Branching Networks II
 Complex Networks, Course 303A, Spring, 2009

Prof. Peter Dodds
Department of Mathematics \& Statistics
University of Vermont

Outline

Horton \Leftrightarrow Tokunaga

Reducing Horton

Scaling relations
Fluctuations

Models

Nutshell

References

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References Tokunaga has two parameters.

- R_{n}, R_{a}, R_{ℓ}, and R_{s} versus T_{1} and R_{T}. One simple redundancy: $R_{\ell}=R_{s}$. Insert question from assignment 1 (\boxplus)
- To make a connection, clearest approach is to start with Tokunaga's law...
- Known result: Tokunaga \rightarrow Horton ${ }^{[18, ~ 19, ~ 20, ~ 9, ~} 2$]

Let us make them happy

We need one more ingredient：

Space－fillingness

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
－For river networks：
Drainage density $\rho_{\mathrm{dd}}=$ inverse of typical distance between channels in a landscape．
－In terms of basin characteristics：

$$
\rho_{\mathrm{dd}} \simeq \frac{\sum \text { stream segment lengths }}{\text { basin area }}=\frac{\sum_{\omega=1}^{\Omega} n_{\omega} \overline{\mathrm{s}}_{\omega}}{a_{\Omega}}
$$

More with the happy－making thing

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

1．Running into another stream of order ω and generating a stream of order $\omega+1$ ．．．
－ $2 n_{\omega+1}$ streams of order ω do this
2．Running into and being absorbed by a stream of higher order $\omega^{\prime}>\omega \ldots$
－$n_{\omega}^{\prime} T_{\omega^{\prime}-\omega}$ streams of order ω do this

Frame 5／74
官 \quad のく

More with the happy－making thing

Putting things together：

$$
n_{\omega}=\underbrace{2 n_{\omega+1}}_{\text {generation }}+\sum_{\omega^{\prime}=\omega+1}^{\Omega} \underbrace{T_{\omega^{\prime}-\omega} n_{\omega^{\prime}}}_{\text {absorption }}
$$

－Use Tokunaga＇s law and manipulate expression to create R_{n}＇s．
－Insert question from assignment 1 （ \boxplus ）
－Solution：

$$
R_{n}=\frac{\left(2+R_{T}+T_{1}\right) \pm \sqrt{\left(2+R_{T}+T_{1}\right)^{2}-8 R_{T}}}{2}
$$

（The larger value is the one we want．）

Finding other Horton ratios

Connect Tokunaga to R_{s}

- Now use uniform drainage density ρ_{dd}.
- Assume side streams are roughly separated by distance $1 / \rho_{\mathrm{dd}}$.
- For an order ω stream segment, expected length is

$$
\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1}\left(1+\sum_{k=1}^{\omega-1} T_{k}\right)
$$

- Substitute in Tokunaga's law $T_{k}=T_{1} R_{T}^{k-1}$:

$$
\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1}\left(1+T_{1} \sum_{k=1}^{\omega-1} R_{T}^{k-1}\right) \propto R_{T}^{\omega}
$$

Horton and Tokunaga are happy

Altogether then：

$$
\Rightarrow \bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{T} \Rightarrow R_{S}=R_{T}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
－Recall $R_{\ell}=R_{s}$ so
References

$$
R_{\ell}=R_{T}
$$

－And from before：

$$
R_{n}=\frac{\left(2+R_{T}+T_{1}\right)+\sqrt{\left(2+R_{T}+T_{1}\right)^{2}-8 R_{T}}}{2}
$$

Horton and Tokunaga are happy

Some observations:

- R_{n} and R_{ℓ} depend on T_{1} and R_{T}.
- Seems that R_{a} must as well...
- Suggests Horton's laws must contain some redundancy
- We'll in fact see that $R_{a}=R_{n}$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions.

