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Introduction
Branching networks are useful things:

I Fundamental to material supply and collection
I Supply: From one source to many sinks in 2- or 3-d.
I Collection: From many sources to one sink in 2- or

3-d.
I Typically observe hierarchical, recursive self-similar

structure

Examples:

I River networks (our focus)
I Cardiovascular networks
I Plants
I Evolutionary trees
I Organizations (only in theory...)
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Branching networks are everywhere...

http://hydrosheds.cr.usgs.gov/ (�)

http://hydrosheds.cr.usgs.gov/
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Branching networks are everywhere...

http://en.wikipedia.org/wiki/Image:Applebox.JPG (�)

http://en.wikipedia.org/wiki/Image:Applebox.JPG
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Geomorphological networks

Definitions
I Drainage basin for a point p is the complete region of

land from which overland flow drains through p.
I Definition most sensible for a point in a stream.
I Recursive structure: Basins contain basins and so

on.
I In principle, a drainage basin is defined at every

point on a landscape.
I On flat hillslopes, drainage basins are effectively

linear.
I We treat subsurface and surface flow as following the

gradient of the surface.
I Okay for large-scale networks...
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Basic basin quantities: a, l , L‖, L⊥:

a
L?0

L? Lk = L
a0 ll0Lk0

I a = drainage
basin area

I ` = length of
longest (main)
stream (which
may be fractal)

I L = L‖ =
longitudinal length
of basin

I L = L⊥ = width of
basin
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Allometry

Isometry: dimensions scale linearly with each other.

Allometry: dimensions scale nonlinearly.
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Basin allometry

a
L?0

L? Lk = L
a0 ll0Lk0

Allometric
relationships:

I

` ∝ ah

I

` ∝ Ld

I Combine above:

a ∝ Ld/h ≡ LD
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‘Laws’
I Hack’s law (1957) [2]:

` ∝ ah

reportedly 0.5 < h < 0.7

I Scaling of main stream length with basin size:

` ∝ Ld
‖

reportedly 1.0 < d < 1.1

I Basin allometry:

L‖ ∝ ah/d ≡ a1/D

D < 2 → basins elongate.
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There are a few more ‘laws’: [1]

Relation: Name or description:

Tk = T1(RT )k Tokunaga’s law
` ∼ Ld self-affinity of single channels

nω/nω+1 = Rn Horton’s law of stream numbers
¯̀
ω+1/¯̀

ω = R` Horton’s law of main stream lengths
āω+1/āω = Ra Horton’s law of basin areas
s̄ω+1/s̄ω = Rs Horton’s law of stream segment lengths

L⊥ ∼ LH scaling of basin widths
P(a) ∼ a−τ probability of basin areas
P(`) ∼ `−γ probability of stream lengths

` ∼ ah Hack’s law
a ∼ LD scaling of basin areas
Λ ∼ aβ Langbein’s law
λ ∼ Lϕ variation of Langbein’s law
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Reported parameter values: [1]

Parameter: Real networks:

Rn 3.0–5.0
Ra 3.0–6.0

R` = RT 1.5–3.0
T1 1.0–1.5
d 1.1± 0.01
D 1.8± 0.1
h 0.50–0.70
τ 1.43± 0.05
γ 1.8± 0.1
H 0.75–0.80
β 0.50–0.70
ϕ 1.05± 0.05
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Kind of a mess...

Order of business:

1. Find out how these relationships are connected.
2. Determine most fundamental description.
3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...
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Stream Ordering:

Method for describing network architecture:

I Introduced by Horton (1945) [3]

I Modified by Strahler (1957) [6]

I Term: Horton-Strahler Stream Ordering [4]

I Can be seen as iterative trimming of a network.
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Stream Ordering:

Some definitions:
I A channel head is a point in landscape where flow

becomes focused enough to form a stream.
I A source stream is defined as the stream that

reaches from a channel head to a junction with
another stream.

I Roughly analogous to capillary vessels.
I Use symbol ω = 1, 2, 3, ... for stream order.
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Stream Ordering:

1. Label all source streams as order ω = 1 and remove.
2. Label all new source streams as order ω = 2 and

remove.
3. Repeat until one stream is left (order = Ω)
4. Basin is said to be of the order of the last stream

removed.
5. Example above is a basin of order Ω = 3.
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Stream Ordering—A large example:
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Stream Ordering:

Another way to define ordering:

I As before, label all source streams as order ω = 1.
I Follow all labelled streams downstream
I Whenever two streams of the same order (ω) meet,

the resulting stream has order incremented by 1
(ω + 1).

