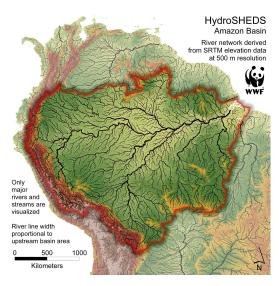
Branching Networks I Complex Networks, Course 303A, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Branching networks are everywhere...



http://hydrosheds.cr.usgs.gov/ (III)

Introduction

Branching

Networks I

ntroduction

Definitions

Frame 1/37

B 990

Branching

Networks I

Introduction

Definitions

Frame 3/37

P

Branching networks are useful things:

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- River networks (our focus)
- Cardiovascular networks
- Plants
- Evolutionary trees
- Organizations (only in theory...)

Introduction Definitions Allometry Laws Stream Orderin Horton's Laws Tokunaga's Law

Branching

Networks

Frame 2/37 日 のへへ

Branching networks are everywhere...

http://en.wikipedia.org/wiki/Image:Applebox.JPG (⊞)

Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law

Branching

Frame 4/37

Geomorphological networks

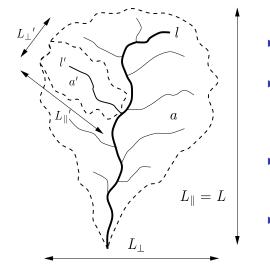
Definitions

- Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

Frame 5/37

日 りへで

Basic basin quantities: *a*, *I*, L_{\parallel} , L_{\perp} :



 a = drainage basin area

 length of longest (main) stream (which may be fractal)

• $L = L_{\parallel} =$ longitudinal length of basin

• $L = L_{\perp}$ = width of basin

Branching

Networks

ntroduction

Branching

Networks

ntroduction

Definitions

Allometry

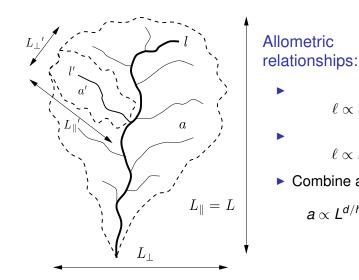
Isometry: dimensions scale linearly with each other.

Allometry: dimensions scale nonlinearly.

Frame 7/37

日 りへや

Basin allometry



Ilometric
plationships:Definitions
Allometry
Laws $\ell \propto a^h$ Stream Or
Horton's L
Tokunaga's $\ell \propto L^d$ Reference $\ell \propto L^{d/h} \equiv L^D$

Frame 8/37

'Laws'

► Hack's law (1957)^[2]:

 $\ell \propto a^h$

reportedly 0.5 < h < 0.7

Scaling of main stream length with basin size:

 $\ell \propto L_{\parallel}^d$

reportedly 1.0 < d < 1.1

Basin allometry:

 $L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$

 $D < 2 \rightarrow$ basins elongate.

Reported parameter values:^[1]

Parameter:	Real networks:
R _n	3.0–5.0
R _a	3.0–6.0
$R_\ell = R_T$	1.5–3.0
T_1	1.0–1.5
d	1.1 ± 0.01
D	$\textbf{1.8}\pm\textbf{0.1}$
h	0.50-0.70
au	1.43 ± 0.05
γ	$\textbf{1.8}\pm\textbf{0.1}$
Н	0.75–0.80
β	0.50-0.70
arphi	1.05 ± 0.05

Branching Networks I
Introduction
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Nutshell
References
Frame 9/37
୍ ମ ୍ଚ ୬୯୯

Branching Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Frame 11/37

There are a few more 'laws':^[1]

Relation:	Name or description:	Introduction
		Definitions
$T_k = T_1 (R_T)^k$	Tokunaga's law	Allometry
$\ell \sim \hat{L}^d$	self-affinity of single channels	Laws
$n_{\omega}/n_{\omega+1}=R_n$	Horton's law of stream numbers	Stream Ordering Horton's Laws
$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}=m{R}_{\ell}$	Horton's law of main stream lengths	Tokunaga's Laws
$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$	Horton's law of basin areas	Nutshell
$ar{s}_{\omega+1}/ar{s}_{\omega}=R_{s}$	Horton's law of stream segment lengths	References
$L_{\perp} \sim L^H$	scaling of basin widths	
$P(a) \sim a^{- au}$	probability of basin areas	
${m P}(\ell) \sim \ell^{-\gamma}$	probability of stream lengths	
$\ell \sim a^h$	Hack's law	
$a\sim L^D$	scaling of basin areas	
$\Lambda \sim a^eta$	Langbein's law	
$\lambda \sim L^{arphi}$	variation of Langbein's law	
		Frame 10/37

Kind of a mess...

