Branching Networks II

Complex Networks, Course 303A, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Branching Networks II Outline

lorton ⇔

Models

Nutshell

References

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Frame 2/74

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$.

 Insert question from assignment 1 (\boxplus)
- ► To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga \rightarrow Horton [18, 19, 20, 9, 2]

Branching Networks II

Horton ⇔ Tokunaga

Frame 1/74

母 り00

Reducing Horton

luctuations

Models

Nutshell

References

Let us make them happy

We need one more ingredient:

Space-fillingness

- ► A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} = rac{\sum_{\omega=1}^{\Omega} n_{\omega} ar{s}_{\omega}}{a_{\Omega}}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

luctuation

Models

Nutshell

References

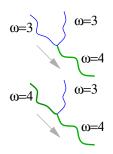
Frame 4/74

Frame 3/74

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ▶ Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega + 1...$
 - $ightharpoonup 2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$
 - $ightharpoonup n'_{\omega} T_{\omega'-\omega}$ streams of order ω do this

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuatior

Models

Nutshell

References

ng s II

Putting things together:

$$n_{\omega} = 2n_{\omega+1} + \sum_{\omega'=\omega+1}^{\Omega} T_{\omega'-\omega}n_{\omega'}$$
absorption

- ▶ Use Tokunaga's law and manipulate expression to create R_n 's.
- ▶ Insert question from assignment 1 (⊞)

More with the happy-making thing

Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding other Horton ratios

Connect Tokunaga to Rs

- Now use uniform drainage density ρ_{dd} .
- ▶ Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- ightharpoonup For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq
ho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

▶ Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Branching Networks II

Frame <u>5/74</u>

母 り00

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 7/74

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

▶ Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_T$$

► And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Branching Networks II

Frame 6/74

母 りへで

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 8/74

Horton and Tokunaga are happy

Some observations:

- ▶ R_n and R_ℓ depend on T_1 and R_T .
- ► Seems that *R_a* must as well...
- Suggests Horton's laws must contain some redundancy
- ▶ We'll in fact see that $R_a = R_n$.
- ► Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Joannig Tolatio

Models

Nutshell

References

Horton and Tokunaga are happy

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

 $R_T = R_\ell$.

$$T_1 = R_n - R_\ell - 2 + 2R_\ell/R_n$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)... Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

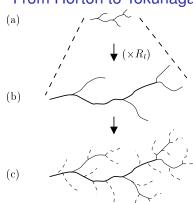
Nutchall

oforonooo

Frame 10/74

Horton and Tokunaga are friends

From Horton to Tokunaga^[2]



- Assume Horton's laws hold for number and length
- Start with an order ω stream
- Scale up by a factor of R_ℓ, orders increment
- Maintain drainage density by adding new order 1 streams

Branching Networks II

Horton ⇔ Tokunaga

Frame 9/74

母 り00

Reducing Horton

Scaling relation

Fluctuations

Models

Viitshell

References

Frame 11/74

Horton and Tokunaga are friends

... and in detail:

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right).$$

▶ For large ω , Tokunaga's law is the solution—let's check...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horto

Journa Tolune

uctuations

Models Nutshell

References

Frame 12/74

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$

$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

$$\simeq (R_{\ell} - 1) T_1 \frac{R_{\ell}^{k}}{R_{\ell} - 1} = T_1 R_{\ell}^{k} \quad ... \text{ yep.}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horto

Fluctuations

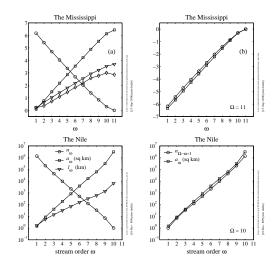
Models

Nutshel

References

Frame 13/74

Horton's laws of area and number:



- ► In right plots, stream number graph has been flipped vertically.
- ▶ Highly suggestive that $R_n \equiv R_a$...