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations

Horton and Tokunaga are happy

The other way round

－Note：We can invert the expresssions for R_{n} and R_{ℓ} to find Tokunaga＇s parameters in terms of Horton＇s parameters．
－

$$
R_{T}=R_{\ell},
$$

$$
T_{1}=R_{n}-R_{\ell}-2+2 R_{\ell} / R_{n} .
$$

－Suggests we should be able to argue that Horton＇s laws imply Tokunaga＇s laws（if drainage density is uniform）．．．

Horton and Tokunaga are friends

From Horton to Tokunaga ${ }^{[2]}$
Horton \Leftrightarrow
Tokunaga
（b）

－Assume Horton＇s laws hold for number and length
－Start with an order ω stream
－Scale up by a factor of R_{ℓ} ，orders increment
－Maintain drainage density by adding new order 1 streams

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Horton and Tokunaga are friends

．．．and in detail：

－Must retain same drainage density．
－Add an extra（ $R_{\ell}-1$ ）first order streams for each original tributary．
－Since number of first order streams is now given by T_{k+1} we have：

$$
T_{k+1}=\left(R_{\ell}-1\right)\left(\sum_{i=1}^{k} T_{i}+1\right)
$$

－For large ω ，Tokunaga＇s law is the solution－let＇s check．．．

Horton and Tokunaga are friends

Just checking：

 into－Substitute Tokunaga＇s law $T_{i}=T_{1} R_{T}^{i-1}=T_{1} R_{\ell}^{i-1}$

$$
\begin{gathered}
T_{k+1}=\left(R_{\ell}-1\right)\left(\sum_{i=1}^{k} T_{i}+1\right) \\
T_{k+1}=\left(R_{\ell}-1\right)\left(\sum_{i=1}^{k} T_{1} R_{\ell}^{i-1}+1\right) \\
=\left(R_{\ell}-1\right) T_{1}\left(\frac{R_{\ell}{ }^{k}-1}{R_{\ell}-1}+1\right) \\
\simeq\left(R_{\ell}-1\right) T_{1} \frac{R_{\ell}{ }^{k}}{R_{\ell}-1}=T_{1} R_{\ell}^{k} \quad \ldots \text { yep. }
\end{gathered}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Horton＇s laws of area and number：

Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell

－In right plots，stream number graph has been flipped vertically．
－Highly suggestive that $R_{n} \equiv R_{a} \ldots$

Measuring Horton ratios is tricky:

- How robust are our estimates of ratios?
- Rule of thumb: discard data for two smallest and two largest orders.

Mississippi：

ω range	R_{n}	R_{a}	R_{ℓ}	R_{s}	R_{a} / R_{n}
$[2,3]$	5.27	5.26	2.48	2.30	1.00
$[2,5]$	4.86	4.96	2.42	2.31	1.02
$[2,7]$	4.77	4.88	2.40	2.31	1.02
$[3,4]$	4.72	4.91	2.41	2.34	1.04
$[3,6]$	4.70	4.83	2.40	2.35	1.03
$[3,8]$	4.60	4.79	2.38	2.34	1.04
$[4,6]$	4.69	4.81	2.40	2.36	1.02
$[4,8]$	4.57	4.77	2.38	2.34	1.05
$[5,7]$	4.68	4.83	2.36	2.29	1.03
$[6,7]$	4.63	4.76	2.30	2.16	1.03
$[7,8]$	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ / μ	0.045	0.027	0.015	0.031	0.024

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Amazon:

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Reducing Horton＇s laws：

Rough first effort to show $R_{n} \equiv R_{a}$ ：

－$a_{\Omega} \propto$ sum of all stream lengths in a order Ω basin （assuming uniform drainage density）
－So：

$$
\begin{gathered}
a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}} \\
\propto \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot \overbrace{1}^{n_{\Omega}}}_{n_{\omega}} \underbrace{\bar{s}_{1} \cdot R_{s}^{\omega-1}}_{\bar{s}_{\omega}} \\
=\frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega}
\end{gathered}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Frame 18／74
官 つのく

Reducing Horton's laws:

Continued ...

$$
\begin{aligned}
& a_{\Omega} \propto \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega} \\
= & \frac{R_{n}^{\Omega}}{R_{s}} \bar{s}_{1} \frac{R_{s}}{R_{n}} \frac{1-\left(R_{s} / R_{n}\right)^{\Omega}}{1-\left(R_{s} / R_{n}\right)} \\
\sim & R_{n}^{\Omega-1} \bar{s}_{1} \frac{1}{1-\left(R_{s} / R_{n}\right)} \text { as } \Omega
\end{aligned}
$$

