Chapter 2：Lecture 1
 Linear Algebra，Course 124C，Spring， 2009

Prof．Peter Dodds

Department of Mathematics \＆Statistics
University of Vermont

Three ways of looking．

Colbert on
Outline
Importance
Usages
Key problems

Equations

References

Basics:

- Instructor: Prof. Peter Dodds
- Lecture room and meeting times: 367 Votey, Tuesday and Thursday, 1:00 pm to 2:15 pm
- Office: 203 Lord House, 16 Colchester Avenue
- E-mail: pdodds@uvm.edu
- Course website:
http://www.uvm.edu/~pdodds/teaching/ courses/2009-01UVM-124/
- Textbook: "Introduction to Linear Algebra" (3rd ed.) by Gilbert Strang; Wellesley-Cambridge Press.

Colbert on
Equations
References

Admin：

Paper products：
1．Outline
Key problems

2．＂The Fundamental Theorem of Linear Algebra＂${ }^{[1]}$
3．＂Too Much Calculus＂［2］
Office hours：
－Tuesday：2：30 pm to $4: 30 \mathrm{pm}$ Thursday：11：30 am to 12：30 pm Rm 203，Math Building

Grading breakdown:

1. Assignments (40\%)

- Ten one-week assignments.
- Lowest assignment score will be dropped.
- The last assignment cannot be dropped!
- Each assignment will have a random bonus point question which has nothing to do with linear algebra.

Importance
Usages
Key problems
Three ways of
looking
Colbert on
Equations
References
2. Midterm exams (35\%)

- Three 75 minutes tests distributed throughout the course, all of equal weighting.

3. Final exam (24\%)

- Three hours of pure happiness.
- May 4, 8:00 am to 11:00 am; held in normal lecture room.

Grading breakdown:

1. Homework (0\%)—Problems assigned online from the textbook. Doing these exercises will be most beneficial and will increase happiness.
2. General attendance (1\%)-it is extremely desirable that students attend class, and class presence will be taken into account if a grade is borderline.

How grading works:

Questions are worth 3 points according to the following scale:

- 3 = correct or very nearly so.
- 2 = acceptable but needs some revisions.
- 1 = needs major revisions.
- 0 = way off.

Schedule：

The course will mainly cover chapters 2 through 6 of the textbook．（You should know all about Chapter 1．）

Week \＃（dates）	Tuesday	Thursday
$1(1 / 13$ and $1 / 15)$	Lecture	Lecture＋A 1
$2(1 / 20$ and $1 / 22)$	Lecture	Lecture＋A 2
$3(1 / 27$ and $1 / 29)$	Lecture	Lecture＋A 3
$4(2 / 3$ and $2 / 5)$	Lecture	Test 1
$5(2 / 10$ and $2 / 12)$	Lecture	Lecture＋A 4
$6(2 / 17$ and $2 / 19)$	Lecture	Lecture＋A 5
$7(2 / 24$ and $2 / 26)$	Lecture	Lecture＋A 6
$8(3 / 3$ and $3 / 5)$	Town Recess	Lecture
$9(3 / 10$ and $3 / 12)$	Spring recess	Spring recess
$10(3 / 17$ and $3 / 19)$	Test 2	Lecture＋A 7
$11(3 / 24$ and $3 / 26)$	Lecture	Lecture＋A 8
$12(3 / 31$ and $4 / 2)$	Lecture	Lecture＋A 9
$13(4 / 7$ and $4 / 9)$	Lecture	Test 3
$13(4 / 14$ and $4 / 16)$	Lecture	Lecture＋A 10
$14(4 / 21$ and $4 / 23)$	Lecture	Lecture
$15(4 / 28)$	Lecture	-

Outline

Importance

Usages

Key problems
Three ways of
looking．．
Colbert on
Equations
References

Frame 7／29
回つのく

Important dates：

1．Classes run from Monday，January 12 to Wednesday，April 29.
2．Add／Drop，Audit，Pass／No Pass deadline－Monday， January 26.

Three ways of

3．Last day to withdraw－Friday，March 30.
4．Reading and exam period－Thursday，April 30th to Friday，May 8.

More stuff：

Do check your zoo account for updates regarding the course．

Academic assistance：Anyone who requires assistance in any way（as per the ACCESS program or due to athletic endeavors），please see or contact me as soon as possible．

More stuff：

Being good people：
1．In class there will be no electronic gadgetry，no cell phones，no beeping，no text messaging，etc．You really just need your brain，some paper，and a writing implement here（okay，and Matlab or similar）．
2．Second，I encourage you to email me questions， ideas，comments，etc．，about the class but request that you please do so in a respectful fashion．
3．Finally，as in all UVM classes，Academic honesty will be expected and departures will be dealt with appropriately．See http：／／www．uvm．edu／cses／ for guidelines．

More stuff：

Late policy：Unless in the case of an emergency（a real one）or if an absence has been predeclared and a make－up version sorted out，assignments that are not turned in on time or tests that are not attended will be given 0\％．

Computing：Students are encouraged to use Matlab or something similar to check their work．

Note：for assignment problems，written details of calculations will be required．

Grading：

A＋	$97-100$	B＋	$87-89$	C＋	$77-79$	$\mathrm{D}+$	$67-69$
A	$93-96$	B	$83-86$	C	$73-76$	D	$63-66$
A－	$90-92$	B－	$80-82$	C－	$70-72$	D－	$60-62$