Branching Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Measuring Horton ratios is tricky:

- How robust are our estimates of ratios?
- ► Rule of thumb: discard data for two smallest and two largest orders.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Mississippi:

ω range	R_n	R_a	R_ℓ	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

Frame 15/74

Branching Networks II

母 りへで

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Madala

Nutshell

Reference

Frame 16/74

Amazon:

ω range	R_n	R_a	R_ℓ	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

- $ightharpoonup a_{\Omega} \propto$ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)
- So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega ar{m{s}}_\omega/
ho_{
m dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot 1}_{n_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_{\omega}}$$

$$=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{\omega=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

References

Branching

Networks II

Reducing Horton

Frame 18/74

Reducing Horton's laws:

Continued ...

$$egin{aligned} \mathbf{a}_{\Omega} &\propto rac{R_n^{\Omega}}{R_s} ar{\mathbf{s}}_1 \sum_{\omega=1}^{\Omega} \left(rac{R_s}{R_n}
ight)^{\omega} \ &= rac{R_n^{\Omega}}{R_s} ar{\mathbf{s}}_1 rac{R_s}{R_n} rac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \end{aligned}$$

$$\sim R_n^{\Omega-1} ar{s}_1 rac{1}{1-(R_s/R_n)} ext{ as } \Omega \nearrow 0$$

▶ So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Branching Networks II

Frame 17/74

母 りへで

norton ⇔ Tokunaga

Reducing Horton

Scaling relations

luctuations

Models

Nutshell

References

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.

Reducing Horton's laws:

▶ Insert question from assignment 1 (⊞)

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Madala

Nutshell

References

Frame 20/74

雪 りくで

Frame 19/74

Equipartitioning:

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = {\sf const}}$$

Reason:

$$n_{\omega} \propto (R_n)^{-\omega}$$

$$ar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1}$$

Branching Networks II

lorton ⇔

Reducing Horton

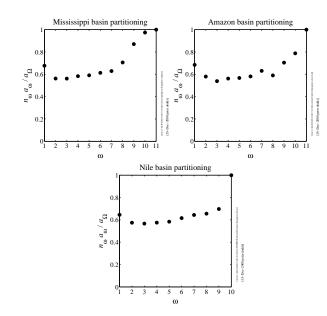
Models

References

Frame 21/74

母 り00

Equipartitioning: Some examples:



Networks II

Reducing Horton

Scaling relations

Models

Nutshell

References

Frame 22/74

Scaling laws

The story so far:

- ▶ Natural branching networks are hierarchical, self-similar structures
- ► Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}.$
- ▶ We have connected Tokunaga's and Horton's laws
- ightharpoonup Only two Horton laws are independent ($R_n = R_a$)
- ► Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Networks II

Tokunaga

Scaling relations

Reducing Horton

Models

Nutshell

References

Scaling laws

A little further...

- Ignore stream ordering for the moment
- ▶ Pick a random location on a branching network p.
- ▶ Each point *p* is associated with a basin and a longest stream length
- ▶ Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- ▶ Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks II

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 24/74

Scaling laws

Probability distributions with power-law decays

- ▶ We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- ▶ A big part of the story of complex systems
- ► Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Networks II

lorton ⇔ Reducing Horton

Scaling relations

Fluctuations

Models

References

Scaling laws

Connecting exponents

- ▶ We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on P(ℓ)...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω .
- lacktriangle (We know they deviate from strict laws for low ω and high ω but not too much.)
- ▶ Next: place stick between teeth. Bite stick. Proceed.

Networks II

Reducing Horton Scaling relations

Fluctuations

Models

References

Frame 26/74

Scaling laws

Finding γ :

- Often useful to work with cumulative distributions. especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \mathrm{d}\ell$$

$$P_{>}(\ell_*)=1-P(\ell<\ell_*)$$

Also known as the exceedance probability.

Networks II

Frame 25/74

母 りゅつ

lorton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

Scaling laws

Finding γ :

- ▶ The connection between P(x) and $P_{>}(x)$ when P(x)has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\sf max}} {\ell^{-\gamma}} {
m d} \ell$$

$$= \left. rac{\ell^{-\gamma+1}}{-\gamma+1} \right|_{\ell=\ell_*}^{\ell_{\max}}$$

$$\propto \ell_*^{-\gamma+1}$$
 for $\ell_{\text{max}} \gg \ell_*$

Branching Networks II

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 28/74

Scaling laws

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- ▶ Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate $P_{>}(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

Use Horton's law of stream segments: $s_{\omega}/s_{\omega-1}=R_{s}...$

Networks II

lorton ⇔

Reducing Horton

Scaling relations

Models

Nutshell

References

Frame 29/74 母 りゅつ

Scaling laws

Finding γ :

- ▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = rac{ extstyle N_{>}(\ell_{\omega};\Delta)}{ extstyle N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- ► So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} rac{(1\cdot R_{n}^{\Omega-\omega'})(ar{s}_{1}\cdot R_{s}^{\omega'-1})}{}$$

Networks II

lorton ⇔ Tokunaga .