- So, a_{Ω} is growing like R_{n}^{Ω} and therefore:

$$
R_{n} \equiv R_{a}
$$

Reducing Horton＇s laws：

－．．．But this only a rough argument as Horton＇s laws do not imply a strict hierarchy
－Need to account for sidebranching．
－Insert question from assignment 1 （ \boxplus ）

Equipartitioning：

Intriguing division of area：

－Observe：Combined area of basins of order ω independent of ω ．
－Not obvious：basins of low orders not necessarily contained in basis on higher orders．
－Story：

$$
R_{n} \equiv R_{a} \Rightarrow n_{\omega} \bar{a}_{\omega}=\mathrm{const}
$$

－Reason：

$$
\begin{gathered}
n_{\omega} \propto\left(R_{n}\right)^{-\omega} \\
\overline{\mathrm{a}}_{\omega} \propto\left(R_{a}\right)^{\omega} \propto n_{\omega}^{-1}
\end{gathered}
$$

Equipartitioning:

Some examples:

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Frame 22/74
官 つQc

Scaling laws

The story so far：
Horton \Leftrightarrow
Tokunaga
－Natural branching networks are hierarchical， self－similar structures
－Hierarchy is mixed
－Tokunaga＇s law describes detailed architecture： $T_{k}=T_{1} R_{T}^{k-1}$ ．
－We have connected Tokunaga＇s and Horton＇s laws
－Only two Horton laws are independent $\left(R_{n}=R_{a}\right)$
－Only two parameters are independent：
$\left(T_{1}, R_{T}\right) \Leftrightarrow\left(R_{n}, R_{S}\right)$

Scaling laws

A little further．．．

－Ignore stream ordering for the moment
－Pick a random location on a branching network p ．
－Each point p is associated with a basin and a longest stream length
－Q：What is probability that the p＇s drainage basin has area a ？$P(a) \propto a^{-\tau}$ for large a
－Q：What is probability that the longest stream from p has length ℓ ？$P(\ell) \propto \ell^{-\gamma}$ for large ℓ
－Roughly observed： $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \gamma \lesssim 2.0$

Scaling laws

Probability distributions with power－law decays

－We see them everywhere：
－Earthquake magnitudes（Gutenberg－Richter law）
－City sizes（Zipf＇s law）
－Word frequency（Zipf＇s law）${ }^{[21]}$
－Wealth（maybe not－at least heavy tailed）
－Statistical mechanics（phase transitions）${ }^{[5]}$
－A big part of the story of complex systems
－Arise from mechanisms：growth，randomness， optimization，．．．
－Our task is always to illuminate the mechanism．．．

Scaling laws

Connecting exponents

－We have the detailed picture of branching networks （Tokunaga and Horton）
－Plan：Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga／Horton story ${ }^{[17, ~ 1, ~ 2] ~}$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
－Let＇s work on $P(\ell)$ ．．．
－Our first fudge：assume Horton＇s laws hold throughout a basin of order Ω ．
－（We know they deviate from strict laws for low ω and high ω but not too much．）
－Next：place stick between teeth．Bite stick．Proceed．

Scaling laws

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$
\begin{gathered}
P_{>}\left(\ell_{*}\right)=P\left(\ell>\ell_{*}\right)=\int_{\ell=\ell_{*}}^{\ell_{\max }} P(\ell) \mathrm{d} \ell \\
P_{>}\left(\ell_{*}\right)=1-P\left(\ell<\ell_{*}\right)
\end{gathered}
$$

- Also known as the exceedance probability.

Scaling laws

Finding γ :

- The connection between $P(x)$ and $P_{>}(x)$ when $P(x)$ has a power law tail is simple:
- Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_{*}

$$
\begin{gathered}
P_{>}\left(\ell_{*}\right)=\int_{\ell=\ell_{*}}^{\ell_{\max }} P(\ell) \mathrm{d} \ell \\
\sim \int_{\ell=\ell_{*}}^{\ell_{\max }} \ell^{-\gamma} \mathrm{d} \ell \\
=\left.\frac{\ell^{-\gamma+1}}{-\gamma+1}\right|_{\ell=\ell_{*}} ^{\ell_{\max }} \\
\propto \ell_{*}^{-\gamma+1} \text { for } \ell_{\max } \gg \ell_{*}
\end{gathered}
$$