I If streams of different orders
ω1 and ω2 meet, then the
resultant stream has order
equal to the largest of the two.

I Simple rule:

ω3 = max(ω1, ω2) + δω1,ω2

where δ is the Kronecker delta.
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Stream Ordering:

One problem:

I Resolution of data messes with ordering
I Micro-description changes (e.g., order of a basin

may increase)
I ... but relationships based on ordering appear to be

robust to resolution changes.
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Stream Ordering:

Utility:

I Stream ordering helpfully discretizes a network.
I Goal: understand network architecture
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Stream Ordering:

Resultant definitions:
I A basin of order Ω has nω streams (or sub-basins) of

order ω.
I nω > nω+1

I An order ω basin has area aω.
I An order ω basin has a main stream length `ω.
I An order ω basin has a stream segment length sω

1. an order ω stream segment is only that part of the
stream which is actually of order ω

2. an order ω stream segment runs from the basin
outlet up to the junction of two order ω − 1 streams
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Horton’s laws
Self-similarity of river networks

I First quantified by Horton (1945) [3], expanded by
Schumm (1956) [5]

Three laws:
I Horton’s law of stream numbers:

nω/nω+1 = Rn > 1

I Horton’s law of stream lengths:

¯̀
ω+1/¯̀

ω = R` > 1

I Horton’s law of basin areas:

āω+1/āω = Ra > 1
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Horton’s laws

Horton’s Ratios:
I So... Horton’s laws are defined by three ratios:

Rn, R`, and Ra.

I Horton’s laws describe exponential decay or growth:

nω = nω−1/Rn

= nω−2/R 2
n

...

= n1/R ω−1
n

= n1e−(ω−1) ln Rn
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Horton’s laws

Similar story for area and length:

I

āω = ā1e(ω−1) ln Ra

I

¯̀
ω = ¯̀1e(ω−1) ln R`

I As stream order increases, number drops and area
and length increase.
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Horton’s laws

A few more things:

I Horton’s laws are laws of averages.
I Averaging for number is across basins.
I Averaging for stream lengths and areas is within

basins.
I Horton’s ratios go a long way to defining a branching

network...
I But we need one other piece of information...
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Horton’s laws

A bonus law:
I Horton’s law of stream segment lengths:

s̄ω+1/s̄ω = Rs > 1

I Can show that Rs = R`.
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Horton’s laws in the real world:
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Horton’s laws-at-large

Blood networks:
I Horton’s laws hold for sections of cardiovascular

networks
I Measuring such networks is tricky and messy...
I Vessel diameters obey an analogous Horton’s law.
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Horton’s laws

Observations:
I Horton’s ratios vary:

Rn 3.0–5.0
Ra 3.0–6.0
R` 1.5–3.0

I No accepted explanation for these values.
I Horton’s laws tell us how quantities vary from level to

level ...
I ... but they don’t explain how networks are

structured.
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Tokunaga’s law

Delving deeper into network architecture:

I Tokunaga (1968) identified a clearer picture of
network structure [7, 8, 9]

I As per Horton-Strahler, use stream ordering.
I Focus: describe how streams of different orders

connect to each other.
I Tokunaga’s law is also a law of averages.
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Network Architecture

Definition:
I Tµ,ν = the average number of side streams of order

ν that enter as tributaries to streams of order µ

I µ, ν = 1, 2, 3, . . .
I µ ≥ ν + 1
I Recall each stream segment of order µ is ‘generated’

by two streams of order µ− 1
I These generating streams are not considered side

streams.
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Network Architecture
Tokunaga’s law

I Property 1: Scale independence—depends only on
difference between orders:

Tµ,ν = Tµ−ν

I Property 2: Number of side streams grows
exponentially with difference in orders:

Tµ,ν = T1(RT )µ−ν−1

I We usually write Tokunaga’s law as:

Tk = T1(RT )k−1 where RT ' 2

.
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Tokunaga’s law—an example:

T1 ' 2

RT ' 4
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The Mississippi

A Tokunaga graph:
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Nutshell:
Branching networks I:

I Show remarkable self-similarity over many scales.
I There are many interrelated scaling laws.
I Horton-Strahler Stream ordering gives one useful

way of getting at the architecture of branching
networks.

I Horton’s laws reveal self-similarity.
I Horton’s laws can be misinterpreted as suggesting a

pure hierarchy.
I Tokunaga’s laws neatly describe network

architecture.
I Branching networks exhibit a mixed hierarchical

structure.
I Horton and Tokunaga can be connected analytically

(next up).
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