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 30/74

回 り90

Scaling laws

Finding γ :

We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1\cdot R_{n}^{\Omega-\omega'})(ar{s}_{1}\cdot R_{s}^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega - \omega'$.
- ▶ Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Networks II

lorton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

References

Frame 31/74

Scaling laws

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(rac{R_{s}}{R_{n}}
ight)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(rac{R_{n}}{R_{s}}
ight)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_{n}}{R_{s}}
ight)^{\Omega-\omega} \propto \left(rac{R_{n}}{R_{s}}
ight)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$

Networks II

lorton ⇔

Reducing Horton

Scaling relations

Models

References

Frame 32/74

Scaling laws

Finding γ :

► Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} \, = e^{-\omega \ln(R_n/R_s)}$$

- ▶ Need to express right hand side in terms of ℓ_{ω} .
- ▶ Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

•

$$\ell_\omega \propto R_\ell^\omega = R_s^\omega = e^{\omega \ln R_s}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 33/74

Scaling laws

Finding γ :

► Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

•

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R_s$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$= \ell_{\omega}^{-\ln R_n/\ln R_s + 1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Frame 34/74

Branching

Networks II

Reducing Horton

Scaling relations

Fluctuations

Nutshell

References

Scaling laws

Finding γ :

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

▶ Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question from assignment 1 (⊞)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

References

Frame 35/74

回 りゅつ

Scaling laws

Hack's law: [6]

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect *h* to Horton ratios:

$$\ell_\omega \propto R_{s}^\omega$$
 and $a_\omega \propto R_{n}^\omega$

Observe:

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^\omega)^{\ln R_{\mathrm{s}}/\ln R_n} \propto a_\omega^{\ln R_{\mathrm{s}}/\ln R_n} \Rightarrow \boxed{h = \ln R_{\mathrm{s}}/\ln R_n}$$

Branching Networks II

Horton ⇔

Tokunaga

Scaling relations

Fluctuations

Models

Nutshell

References

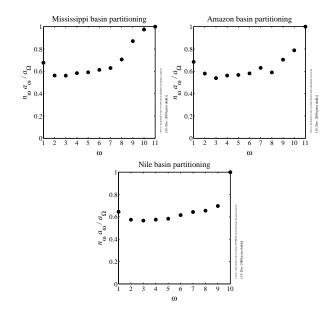
Frame 36/74

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: [2]
$\ell \sim L^d$	d
$T_k = T_1(R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = R_s$
$n_{\omega}/n_{\omega+1}=R_n$	R_n
$ar{a}_{\omega+1}/ar{a}_{\omega}=R_a$	$R_a = R_n$
$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}=R_{\ell}$	$R_\ell = {\color{red}R_{ extsf{s}}}$
$\ell \sim {\it a}^{\it h}$	$h = \log R_s / \log R_n$
$a\sim L^D$	D = d/h
${\it L}_{\perp} \sim {\it L}^{\it H}$	H = d/h - 1
$P(a) \sim a^{- au}$	au = 2 - h
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim \pmb{a}^eta$	$\beta = 1 + h$
$\lambda \sim {\cal L}^{arphi}$	$arphi={ extbf{d}}$

Equipartitioning reexamined: Recall this story:



Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$
 ?

▶ Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

- ▶ *P*(*a*) overcounts basins within basins...
- ▶ while stream ordering separates basins...

Branching Networks II

Tokunaga
Reducing Horton
Scaling relations

Fluctuatior

Models Nutshell

References

Frame 39/74

一 りへで

Fluctuations

Moving beyond the mean:

▶ Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_{s}$$

- Natural generalization to consideration relationships between probability distributions
- ➤ Yields rich and full description of branching network structure
- ▶ See into the heart of randomness...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Madala

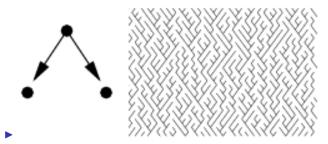
Nutshell

References

Frame 40/74

A toy model—Scheidegger's model

Directed random networks [11, 12]



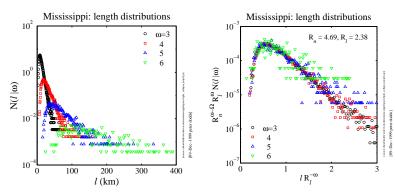
$$P(\searrow) = P(\swarrow) = 1/2$$

- ► Flow is directed downwards
- ▶ Useful and interesting test case—more later...