Scaling laws

Finding γ ：

－Aim：determine probability of randomly choosing a point on a network with main stream length $>\ell_{*}$
－Assume some spatial sampling resolution Δ
－Landscape is broken up into grid of $\Delta \times \Delta$ sites
－Approximate $P_{>}\left(\ell_{*}\right)$ as

$$
P_{>}\left(\ell_{*}\right)=\frac{N_{>}\left(\ell_{*} ; \Delta\right)}{N_{>}(0 ; \Delta)}
$$

where $N_{>}\left(\ell_{*} ; \Delta\right)$ is the number of sites with main stream length $>\ell_{*}$ ．
－Use Horton＇s law of stream segments：
$s_{\omega} / s_{\omega-1}=R_{s} \ldots$

Scaling laws

Finding γ ：

－Set $\ell_{*}=\ell_{\omega}$ for some $1 \ll \omega \ll \Omega$ ．

$$
P_{>}\left(\ell_{\omega}\right)=\frac{N_{>}\left(\ell_{\omega} ; \Delta\right)}{N_{>}(0 ; \Delta)} \simeq \frac{\sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} s_{\omega^{\prime}} / \Delta}{\sum_{\omega^{\prime}=1}^{\Omega} n_{\omega^{\prime}} s_{\omega^{\prime}} / \Delta}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
－Δ＇s cancel
－Denominator is $a_{\Omega} \rho_{\mathrm{dd}}$ ，a constant．
－So．．．using Horton＇s laws．．．

$$
P_{>}\left(\ell_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega} n_{\omega^{\prime}} s_{\omega^{\prime}} \simeq \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(1 \cdot R_{n}^{\Omega-\omega^{\prime}}\right)\left(\bar{s}_{1} \cdot R_{s}^{\omega^{\prime}-1}\right)
$$

Scaling laws

Finding γ ：

－We are here：

$$
P_{>}\left(\ell_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(1 \cdot R_{n}^{\Omega-\omega^{\prime}}\right)\left(\bar{s}_{1} \cdot R_{s}^{\omega^{\prime}-1}\right)
$$

－Cleaning up irrelevant constants：

$$
P_{>}\left(\ell_{\omega}\right) \propto \sum_{\omega^{\prime}=\omega+1}^{\Omega}\left(\frac{R_{s}}{R_{n}}\right)^{\omega^{\prime}}
$$

－Change summation order by substituting
$\omega^{\prime \prime}=\Omega-\omega^{\prime}$ ．
－Sum is now from $\omega^{\prime \prime}=0$ to $\omega^{\prime \prime}=\Omega-\omega-1$ （equivalent to $\omega^{\prime}=\Omega$ down to $\omega^{\prime}=\omega+1$ ）

Scaling laws

Finding γ ：
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations

$$
P_{>}\left(\ell_{\omega}\right) \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{S}}{R_{n}}\right)^{\Omega-\omega^{\prime \prime}} \propto \sum_{\omega^{\prime \prime}=0}^{\Omega-\omega-1}\left(\frac{R_{n}}{R_{s}}\right)^{\omega^{\prime \prime}}
$$

－Since $R_{n}>R_{s}$ and $1 \ll \omega \ll \Omega$ ，

$$
P_{>}\left(\ell_{\omega}\right) \propto\left(\frac{R_{n}}{R_{S}}\right)^{\Omega-\omega} \propto\left(\frac{R_{n}}{R_{S}}\right)^{-\omega}
$$

again using $\sum_{i=0}^{n-1} a^{i}=\left(a^{n}-1\right) /(a-1)$

Scaling laws

Finding γ ：

－Nearly there：

$$
P_{>}\left(\ell_{\omega}\right) \propto\left(\frac{R_{n}}{R_{S}}\right)^{-\omega}=e^{-\omega \ln \left(R_{n} / R_{s}\right)}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
－Need to express right hand side in terms of ℓ_{ω} ．
－Recall that $\ell_{\omega} \simeq \bar{\ell}_{1} R_{\ell}^{\omega-1}$ ．

$$
\ell_{\omega} \propto R_{\ell}^{\omega}=R_{s}^{\omega}=e^{\omega \ln R_{s}}
$$

