Data from our man Zipf Principles of Complex Systems Course 300, Fall, 2008

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Data from our man Zipf

Outline

Zipf in brief

Zipfian empirics

References

Data from our man Zipf

Zipf in brief Zipfian empirics References

Frame 2/20 団 のくで

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

- "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949 Cambridge, MA^[2]
- ▶ Bonus field of study: <u>Glottometrics.</u> (⊞)

▶ Bonus 'word' word: <u>Glossolalia.</u> (⊞)

Data from our man Zipf

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

- "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949 Cambridge, MA^[2]
- ▶ Bonus field of study: <u>Glottometrics.</u> (⊞)
- ▶ Bonus 'word' word: <u>Glossolalia.</u> (⊞)

Data from our man Zipf

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

- "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949 Cambridge, MA^[2]
- ▶ Bonus field of study: <u>Glottometrics.</u> (⊞)
- ▶ Bonus 'word' word: <u>Glossolalia.</u> (⊞)

Data from our man Zipf

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

- "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949 Cambridge, MA^[2]
- ▶ Bonus field of study: <u>Glottometrics.</u> (⊞)

▶ Bonus 'word' word: <u>Glossolalia.</u> (⊞)

Data from our man Zipf

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

- "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949 Cambridge, MA^[2]
- ► Bonus field of study: <u>Glottometrics.</u> (⊞)

▶ Bonus 'word' word: <u>Glossolalia.</u> (⊞)

Data from our man Zipf

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

- "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949 Cambridge, MA^[2]
- ► Bonus field of study: <u>Glottometrics.</u> (⊞)
- ► Bonus 'word' word: <u>Glossolalia.</u> (⊞)

Data from our man Zipf

Human Behavior/Principle of Least Effort:

From the Preface—

Nearly twenty-five years ago it occurred to me that we might gain considerable insight into the mainsprings of human behavior if we viewed it purely as a natural phenomenon like everything else in the universe, ...

And—

... the expressed purpose of this book is to establish The Principle of Least Effort as the primary principle that governs our entire individual and collective behavior ... Data from our man Zipf

Zipf in brief Zipfian empirics References

Human Behavior/Principle of Least Effort:

From the Preface—

Nearly twenty-five years ago it occurred to me that we might gain considerable insight into the mainsprings of human behavior if we viewed it purely as a natural phenomenon like everything else in the universe, ...

And—

... the expressed purpose of this book is to establish The Principle of Least Effort as the primary principle that governs our entire individual and collective behavior ... Data from our man Zipf

Zipf in brief Zipfian empirics References

The Principle of Least Effort:

Zipf's framing (p. 1):

"... a person in solving his immediate problems will view these against the background of his probable future problems *as estimated by himself*."

"... he will strive ... to minimize the *total work* that he must expend in solving *both* his immediate problems *and* his probable future problems."

"[he will strive to] minimize the *probable average rate of his work-expenditure...*"

Data from our man Zipf

Zipf in brief Zipfian empirics References

Frame 5/20

The Principle of Least Effort:

Zipf's framing (p. 1):

"... a person in solving his immediate problems will view these against the background of his probable future problems *as estimated by himself.*"

"... he will strive ... to minimize the *total work* that he must expend in solving *both* his immediate problems *and* his probable future problems."

"[he will strive to] minimize the *probable average rate of his work-expenditure...*"

Data from our man Zipf

Zipf in brief Zipfian empirics References

The Principle of Least Effort:

Zipf's framing (p. 1):

"... a person in solving his immediate problems will view these against the background of his probable future problems *as estimated by himself.*"

"... he will strive ... to minimize the *total work* that he must expend in solving *both* his immediate problems *and* his probable future problems."

"[he will strive to] minimize the *probable average rate of his work-expenditure*..."

Data from our man Zipf

Zipf in brief Zipfian empirics References

Frame 5/20

Rampaging research

Within Human Behavior and the Principle of Least Effort:

- City sizes
- # retail stores in cities
- # services (barber shops, beauty parlors, cleaning, ...)
- # people in occupations
- # one-way trips in cars and trucks vs. distance

- # new items by dateline
- weight moved between cities by rail
- # telephone messages between cities
- # people moving vs. distance
- # marriages vs. distance
- Observed general dependency of 'interactions' between cities A and B on P_AP_B/D_{AB} where P_A and P_B are population size and D_{AB} is distance between A and B.