Generalizing Horton's laws

$$\blacktriangleright \ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow \textit{N}(\ell|\omega) = (R_{n}R_{\ell})^{-\omega}F_{\ell}(\ell/R_{\ell}^{\omega})$$

$$lack ar a_\omega \propto (R_a)^\omega \Rightarrow {\sf N}(a|\omega) = (R_n^2)^{-\omega} {\sf F}_a(a/R_n^\omega)$$

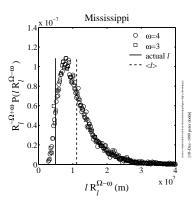


- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Branching Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Generalizing Horton's laws

► How well does overall basin fit internal pattern?



- ► Actual length = 4920 km (at 1 km res)
- Predicted Mean length= 11100 km
- ► Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %
- Okay.

Generalizing Horton's laws

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10³ km):

basin:	ℓ_{Ω}	$ar{\ell}_{\Omega}$	σ_ℓ	$\ell/ar{\ell}_{\Omega}$	$\sigma_\ell/ar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	а	$ar{a}_\Omega$	σ_{a}	$a/ar{a}_\Omega$	$\sigma_{a}/ar{a}_{\Omega}$
Mississippi	<i>a</i> 2.74	\bar{a}_{Ω} 7.55	<i>σ</i> _a 5.58	a/\bar{a}_{Ω} 0.36	σ_a/\bar{a}_Ω 0.74
Mississippi Amazon				•	•
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36 0.60	0.74 0.89

Branching Networks II

Tokunaga

Scaling relations

Fluctuations

/lodels

Nutshell

References

Frame 44/74

₽ ୬५୯

Branching

Networks II

Reducing Horton

lorton ⇔

Fluctuations

References

Frame 41/74

Networks II

Reducing Horton

Tokunaga

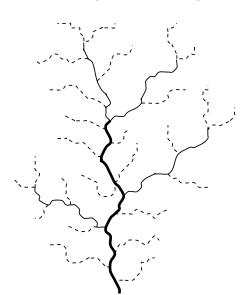
Fluctuations

References

Models

Models

Combining stream segments distributions:



 Stream segments sum to give main stream lengths

 $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$

▶ $P(\ell_{\omega})$ is a convolution of distributions for the s_{ω}

Branching Networks II

Horton ⇔ Tokunaga Beducing H

Scaling relations

Fluctuations

Models

References

Frame 45/74

Networks II

Reducing Horton

Fluctuations

References

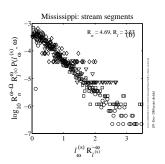
Frame 47/74

回 りゅつ

Models Nutshell Generalizing Horton's laws

▶ Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



$$N(s|\omega) = rac{1}{R_n^\omega R_\ell^\omega} F\left(s/R_\ell^\omega
ight)$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq$ 900 m.

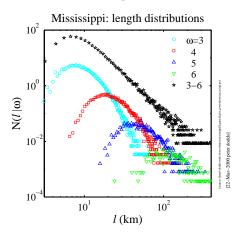
Horton ⇔
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Networks II

Frame 46/74

Generalizing Horton's laws

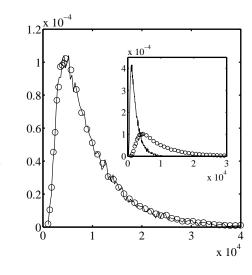
► Next level up: Main stream length distributions must combine to give overall distribution for stream length



- $ightharpoonup P(\ell) \sim \ell^{-\gamma}$
- Another round of convolutions [3]
- ► Interesting...

Generalizing Horton's laws

Number and area distributions for the Scheidegger model $P(n_{1,6})$ versus $P(a_6)$.