Scaling laws

Finding γ ：

－Therefore：

$$
P_{>}\left(\ell_{\omega}\right) \propto e^{-\omega \ln \left(R_{n} / R_{s}\right)}=\left(e^{\omega \ln R_{s}}\right)^{-\ln \left(R_{n} / R_{s}\right) / \ln \left(R_{s}\right)}
$$

$$
\begin{gathered}
\propto \ell_{\omega}-\ln \left(R_{n} / R_{s}\right) / \ln R_{s} \\
=\ell_{\omega}^{-\left(\ln R_{n}-\ln R_{s}\right) / \ln R_{s}} \\
=\ell_{\omega}^{-\ln R_{n} / \ln R_{s}+1} \\
=\ell_{\omega}^{-\gamma+1}
\end{gathered}
$$

Scaling laws

Finding γ ：

Horton \Leftrightarrow
Tokunaga
Reducing Horton
－And so we have：

$$
\gamma=\ln R_{n} / \ln R_{s}
$$

－Proceeding in a similar fashion，we can show

$$
\tau=2-\ln R_{S} / \ln R_{n}=2-1 / \gamma
$$

Insert question from assignment 1 （ \boxplus ）
－Such connections between exponents are called scaling relations
－Let＇s connect to one last relationship：Hack＇s law

Scaling laws

Hack's law: ${ }^{[6]}$

Horton \Leftrightarrow
Tokunaga
Reducing Horton

$$
\ell \propto a^{h}
$$

- Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- Use Horton laws to connect h to Horton ratios:

$$
\ell_{\omega} \propto R_{s}^{\omega} \text { and } a_{\omega} \propto R_{n}^{\omega}
$$

- Observe:

$$
\begin{gathered}
\ell_{\omega} \propto e^{\omega \ln R_{s}} \propto\left(e^{\omega \ln R_{n}}\right)^{\ln R_{s} / \ln R_{n}} \\
\propto\left(R_{n}^{\omega}\right)^{\ln R_{s} / \ln R_{n}} \propto a_{\omega}^{\ln R_{s} / \ln R_{n}} \Rightarrow h=\ln R_{s} / \ln R_{n}
\end{gathered}
$$

Connecting exponents

Only 3 parameters are independent：
e．g．，take d, R_{n} ，and R_{s}

relation：scaling relation／parameter：${ }^{[2]}$

$$
\begin{array}{cl}
\ell \sim L^{d} & d \\
T_{k}=T_{1}\left(R_{T}\right)^{k-1} & T_{1}=R_{n}-R_{s}-2+2 R_{s} / R_{n} \\
& R_{T}=R_{S} \\
n_{\omega} / n_{\omega+1}=R_{n} & R_{n} \\
\bar{a}_{\omega+1} / \bar{a}_{\omega}=R_{a} & R_{a}=R_{n} \\
\bar{\ell}_{\omega+1} / \bar{\ell}_{\omega}=R_{\ell} & R_{\ell}=R_{S} \\
\ell \sim a^{h} & h=\log R_{s} / \log R_{n} \\
a \sim L^{D} & D=d / h \\
L_{\perp} \sim L^{H} & H=d / h-1 \\
P(a) \sim a^{-\tau} & \tau=2-h \\
P(\ell) \sim \ell^{-\gamma} & \gamma=1 / h \\
\Lambda \sim a^{\beta} & \beta=1+h \\
\lambda \sim L^{\varphi} & \varphi=d
\end{array}
$$

Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Frame 37／74
司 $つ Q く$

Equipartitioning reexamined：

Recall this story：

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Frame 38／74
司 つのく

Equipartitioning

- What about

$$
P(a) \sim a^{-\tau} \quad ?
$$

- Since $\tau>1$, suggests no equipartitioning:

$$
a P(a) \sim a^{-\tau+1} \neq \text { const }
$$

- $P(a)$ overcounts basins within basins...
- while stream ordering separates basins...

