Review for Exam 2

Words

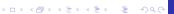
Chapter 3/4: Lecture 16 Linear Algebra, Course 124C, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

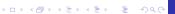
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Frame 1/14



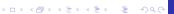
Sections covered on second midterm:

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$
 - 2. Projections and the normal equations
- As always, want 'doing' and 'understanding' and abilities.



Sections covered on second midterm:

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.



Sections covered on second midterm:

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.

Sections covered on second midterm:

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.

Sections covered on second midterm:

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.

Sections covered on second midterm:

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$ Must be able to draw the big picture!
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- ▶ Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- ▶ Orthogonality: $C(A) \otimes N(A^{T}) = R^{m}$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

Review for Exam 2
Words

Pictures

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- ▶ Orthogonality: $C(A) \otimes N(A^{T}) = R^{m}$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

Review for Exam 2 Words

Pictures

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- ▶ Orthogonality: $C(A) \otimes N(A^{T}) = R^{m}$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

Review for Exam 2
Words

Pictures

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- ▶ Orthogonality: $C(A) \otimes N(A^{T}) = R^{m}$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

Review for Exam 2
Words

Pictures

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^T) \subset R^m$.
- ▶ dim C(A) + dim $N(A^{T})$ = r + (m r) = m
- ▶ Orthogonality: $C(A) \otimes N(A^{T}) = R^{m}$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

Review for Exam 2
Words

Pictures

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^T) \subset R^m$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- ▶ Orthogonality: $C(A) \otimes N(A^{T}) = R^{m}$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

Review for Exam 2
Words

Pictures

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T})$ = r + (m r) = m
- ▶ Orthogonality: $C(A) \otimes N(A^T) = R^m$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

Review for Exam 2 Words

Pictures

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T})$ = r + (m r) = m
- ▶ Orthogonality: $C(A) \otimes N(A^{T}) = R^{m}$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \bigotimes N(A) = R^n$

Review for Exam 2 Words

Pictures

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- ▶ Identify pivot columns and free columns.
- ▶ Rank r of A = # pivot columns.
- ► Know that relationship between *R*'s columns hold for *A*'s columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A form a basis for C(A).

Review for Exam 2
Words

Pictures

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- ▶ Be able to reduce *A* to *R*.
- Identify pivot columns and free columns.
- ▶ Rank r of A = # pivot columns.
- ► Know that relationship between *R*'s columns hold for *A*'s columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A form a basis for C(A).

Finding four fundamental subspaces:

- ► Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ▶ Rank r of A = # pivot columns.
- ► Know that relationship between *R*'s columns hold for *A*'s columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A form a basis for C(A).

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ▶ Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A form a basis for C(A).

Finding four fundamental subspaces:

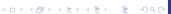
- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A form a basis for C(A).

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A form a basis for C(A).

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- But find pivot columns in R, and same columns in A form a basis for C(A).



Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A form a basis for C(A).

More on bases for column and row space:

- ▶ Reduce $[A | \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist
- ▶ Basis for row space = non-zero rows in R (easy!)
- ► Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

More on bases for column and row space:

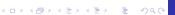
- ▶ Reduce $[A | \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist
- ▶ Basis for row space = non-zero rows in R (easy!)
- ► Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

More on bases for column and row space:

- ▶ Reduce $[A | \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist
- ▶ Basis for row space = non-zero rows in *R* (easy!)
- ► Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

More on bases for column and row space:

- ▶ Reduce $[A | \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for C(A).
- ▶ Basis for row space = non-zero rows in *R* (easy!)
- ► Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)



More on bases for column and row space:

- ▶ Reduce $[A | \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for C(A).
- ▶ Basis for row space = non-zero rows in R (easy!)
- ► Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

Review for Exam 2
Words
Pictures

More on bases for column and row space:

- ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for C(A).
- ▶ Basis for row space = non-zero rows in R (easy!)
- Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

Bases for nullspaces, left and right:

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- ► Free variables are unconstrained (can be any real number)
- → # free variables = n # pivot variables = n r = dim
 N(A).
- ► Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

Review for Exam 2 Words

Pictures

Bases for nullspaces, left and right:

- ► Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- → # free variables = n # pivot variables = n r = dim
 N(A).
- ▶ Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

Bases for nullspaces, left and right:

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- ► Free variables are unconstrained (can be any real number)
- → # free variables = n # pivot variables = n r = dim
 N(A).
- ▶ Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

Bases for nullspaces, left and right:

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- → # free variables = n # pivot variables = n r = dim
 N(A).
- ▶ Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

Review for Exam 2
Words

Review for Exam 2 Words Pictures

Bases for nullspaces, left and right:

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- → # free variables = n # pivot variables = n r = dim
 N(A).
- ► Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

Review for Exam 2 Words Pictures

Bases for nullspaces, left and right:

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- → # free variables = n # pivot variables = n r = dim
 N(A).
- ▶ Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

Number of solutions to $A\vec{x} = \vec{b}$:

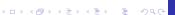
- 1. If $b \notin C(A)$, there are no solutions
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - \triangleright Number of solutions now depends entirely on N(A)
 - ▶ If dim N(A) = n r > 0, then there are infinitely many solutions.
 - ▶ If dim N(A) = n r = 0, then there is one solution

Number of solutions to $A\vec{x} = \vec{b}$:

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - ▶ Number of solutions now depends entirely on *N*(*A*).
 - ▶ If dim N(A) = n r > 0, then there are infinitely many solutions.
 - ▶ If dim N(A) = n r = 0, then there is one solution

Number of solutions to $A\vec{x} = \vec{b}$:

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on N(A).
 - If dim N(A) = n r > 0, then there are infinitely many solutions.
 - ▶ If dim N(A) = n r = 0, then there is one solution.