Branching Networks II

Horton ⇔ Tokunaga

Scaling relations

Fluctuations

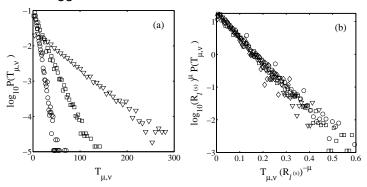
Models

Nutshell References

Frame 48/74

Generalizing Tokunaga's law

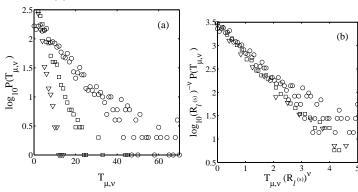
Scheidegger:



- ▶ Observe exponential distributions for $T_{\mu,\nu}$
- ► Scaling collapse works using R_s

Generalizing Tokunaga's law

Mississippi:



Same data collapse for Mississippi...

Branching Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Generalizing Tokunaga's law

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- Exponentials arise from randomness.
- ▶ Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

Branching Networks II

Frame 49/74

母 りへで

Branching

Networks II

Reducing Horton

Fluctuations

References

Models

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Frame 51/74

回 りゅつ

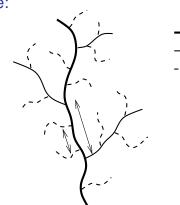
Models

References

Generalizing Tokunaga's law

Network architecture:

- Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments



Branching Networks II

Frame 50/74

母 りへで

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References

Frame 52/74

Generalizing Tokunaga's law

- Follow streams segments down stream from their beginning
- ▶ Probability (or rate) of an order μ stream segment terminating is constant:

$$ilde{p}_{\mu} \simeq 1/(R_{
m s})^{\mu-1} \xi_{
m s}$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- ► ⇒ random spatial distribution of stream segments

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Generalizing Tokunaga's law

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu,
u}) = ilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu,
u}} p_{
u}^{T_{\mu,
u}} (1 - p_{
u} - ilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

where

- $p_{\nu}=$ probability of absorbing an order ν side stream
- $ightharpoonup ilde{
 ho}_{\mu} = ext{probability of an order } \mu ext{ stream terminating}$
- ightharpoonup Approximation: depends on distance units of s_{μ}
- ► In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 54/74

Branching

Networks II

Reducing Horton

Scaling relations

Fluctuations

References

Models Nutshell

Γokunaαa

Generalizing Tokunaga's law

► Now deal with thing:

$$P(s_{\mu},\,T_{\mu,
u}) = ilde{p}_{\mu}inom{s_{\mu}-1}{T_{\mu,
u}}p_{
u}^{T_{\mu,
u}}(1-p_{
u}- ilde{p}_{\mu})^{s_{\mu}-T_{\mu,
u}-1}$$

- Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 p_{\nu} \tilde{p}_{\mu}$, approximate liberally.
- Obtain

$$P(x, y) = Nx^{-1/2} [F(y/x)]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

Branching Networks II

Frame 53/74

母 り00

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

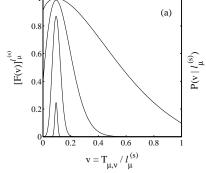
References

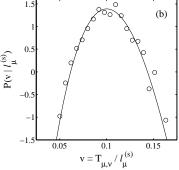
Frame 55/74

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



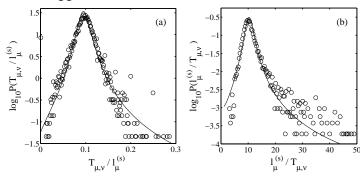


Frame 56/74

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



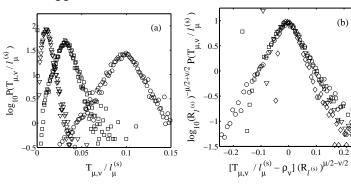
Branching Networks II

Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



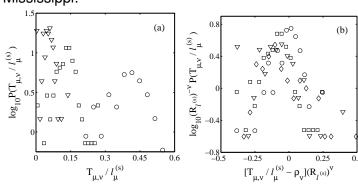
Branching
Networks II

Horton ⇔
Tokunaga
Reducing Horton
Scaling relations
Models
Nutshell
References

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Mississippi:



Branching Networks II

Tokunaga
Reducing Horton
Scaling relations
Fluctuations

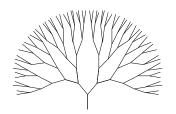
Models

References

Frame 59/74

Models

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- ► Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- ▶ So let's move on...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

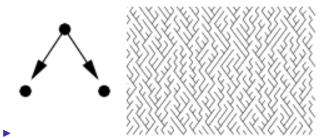
Nutshell

References

Frame 60/74

Scheidegger's model

Directed random networks [11, 12]