Fluctuations

Moving beyond the mean:

Horton \Leftrightarrow
Tokunaga

- Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$
\bar{s}_{\omega} / \bar{s}_{\omega-1}=R_{s}
$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

A toy model－Scheidegger＇s model

Directed random networks ${ }^{[11, ~ 12]}$
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

$$
P(\searrow)=P(\swarrow)=1 / 2
$$

－Flow is directed downwards
－Useful and interesting test case－more later．．．

Generalizing Horton＇s laws

－ $\bar{\ell}_{\omega} \propto\left(R_{\ell}\right)^{\omega} \Rightarrow N(\ell \mid \omega)=\left(R_{n} R_{\ell}\right)^{-\omega} F_{\ell}\left(\ell / R_{\ell}^{\omega}\right)$
－ $\bar{a}_{\omega} \propto\left(R_{a}\right)^{\omega} \Rightarrow N(a \mid \omega)=\left(R_{n}^{2}\right)^{-\omega} F_{a}\left(a / R_{n}^{\omega}\right)$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
－Scaling collapse works well for intermediate orders
－All moments grow exponentially with order

Generalizing Horton＇s laws

－How well does overall basin fit internal pattern？

－Actual length $=4920 \mathrm{~km}$ （at 1 km res）
－Predicted Mean length
$=11100 \mathrm{~km}$
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
－Predicted Std dev＝ 5600 km
－Actual length／Mean length＝ 44 \％
－Okay．

Generalizing Horton＇s laws

Comparison of predicted versus measured main stream lengths for large scale river networks（in $10^{3} \mathrm{~km}$ ）：

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Combining stream segments distributions：

－Stream segments sum to give main stream lengths

$$
\ell_{\omega}=\sum_{\mu=1}^{\mu=\omega} s_{\mu}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
－$P\left(\ell_{\omega}\right)$ is a convolution of distributions for the s_{ω}

Generalizing Horton＇s laws

－Sum of variables $\ell_{\omega}=\sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions：

$$
N(\ell \mid \omega)=N(s \mid 1) * N(s \mid 2) * \cdots * N(s \mid \omega)
$$

Horton \Leftrightarrow

Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

$$
\begin{gathered}
N(s \mid \omega)=\frac{1}{R_{n}^{\omega} R_{\ell}^{\omega}} F\left(s / R_{\ell}^{\omega}\right) \\
F(x)=e^{-x / \xi}
\end{gathered}
$$

Mississippi：$\xi \simeq 900 \mathrm{~m}$ ．

Generalizing Horton＇s laws

－Next level up：Main stream length distributions must combine to give overall distribution for stream length

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
－$P(\ell) \sim \ell^{-\gamma}$
－Another round of convolutions ${ }^{[3]}$
－Interesting．．．

Generalizing Horton＇s laws

Number and area distributions for the Scheidegger model $P\left(n_{1,6}\right)$ versus $P\left(a_{6}\right)$ ．

Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Frame 48／74
司 つQく

Generalizing Tokunaga's law

Scheidegger:

Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

- Observe exponential distributions for $T_{\mu, \nu}$
- Scaling collapse works using R_{S}

Generalizing Tokunaga＇s law

Mississippi：

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
－Same data collapse for Mississippi．．．

Generalizing Tokunaga＇s law

So

$$
P\left(T_{\mu, \nu}\right)=\left(R_{S}\right)^{\mu-\nu-1} P_{t}\left[T_{\mu, \nu} /\left(R_{S}\right)^{\mu-\nu-1}\right]
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
where

$$
\begin{aligned}
& P_{t}(z)=\frac{1}{\xi_{t}} e^{-z / \xi_{t}} . \\
& P\left(s_{\mu}\right) \Leftrightarrow P\left(T_{\mu, \nu}\right)
\end{aligned}
$$

－Exponentials arise from randomness．
－Look at joint probability $P\left(s_{\mu}, T_{\mu, \nu}\right)$ ．

Generalizing Tokunaga＇s law

Network architecture：
－Inter－tributary lengths
exponentially distributed
－Leads to random spatial distribution of stream segments

$\longrightarrow \mu$
—— $\mu-1$
－－－－$\mu-2$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Tokunaga＇s law

－Follow streams segments down stream from their beginning
－Probability（or rate）of an order μ stream segment terminating is constant：

$$
\tilde{p}_{\mu} \simeq 1 /\left(R_{S}\right)^{\mu-1} \xi_{s}
$$

－Probability decays exponentially with stream order
－Inter－tributary lengths exponentially distributed
－\Rightarrow random spatial distribution of stream segments

Generalizing Tokunaga＇s law

－Joint distribution for generalized version of Tokunaga＇s law：

$$
P\left(s_{\mu}, T_{\mu, \nu}\right)=\tilde{p}_{\mu}\binom{s_{\mu}-1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}}\left(1-p_{\nu}-\tilde{p}_{\mu}\right)^{s_{\mu}-T_{\mu, \nu}-1}
$$

