, 1999. pdf (⊞)
- [3] P. S. Dodds and D. H. Rothman.
 Geometry of river networks. II. Distributions of component size and number.
 Physical Review E, 63(1):016116, 2001. pdf (⊞)
- [4] P. S. Dodds and D. H. Rothman.
 Geometry of river networks. III. Characterization of component connectivity.
 Physical Review E, 63(1):016117, 2001. pdf (III)

Branching Networks II

References II

[5] N. Goldenfeld.

Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics.

Addison-Wesley, Reading, Massachusetts, 1992.

[6] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. United States Geological Survey Professional Paper,

294-B:45–97, 1957.

[7] J. W. Kirchner.

Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. *Geology*, 21:591–594, July 1993.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 69/74 日 のへへ

References III

 [8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar.
 Universality classes of optimal channel networks. *Science*, 272:984–986, 1996. pdf (⊞)

[9] S. D. Peckham.

New results for self-similar trees with applications to river networks.

Water Resources Research, 31(4):1023–1029, April 1995.

[10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997. Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 70/74 日 のへへ

References IV

[11] A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15–20, 1967.

[12] A. E. Scheidegger. Theoretical Geomorphology. Springer-Verlag, New York, third edition, 1991.

[13] R. L. Shreve. Infinite topologically random channel networks. Journal of Geology, 75:178–186, 1967.

🔋 [14] H. Takayasu.

Steady-state distribution of generalized aggregation system with injection. *Physcial Review Letters*, 63(23):2563–2565,

December 1989.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 71/74 日 のへへ

References V

 [15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection. *Physical Review A*, 37(8):3110–3117, April 1988.
 [16] M. Takayasu and H. Takayasu. Apparent independency of an aggregation system with injection. *Physical Review A*, 39(8):4345–4347, April 1989.

 [17] D. G. Tarboton, R. L. Bras, and
 I. Rodríguez-Iturbe.
 Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso.
 Water Resources Research, 26(9):2243–4, September 1990. Branching Networks II

References VI

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. *Geophysical Bulletin of Hokkaido University*, 15:1–19, 1966.

📔 [19] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978.

🔋 [20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

References VII

[21] G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Branching Networks II

Horton ⇔ Tokunaga **Reducing Horton** Fluctuations Models References

Frame 74/74 Sac. P