Chapter 3/4: Lecture 16 Linear Algebra, Course 124C, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Ch. 3/4: Lec. 16

Review for Exam 2 Words Pictures

Frame 1/14

Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$ Must be able to draw the big picture!
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.

Ch. 3/4: Lec. 16

Review for Exam 2 Words

Frame 2/14

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Ch. 3/4: Lec. 16

Review for Exam 2 Words

Frame 3/14

 $\neg \land \land \land$

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
- Column space $C(A) \subset R^m$.
- Left Nullspace $N(A^{T}) \subset R^{m}$.
- dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- Orthogonality: $C(A) \bigotimes N(A^{T}) = R^{m}$
- Row space $C(A^{\mathrm{T}}) \subset R^{n}$.
- (Right) Nullspace $N(A) \subset R^n$.
- dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- Orthogonality: $C(A^{\mathrm{T}}) \bigotimes N(A) = R^n$

Ch. 3/4: Lec. 16

Review for Exam 2 Words

Frame 4/14

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- Warning: *R*'s columns do not give a basis for C(A)
- ► But find pivot columns in *R*, and same columns in *A* form a basis for *C*(*A*).

Ch. 3/4: Lec. 16

Review for Exam 2 Words

Frame 5/14

More on bases for column and row space:

- Reduce $[A | \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for C(A).
- Basis for row space = non-zero rows in R (easy!)
- Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

Ch. 3/4: Lec. 16

Review for Exam 2 Words

Frame 6/14

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- ▶ # free variables = n # pivot variables = n r = dim N(A).
- Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

Ch. 3/4: Lec. 16

Review for Exam 2 Words Pictures

Frame 7/14 බ රදුල

Number of solutions to $A\vec{x} = \vec{b}$:

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - ▶ Number of solutions now depends entirely on *N*(*A*).
 - If dim N(A) = n − r > 0, then there are infinitely many solutions.
 - If dim N(A) = n r = 0, then there is one solution.

Ch. 3/4: Lec. 16

Review for Exam 2 Words

Frame 8/14

Projections:

- Understand how to project a vector *b* onto a line in direction of *a*.
- $\blacktriangleright \vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$ec{
ho} = rac{ec{a}^{ ext{T}}ec{b}}{ec{a}^{ ext{T}}ec{a}}ec{a}\left(=rac{ec{a}ec{a}^{ ext{T}}}{ec{a}^{ ext{T}}ec{a}}ec{b}
ight)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Ch. 3/4: Lec. 16

Review for Exam 2 Words Pictures

Normal equation for $A\vec{x} = \vec{b}$:

- If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- Write projection of \vec{b} as \vec{p} .
- Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $A^{\mathrm{T}}\vec{e} = A^{\mathrm{T}}(\vec{b} \vec{p}) = \vec{0}.$

Rearrange:

.

$$A^{\mathrm{T}}\vec{p}=A^{\mathrm{T}}\vec{b}$$

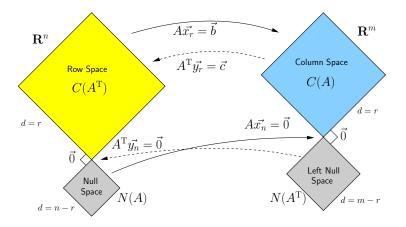
Since $A\vec{x}_* = \vec{p}$, we end up with

 $A^{\mathrm{T}}A\vec{x}_{*} = A^{\mathrm{T}}\vec{b}.$

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$. Ch. 3/4: Lec. 16

Review for Exam 2 Words Pictures

The symmetry of $A\vec{x} = \vec{b}$ and $A^{T}\vec{y} = \vec{c}$:

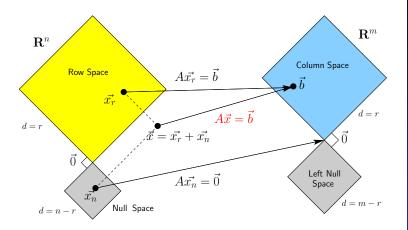


Ch. 3/4: Lec. 16

Review for Exam 2 Words Pictures

Frame 11/14

How $A\vec{x} = \vec{b}$ works:



Ch. 3/4: Lec. 16

Review for Exam 2 Words Pictures

Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:



Ch. 3/4: Lec. 16

Review for Exam 2 Words Pictures

The fourfold ways of $A\vec{x} = \vec{b}$

Ch. 3/4: Lec. 16

	1			
case	example R	big picture	# solutions	Review for Ex Words
m = r n = r	$\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]$	$\diamond \rightarrow \diamond$	1 always	Pictures
m = r, n > r	$\left[\begin{array}{rrrr}1&0&7\\0&1&2\end{array}\right]$		∞ always	
m > r, n = r	$\left[\begin{array}{rrr}1&0\\0&1\\0&0\end{array}\right]$		0 or 1	
m > r, n > r	$\left[\begin{array}{rrrr}1&0&-2\\0&1&-3\\0&0&0\\0&0&0\end{array}\right]$		0 or ∞	Frame 14/14

🗗 ৩৫৫