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...

Branching Networks I

न १२०९ कि

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Frame 12/37

Stream Ordering:

Method for describing network architecture:

- Introduced by Horton (1945)^[3]
- Modified by Strahler (1957)^[6]
- Term: Horton-Strahler Stream Ordering^[4]
- Can be seen as iterative trimming of a network.

Stream Ordering:

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- Use symbol $\omega = 1, 2, 3, \dots$ for stream order.

Frame 14/37 ∄ - • ා < (~

Branching

Networks

ntroduction

Stream Ordering

Definitions

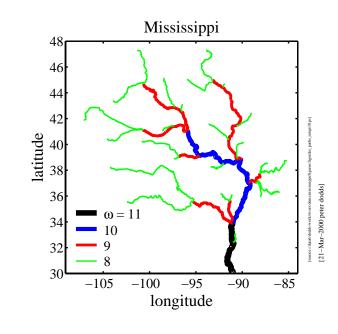


- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

Frame 15/37

B 9900

Stream Ordering—A large example:



Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws

Branching

Tokunaga's Law Nutshell References

Frame 16/37

Stream Ordering:

Another way to define ordering:

- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet. the resulting stream has order incremented by 1 $(\omega + 1).$

latitude

-105

- If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.
- Simple rule:

$$\omega_{3} = \max(\omega_{1}, \omega_{2}) + \delta_{\omega_{1}, \omega_{2}}$$

where δ is the Kronecker delta.

Stream Ordering:

Utility:

- Stream ordering helpfully discretizes a network.
- Goal: understand network architecture

One problem:

- Resolution of data messes with ordering
- Micro-description changes (e.g., order of a basin may increase)
- ... but relationships based on ordering appear to be robust to resolution changes.

ntroduction Definitions Stream Ordering

Branching

Networks

Frame 18/37

Networks ntroduction Definitions Stream Ordering

Branching

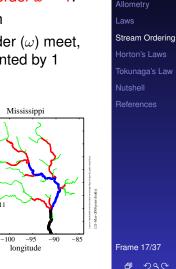
order ω .

Resultant definitions:

- A basin of order Ω has n_{α} streams (or sub-basins) of
 - \triangleright $n_{\omega} > n_{\omega+1}$
- An order ω basin has area a_{ω} .
- An order ω basin has a main stream length ℓ_{ω} .
- An order ω basin has a stream segment length s_{ω}
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega - 1$ streams

Stream Ordering:

Frame 20/37



Branching

Networks I

Branching

Networks I

ntroduction

Definitions

Allometry Laws

Stream Ordering

Frame 19/37

B 990

ntroduction

Definitions

Horton's laws

Self-similarity of river networks

▶ First quantified by Horton (1945)^[3], expanded by Schumm (1956)^[5]

Three laws:

Horton's law of stream numbers:

 $|n_{\omega}/n_{\omega+1}=R_n>1|$

► Horton's law of stream lengths:

 $|\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_{\ell}>1$

Horton's law of basin areas:

 $\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a>1$

Horton's laws

Similar story for area and length:

$$ar{a}_\omega = ar{a}_1 e^{(\omega-1) \ln R_a}$$

 $\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega-1) \ln R_{\ell}}$

As stream order increases, number drops and area and length increase.

Branching Networks I
Introduction
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Nutshell
References
Frame 21/37
う ゆ く ゆ く

Networks I ntroduction Definitions Allometry Laws Horton's Laws

Frame 23/37

B 9900

Branching

Horton's laws

Horton's laws

A few more things:

basins.

network...

Horton's Ratios:

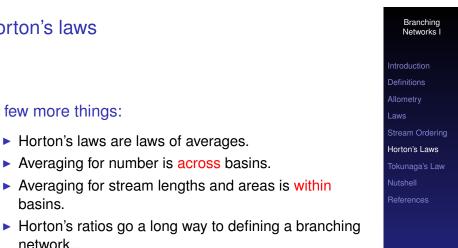
► So... Horton's laws are defined by three ratios:

 R_n, R_ℓ , and R_a .

Horton's laws describe exponential decay or growth:

 $n_{\omega} = n_{\omega-1}/R_n$ $= n_{\omega - 2} / R_n^2$ $= n_1/R_n^{\omega-1}$ $= n_1 e^{-(\omega-1) \ln R_n}$

> Frame 22/37 **日** りへで



But we need one other piece of information...

Horton's laws are laws of averages.

Averaging for number is across basins.