－$p_{\nu}=$ probability of absorbing an order ν side stream
－$\tilde{p}_{\mu}=$ probability of an order μ stream terminating
－Approximation：depends on distance units of s_{μ}
－In each unit of distance along stream，there is one chance of a side stream entering or the stream terminating．

Generalizing Tokunaga's law

- Now deal with thing:

$$
P\left(s_{\mu}, T_{\mu, \nu}\right)=\tilde{p}_{\mu}\binom{s_{\mu}-1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}}\left(1-p_{\nu}-\tilde{p}_{\mu}\right)^{s_{\mu}-T_{\mu, \nu}-1}
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell

- Set $(x, y)=\left(s_{\mu}, T_{\mu, \nu}\right)$ and $q=1-p_{\nu}-\tilde{p}_{\mu}$, approximate liberally.
- Obtain

$$
P(x, y)=N x^{-1 / 2}[F(y / x)]^{x}
$$

where

$$
F(v)=\left(\frac{1-v}{q}\right)^{-(1-v)}\left(\frac{v}{p}\right)^{-v}
$$

Generalizing Tokunaga＇s law

－Checking form of $P\left(s_{\mu}, T_{\mu, \nu}\right)$ works：
Scheidegger：

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Frame 56／74
司 \quad のく

Generalizing Tokunaga＇s law

－Checking form of $P\left(s_{\mu}, T_{\mu, \nu}\right)$ works：

Scheidegger：

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Frame 57／74
司 $つ$ のく

Generalizing Tokunaga＇s law

－Checking form of $P\left(s_{\mu}, T_{\mu, \nu}\right)$ works：
Scheidegger：

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Generalizing Tokunaga＇s law

－Checking form of $P\left(s_{\mu}, T_{\mu, \nu}\right)$ works：
Mississippi：

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations

Models
Nutshell
References

Models

Random subnetworks on a Bethe lattice ${ }^{[13]}$

－Dominant theoretical concept for several decades．
－Bethe lattices are fun and tractable．
－Led to idea of＂Statistical
 inevitability＂of river network statistics ${ }^{[7]}$
－But Bethe lattices unconnected with surfaces．
－In fact，Bethe lattices \simeq infinite dimensional spaces （oops）．
－So let＇s move on．．．

Scheidegger＇s model

Directed random networks ${ }^{[11,12]}$

$$
P(\searrow)=P(\swarrow)=1 / 2
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
－Functional form of all scaling laws exhibited but exponents differ from real world ${ }^{[15,16,14]}$

A toy model-Scheidegger's model

Random walk basins:

- Boundaries of basins are random walks

Scheidegger's model

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Frame 63/74

- ๑ -

Scheidegger＇s model

Prob for first return of a random walk in（1＋1） dimensions（from CSYS／MATH 300）：

$$
P(n) \sim \frac{1}{2 \sqrt{\pi}} n^{-3 / 2} .
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References
－Typical area for a walk of length n is $\propto n^{3 / 2}$ ：

$$
\ell \propto a^{2 / 3}
$$

－Find $\tau=4 / 3, h=2 / 3, \gamma=3 / 2, d=1$ ．
－Note $\tau=2-h$ and $\gamma=1 / h$ ．
－R_{n} and R_{ℓ} have not been derived analytically．

Optimal channel networks

Rodríguez－Iturbe，Rinaldo，et al．${ }^{[10]}$

－Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized，where

$$
\dot{\varepsilon} \propto \int \mathrm{d} \vec{r}(\text { flux }) \times(\text { force }) \sim \sum_{i} a_{i} \nabla h_{i} \sim \sum_{i} a_{i}^{\gamma}
$$

－Landscapes obtained numerically give exponents near that of real networks．
－But：numerical method used matters．
－And：Maritan et al．find basic universality classes are that of Scheidegger，self－similar，and a third kind of random network ${ }^{[8]}$

Theoretical networks

Summary of universality classes：

network	h	d
Non－convergent flow	1	1
Directed random	$2 / 3$	1
Undirected random	$5 / 8$	$5 / 4$
Self－similar	$1 / 2$	1
OCN＇s（I）	$1 / 2$	1
OCN＇s（II）	$2 / 3$	1
OCN＇s（III）	$3 / 5$	1
Real rivers	$0.5-0.7$	$1.0-1.2$

$$
h \Rightarrow \ell \propto a^{h} \text { (Hack's law). }
$$

$$
d \Rightarrow \ell \propto L_{\|}^{d} \text { (stream self-affinity) }
$$

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Frame 66／74
『 \ddagger のく

Nutshell

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- Can take R_{n}, R_{ℓ}, and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h=\ln R_{\ell} / \ln R_{n}$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

References I

睩 [1] H. de Vries, T. Becker, and B. Eckhardt.

