Chapter 6: Lecture 25 Linear Algebra, Course 124C, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD The basic idea

All the way with $A\vec{x} = \vec{b}$:

- Applies to any $m \times n$ matrix A.
- ► Symmetry of *A* and *A*^T.

Where \vec{x} lives:

- ▶ Row space $C(A^{T}) \subset R^{n}$.
- (Right) Nullspace $N(A) \subset R^n$.
- dim $C(A^{\mathrm{T}})$ + dim N(A) = r + (n r) = n
- Orthogonality: $C(A^{\mathrm{T}}) \otimes N(A) = R^{n}$

Where \vec{b} lives:

- Column space $C(A) \subset R^m$.
- Left Nullspace $N(A^{T}) \subset R^{m}$.
- dim C(A) + dim $N(A^{\mathrm{T}}) = r + (m r) = m$
- Orthogonality: $C(A) \bigotimes N(A^{T}) = R^{m}$

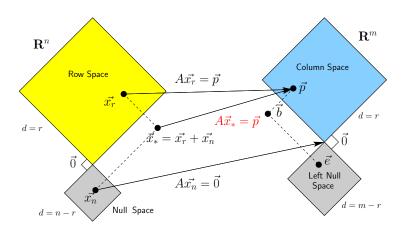
Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD The basic idea

Frame 2/6 日 クへへ

Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:



Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD The basic idea

Frame 3/6

Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- The \hat{v}_i span R^n
- We find the \hat{v}_i as eigenvectors of $A^{T}A$.
- The û_i span R^m
- We find the \hat{u}_i as eigenvectors of AA^{T} .

Happy bases

- $\{\hat{v}_1, \ldots, \hat{v}_r\}$ span Row space
- $\{\hat{v}_{r+1}, \ldots, \hat{v}_n\}$ span Null space
- $\{\hat{u}_1, \ldots, \hat{u}_r\}$ span Column space
- $\{\hat{u}_{r+1}, \ldots, \hat{u}_m\}$ span Left Null space

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD The basic idea

Fundamental Theorem of Linear Algebra

How Ax works:

- $\blacktriangleright A = U\Sigma V^{\mathrm{T}}$
- A sends each v_i ∈ C(A^T) to its partner u_i ∈ C(A) with a stretch/shrink factor σ_i > 0.
- A is diagonal with respect to these bases and has positive entries (all σ_i > 0).
- When viewed the right way, any A is a diagonal matrix Σ.

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD The basic idea

Image approximation (80x60)

Idea: use SVD to approximate images

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}} = \sum_{i=1}^{\boldsymbol{r}} \sigma_{i}\hat{\boldsymbol{u}}_{i}\hat{\boldsymbol{v}}_{i}^{\mathrm{T}}$$

- Use fact that $\sigma_1 > \sigma_2 > \ldots > \sigma_r > 0$.
- Rank $r = \min(m, n)$.
- Rank r = # of pixels on shortest side.
- For color: approximate 3 matrices (RGB).

Ch. 6: Lec. 25

The fundamental theorem of linear algebra

Approximating matrices with SVD The basic idea