 $P(\searrow) = P(\swarrow) = 1/2$

► Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

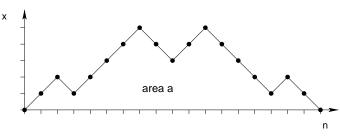
Nutshell

References

A toy model—Scheidegger's model

Random walk basins:

Boundaries of basins are random walks



Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuation

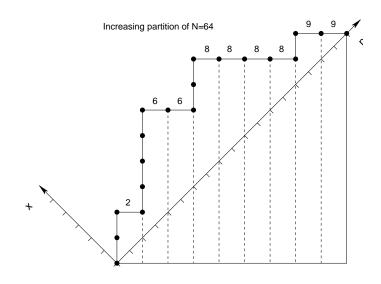
Models

Nutshell

References

Frame 62/74

Scheidegger's model



Branching Networks II

Frame 61/74

雪 り へ (や

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

References

Frame 63/74

母 りへで

Scheidegger's model

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$
.

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- ▶ Note $\tau = 2 h$ and $\gamma = 1/h$.
- ▶ R_n and R_ℓ have not been derived analytically.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 64/74

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [10]

► Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- Landscapes obtained numerically give exponents near that of real networks.
- ▶ But: numerical method used matters.
- ▶ And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

luctuations

Models

Nutshell

References

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5–0.7	1.0–1.2

 $h\Rightarrow \ell \propto a^h$ (Hack's law). $d\Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity).

Branching Networks II Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References Frame 66/74 ♣ ♀ ♀ ♀ ❖

Nutshell

Branching networks II Key Points:

- ► Horton's laws and Tokunaga law all fit together.
- ▶ nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- ► For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

iuctuation

Models Nutshell

_ .

Frame 67/74

References I

H. de Vries, T. Becker, and B. Eckhardt.
Power law distribution of discharge in ideal networks.

Water Resources Research, 30(12):3541–3543,
December 1994

P. S. Dodds and D. H. Rothman.
Unified view of scaling laws for river networks.

Physical Review E, 59(5):4865–4877, 1999. pdf (H)

P. S. Dodds and D. H. Rothman. Geometry of river networks. II. Distributions of component size and number. Physical Review E, 63(1):016116, 2001. pdf (⊞)

P. S. Dodds and D. H. Rothman. Geometry of river networks. III. Characterization of component connectivity. Physical Review E, 63(1):016117, 2001. pdf (⊞) Branching Networks II

Tokunaga
Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell References

Frame 68/74

∄ ୬৭৫

References II

N. Goldenfeld.

Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics.

Addison-Wesley, Reading, Massachusetts, 1992.

J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

J. W. Kirchner.

Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. *Geology*, 21:591–594, July 1993.

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relation

Models

Nutshell

References

A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar.

Universality classes of optimal channel networks. *Science*, 272:984–986, 1996. pdf (⊞)

S. D. Peckham.

New results for self-similar trees with applications to river networks.

Water Resources Research, 31(4):1023–1029, April 1995.

I. Rodríguez-Iturbe and A. Rinaldo.

Fractal River Basins: Chance and Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.

Branching Networks II

Tokunaga

Reducing Horton

Elizationa

Models

Nutshell

References

Frame 70/74

References IV

A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15-20, 1967.

A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

R. L. Shreve.
Infinite topologically random channel networks. *Journal of Geology*, 75:178–186, 1967.

H. Takayasu.
Steady-state distribution of generalized aggregation system with injection.

Physcial Review Letters, 63(23):2563–2565, December 1989.

Branching Networks II

Frame 69/74

母 り00

Horton ⇔
Tokunaga
Reducing Ho

Scaling relations

Fluctuations

Models Nutshell

References

Frame 71/74

母 りゅつ

References V

H. Takayasu, I. Nishikawa, and H. Tasaki.

Power-law mass distribution of aggregation systems with injection.

Physical Review A, 37(8):3110-3117, April 1988.

M. Takayasu and H. Takayasu.

Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345–4347, April 1989.

D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. *Water Resources Research*, 26(9):2243–4, September 1990.

Branching Networks II

Horton ⇔ Tokunaga

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 72/74

References VI

E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1-19, 1966.

E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1-27, 1978.

E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984.

Branching Networks II

References

Frame 73/74

回 り900

References VII

G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Branching Networks II

References

Frame 74/74