Power law distribution of discharge in ideal networks.
Water Resources Research, 30(12):3541-3543, December 1994.
(2] P. S. Dodds and D. H. Rothman.
Unified view of scaling laws for river networks. Physical Review E, 59(5):4865-4877, 1999. pdf (\boxplus)

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
(${ }^{-1}$ [3] P. S. Dodds and D. H. Rothman.
Geometry of river networks. II. Distributions of component size and number.
Physical Review E, 63(1):016116, 2001. pdf (\boxplus)
(${ }^{-1}$ [4] P. S. Dodds and D. H. Rothman.
Geometry of river networks. III. Characterization of component connectivity.
Physical Review E, 63(1):016117, 2001. pdf (\boxplus)

References II

［1］［5］N．Goldenfeld．
Lectures on Phase Transitions and the
Renormalization Group，volume 85 of Frontiers in Physics．
Addison－Wesley，Reading，Massachusetts， 1992.
周［6］J．T．Hack．
Studies of longitudinal stream profiles in Virginia and Maryland．
United States Geological Survey Professional Paper， 294－B：45－97， 1957.
围［7］J．W．Kirchner．
Statistical inevitability of Horton＇s laws and the apparent randomness of stream channel networks． Geology，21：591－594，July 1993.

References III

E［8］A．Maritan，F．Colaiori，A．Flammini，M．Cieplak， and J．R．Banavar．
Universality classes of optimal channel networks．
Science，272：984－986，1996．pdf (\boxplus)
［［9］S．D．Peckham．
New results for self－similar trees with applications to river networks．
Water Resources Research，31（4）：1023－1029，April 1995.
［10］I．Rodríguez－Iturbe and A．Rinaldo．
Fractal River Basins：Chance and Self－Organization． Cambridge University Press，Cambrigde，UK， 1997.

References IV

［11］A．E．Scheidegger．
A stochastic model for drainage patterns into an intramontane trench．
Bull．Int．Assoc．Sci．Hydrol．，12（1）：15－20， 1967.
［12］A．E．Scheidegger．
Theoretical Geomorphology．
Springer－Verlag，New York，third edition， 1991.
Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
［13］R．L．Shreve．
Infinite topologically random channel networks．
Journal of Geology，75：178－186， 1967.
E［14］H．Takayasu．
Steady－state distribution of generalized aggregation system with injection．
Physcial Review Letters，63（23）：2563－2565，
December 1989.

References V

［15］H．Takayasu，I．Nishikawa，and H．Tasaki． Power－law mass distribution of aggregation systems with injection． Physical Review A，37（8）：3110－3117，April 1988.

圊［16］M．Takayasu and H．Takayasu． Apparent independency of an aggregation system with injection．
Physical Review A，39（8）：4345－4347，April 1989.
囯［17］D．G．Tarboton，R．L．Bras，and
I．Rodríguez－Iturbe．
Comment on＂On the fractal dimension of stream networks＂by Paolo La Barbera and Renzo Rosso．
Water Resources Research，26（9）：2243－4， September 1990.

References VI

［18］E．Tokunaga．
The composition of drainage network in Toyohira
River Basin and the valuation of Horton＇s first law．
Geophysical Bulletin of Hokkaido University，15：1－19， 1966.

Horton \Leftrightarrow
Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Consideration on the composition of drainage networks and their evolution．
Geographical Reports of Tokyo Metropolitan University，13：G1－27， 1978.
圊［20］E．Tokunaga．
Ordering of divide segments and law of divide segment numbers．
Transactions of the Japanese Geomorphological Union，5（2）：71－77， 1984.

Frame 73／74
回 つQく

References VII

國［21］G．K．Zipf．
Human Behaviour and the Principle of Least－Effort． Addison－Wesley，Cambridge，MA， 1949.