Number of solutions to $A\vec{x} = \vec{b}$:

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on N(A).
 - If dim N(A) = n r > 0, then there are infinitely many solutions.
 - ▶ If dim N(A) = n r = 0, then there is one solution.

Number of solutions to $A\vec{x} = \vec{b}$:

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on N(A).
 - If dim N(A) = n r > 0, then there are infinitely many solutions.
 - ▶ If dim N(A) = n r = 0, then there is one solution.

Number of solutions to $A\vec{x} = \vec{b}$:

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on N(A).
 - If dim N(A) = n r > 0, then there are infinitely many solutions.
 - ▶ If dim N(A) = n r = 0, then there is one solution.

Words

- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Words

Projections:

▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .

- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}} \vec{b}}{\vec{a}^{\mathrm{T}} \vec{a}} \vec{a} \left(= \frac{\vec{a} \vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}} \vec{a}} \vec{b} \right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis

-□ ト ← 団 ト ← 臣 ト ← 臣 ト ○ 臣 ・ 夕 Q (で)

Words

Projections:

▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .

- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis

Words

Projections:

▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .

- $ightharpoonup \vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- ▶ Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

· (ロト 4回ト 4 注 ト 4 注 ト 注 り 4 (で)

Words

Projections:

▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .

- $ightharpoonup \vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Words

Projections:

▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .

- $ightharpoonup \vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- ▶ Understand construction and use of subspace projection operator *P*:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Words

Projections:

▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .

- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- ▶ Write projection of \vec{b} as \vec{p} .
- ► Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $A^{\mathrm{T}}\vec{e} = A^{\mathrm{T}}(\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}.$$

This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.

Review for Exam 2

Words

rictures

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- Write projection of \vec{b} as \vec{p} .
- ► Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $A^{\mathrm{T}}\vec{e} = A^{\mathrm{T}}(\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}.$$

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.

Review for Exam 2

Words

rictures

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- Write projection of \vec{b} as \vec{p} .
- ► Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $A^{\mathrm{T}}\vec{e} = A^{\mathrm{T}}(\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

▶ Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}.$$

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.

Review for Exam 2

Words

Pictures

Words
Pictures

Stuff to know/understand

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $A^{\mathrm{T}}\vec{e} = A^{\mathrm{T}}(\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

-

▶ Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}.$$

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.

Frame 10/14

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $A^T \vec{e} = A^T (\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

► Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}.$$

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.

Review for Exam 2

Words

Pictures

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- ▶ Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $A^T \vec{e} = A^T (\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}.$$

4 D > 4 A > 4 B > 4 B > B

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.

. .

Review for Exam 2

Words

Frame 10/14

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $A^T \vec{e} = A^T (\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

.

▶ Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}.$$

4 D > 4 A > 4 B > 4 B > B

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.

Review for Exam 2

Words

Pictures

Frame 10/14

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $A^T \vec{e} = A^T (\vec{b} \vec{p}) = \vec{0}$.
- Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

.

▶ Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}.$$

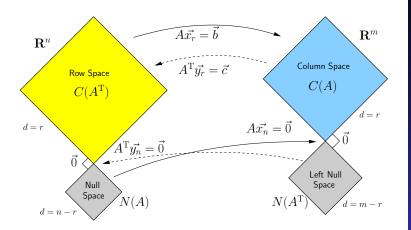
This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.

Review for Exam 2

Words

Pictures

The symmetry of $A\vec{x} = \vec{b}$ and $A^T\vec{y} = \vec{c}$:

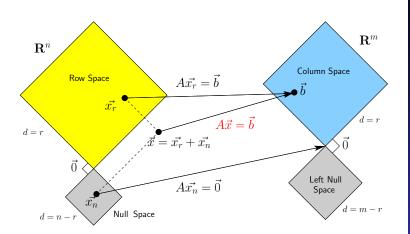


Review for Exam 2 Words

Pictures

Frame 11/14

How $A\vec{x} = \vec{b}$ works:

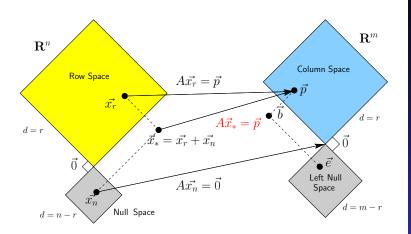


Review for Exam 2
Words

Pictures

Frame 12/14

Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:



Review for Exam 2
Words

Pictures

Frame 13/14

The fourfold ways of $A\vec{x} = \vec{b}$

case	example R	big picture	# solutions
m = r n = r		→	1 always
m = r, $n > r$	1 0 7 0 1 2		∞ always
m > r, $n = r$	$\left[\begin{array}{cc}1&0\\0&1\\0&0\end{array}\right]$		0 or 1
m > r, $n > r$	$ \left[\begin{array}{cccc} 1 & 0 & -2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] $		0 or ∞

Review for Exam 2 Words

Pictures

Frame 14/14