Branching Networks

> ntroduction Definitions Horton's Laws

Frame 24/37

Horton's laws

A bonus law:

Horton's law of stream segment lengths:

 $ar{s}_{\omega+1}/ar{s}_{\omega}=R_{s}>1$

• Can show that $R_s = R_\ell$.

Horton's laws-at-large

Blood networks:

- Horton's laws hold for sections of cardiovascular networks
- Measuring such networks is tricky and messy...
- Vessel diameters obey an analogous Horton's law.

Laws	4. «
Stream Ordering	3.
Horton's Laws	2
Tokunaga's Law	
Nutshell	
References	
Frame 25/37	

Branching

Networks I

ntroduction

न १२०९ कि

Branching

Networks I

ntroduction

Definitions

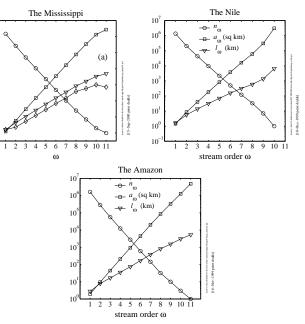
Horton's Laws

Frame 27/37

日 りへで

Definitions

Horton's laws in the real world:



Branching Networks I ntroduction Definitions

Laws Stream Ordering Horton's Laws Tokunaga's Law

References

Branching

Networks

Horton's laws

Observations:

Horton's ratios vary:

Rn	3.0–5.0
R _a	3.0–6.0
R_ℓ	1.5–3.0

- No accepted explanation for these values.
- Horton's laws tell us how quantities vary from level to level ...
- ... but they don't explain how networks are structured.

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

Frame 28/37

Tokunaga's law

Delving deeper into network architecture:

- Tokunaga (1968) identified a clearer picture of network structure ^[7, 8, 9]
- ► As per Horton-Strahler, use stream ordering.
- Focus: describe how streams of different orders connect to each other.
- ► Tokunaga's law is also a law of averages.

Branching Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Frame 29/37

B 990

Network Architecture

Definition:

- *T*_{μ,ν} = the average number of side streams of order
 ν that enter as tributaries to streams of order μ
- ▶ μ, ν = 1, 2, 3, ...
- ▶ $\mu \ge \nu + \mathbf{1}$
- ► Recall each stream segment of order µ is 'generated' by two streams of order µ - 1
- These generating streams are not considered side streams.

Branching

Networks

ntroduction

Tokunaga's Law

Definitions

Network Architecture

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

 $T_{\mu,
u} = T_{\muu}$

Property 2: Number of side streams grows exponentially with difference in orders:

 $T_{\mu,\nu} = T_1 (R_T)^{\mu-\nu-1}$

▶ We usually write Tokunaga's law as:

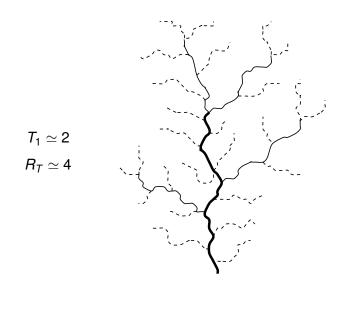
$$\boxed{T_k = T_1 (R_T)^{k-1}}$$
 where $R_T \simeq$

2

Branching Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

P

Tokunaga's law—an example:

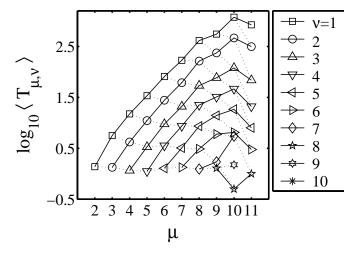


Branching Networks

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

The Mississippi

A Tokunaga graph:



Branching Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Frame 33/37

B 990

Branching

Networks I

ntroduction

Definitions

References

Allometry

Laws

References I

P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf (⊞)

J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

R. E. Horton.

Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.

Bulletin of the Geological Society of America, 56(3):275–370, 1945.

Nutshell:

Branching networks I:

- Show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically (next up).

Branching

Networks

🗗 ୬୯୯

Branching

Networks

Frame 34/37

References II

I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambridge, UK, 1997.

S. A. Schumm.

Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. *Bulletin of the Geological Society of America*, 67:597–646, May 1956.

A. N. Strahler.

Hypsometric (area altitude) analysis of erosional topography.

Bulletin of the Geological Society of America, 63:1117–1142, 1952.

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Frame 36/37

କ ୬୯୯

References III

E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. *Geophysical Bulletin of Hokkaido University*, 15:1–19, 1966.

E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978.

E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

Branching Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References