Why are we doing this？

Linear Algebra is

Outline
a body of mathematics that deals with discrete problems．

Many things are discrete：
－Information（0＇s \＆1＇s，letters，words）
－People（sociology）
－Networks（the Web，people again，food webs，．．．）
－Sounds（musical notes）
Even more：
If real data is continuous，we almost always discretize it （0＇s and 1＇s）

Why are we doing this？

Linear Algebra is used in many fields to solve problems：
－Engineering
－Computer Science（Google＇s Pagerank）
－Physics
－Economics
－Biology
－Ecology
－．．．

Linear Algebra is as important as calculus．

Matrices as gadgets:

A transforms \vec{x} into \vec{x}^{\prime} through multiplication

$$
\vec{x}^{\prime}=A \vec{x}
$$

Can use matrices to:

- Grow vectors
- Shrink vectors
- Rotate vectors
- Flip vectors
- Do all these things to different directions

Image approximation（80x60）

$$
A=\sum_{i=1}^{3} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}
$$

Key problems
Three ways of
looking．
Colbert on
Equations

Three key problems of Linear Algebra

1．Given a matrix A and a vector \vec{b} ，find \vec{x} such that

$$
A \vec{x}=\vec{b}
$$

2．Eigenvalue problem：Given A ，find λ and \vec{v} such that

$$
A \vec{v}=\lambda \vec{v}
$$

3．Coupled linear differential equations：

$$
\frac{\mathrm{d}}{\mathrm{~d} t} y(t)=A y(t)
$$

－Our focus will be largely on \＃1，partly on \＃2．

Major course objective：

To deeply understand the equation $A \vec{x}=\vec{b}$ ，the Fundamental Theorem of Linear Algebra，and the following picture：

Key problems
Three ways of
looking．．
Colbert on
Equations
References

What is going on here？We have 26 lectures to find out．．．

Our friend $A \vec{x}=\vec{b}$

Broadly speaking，$A \vec{x}=\vec{b}$ translates as follows：
－\vec{b} represents reality（e．g．，music，structure）
－A contains building blocks（e．g．，notes，shapes）
－\vec{x} specifies how we combine our building blocks to represent \vec{b} ．

How can we disentangle an orchestra＇s sound？
What about pictures，waves，signals，．．．？

Our friend $A \vec{x}=\vec{b}$

What does knowing \vec{x} give us？

If we can represent reality as a superposition（or combination）of simple elements，we can do many things：
－Compress information
－See how we can alter information
－Find a system＇s simplest representation
－Find a system＇s most important elements
－See how to adjust a system in a principled defined way

Three ways to understand $A \vec{x}=\vec{b}$ ：
－Way 1：The Row Picture
－Way 2：The Column Picture
－Way 3：The Matrix Picture

Example：

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

－Call this a 2 by 2 system of equations．
－ 2 equations with 2 unknowns．
－Standard method of solving by adding and subtracting multiples of equations from each other ＝Row Picture

Row Picture—what we are doing：
Importance

Usages

Key problems
Three ways of looking．．

Colbert on
Equations
－A splendid and deep connection：
（a）Geometry $\rightleftharpoons(b)$ Algebra
Three possible kinds of solution：
1．Lines intersect at one point－One，unique solution
2．Lines are parallel and disjoint－No solutions
3．Lines are the same－Infinitely many solutions

Three ways to understand $A \vec{x}=\vec{b}$ ：
The column picture：
See

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

as

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

General problem

$$
x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b}
$$

－Column vectors are＇building blocks＇
－Key idea：try to＇reach＇\vec{b} by combining multiples of column vectors \vec{a}_{1} and \vec{a}_{2} ．

Three ways to understand $A \vec{x}=\vec{b}$ ：

We love the column picture：
－Intuitive．
－Generalizes easily to many dimensions．
Three possible kinds of solution：
1．$\vec{a}_{1} \nmid \vec{a}_{2}: 1$ solution
2．$\vec{a}_{1} \| \vec{a}_{2} \nVdash \vec{b}$ ：No solutions
3．$\vec{a}_{1}\left\|\vec{a}_{2}\right\| \vec{b}$ ：infinitely many solutions
Assuming neither \vec{a}_{1} or \vec{a}_{1} are $\overrightarrow{0}$ ．

Three ways to understand $A \vec{x}=\vec{b}$ ：

Difficulties：
－Do we give up if $A \vec{x}=\vec{b}$ has no solution？
－No！We can still find the \vec{x} that gets us as close to \vec{b} as possible．
－Method of approximation－very important！
－We may not have the right building blocks but we can do our best．

Three ways to understand $A \vec{x}=\vec{b}$ ：

The Matrix Picture：
Now see

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

as

$$
A \vec{x}=\vec{b}:\left[\begin{array}{cc}
-1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

A is now an operator：
－A transforms \vec{x} into \vec{b} ．
－In general，A does two things to \vec{x} ：
1．Rotation
2．Dilation（stretching／contraction）

The Matrix Picture

Key idea in linear algebra：
－Decomposition（or factorization）of matrices．
－Matrices can often be written as products or sums of simpler matrices
－$A=L U, A=Q R, A=U \Sigma V^{\mathrm{T}}, A=\sum_{i} \lambda_{i} \vec{V} \vec{V}^{\mathrm{T}}, \ldots$

The truth about mathematics

The Colbert Report on Math（February 7，2006）

References I

目 G．Strang．
The fundamental theorem of linear algebra．
The American Mathematical Monthly，
100（9）：848－855，1993．pdf（ \boxplus ）
Key problems
Three ways of
looking．
Colbert on
Equations

G．Strang．
Too much calculus， 2002.
SIAM Linear Algebra Activity Group Newsletter． pdf (\boxplus)