Data from our man Zipf

Rampaging research

Within Human Behavior and the Principle of Least Effort:

- City sizes
- # retail stores in cities
- # services (barber shops, beauty parlors, cleaning, ...)
- # people in occupations
- # one-way trips in cars and trucks vs. distance

- # new items by dateline
- weight moved between cities by rail
- # telephone messages between cities
- # people moving vs. distance
- # marriages vs. distance
- Observed general dependency of 'interactions' between cities A and B on P_AP_B/D_{AB} where P_A and P_B are population size and D_{AB} is distance between A and B.

Data from our man Zipf

Zipf in brief Zipfian empirics References

▶ vocabulary balance: $f \sim r^{-1} \rightarrow r \cdot f \sim \text{constant}$ (*f* = frequency, *r* = rank).

TA	BL	E	2-	-1

Arbitrary Ranks with Frequencies in James Joyce's <i>Ulysses</i> (Hanley Index)					
I Rank (r)	II Frequency (f)	III Product of I and II $(r \times f = C)$	IV Theoretical Length of Ulysses (C × 10)		
10	2,653	26,530	265,500		
20	1,311	26,220	262,200		
30	926	27,780	277,800		
40	717	28,680	286,800		
50	556	27,800	278,800		
100	265	26,500	265,000		
200	133	26,600	266,000		
300	84	25,200	252,000		
400	62	24,800	248,000		
. 500	50	25,000	250,000		
1,000	26	26,000	260,000		
2,000	12	24,000	240,000		
3,000	8	24,000	240,000		
4,000	6	24,000	240,000		
5,000	5	25,000	250,000		
10,000	2	20,000	200,000		
20,000	1	20,000	200,000		
29,899	1	29,899	298,990		

Data from our man Zipf

Zipf in brief Zipfian empirics References

• $f \sim r^{-1}$ for word frequency:

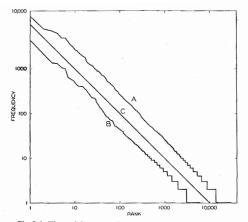


Fig. 2-1. The rank-frequency distribution of words. (A) The James Joyce data; (B) the Eldridge data; (C) ideal curve with slope of negative unity. Data from our man Zipf

Zipf in brief Zipfian empirics References

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes)
- Analogy: a specialized tool for every task.

- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief Zipfian empirics References

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.

- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief Zipfian empirics References

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.

- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief Zipfian empirics References

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
 - Encoding is simple but decoding is hard
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.

- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief Zipfian empirics References

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
 - Encoding is simple but decoding is hard
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.
 - Decoding is simple but encoding is hard
- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

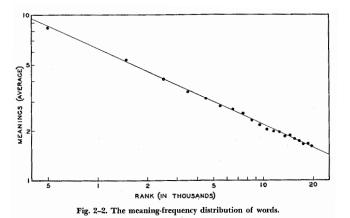
Data from our man Zipf

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
 - Encoding is simple but decoding is hard
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.
 - Decoding is simple but encoding is hard
- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief Zipfian empirics References


Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
 - Encoding is simple but decoding is hard
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.
 - Decoding is simple but encoding is hard
- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

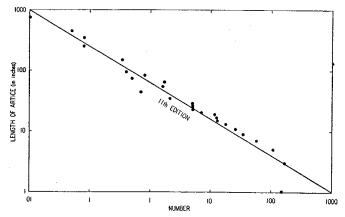
Zipf in brief Zipfian empirics References

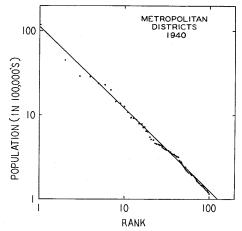
• Number of meanings $m_r \propto f_r^{1/2}$ where *r* is rank and f_r is frequency.

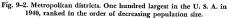
Data from our man Zipf

Zipf in brief Zipfian empirics References

Article length in the Encyclopedia Britannica:



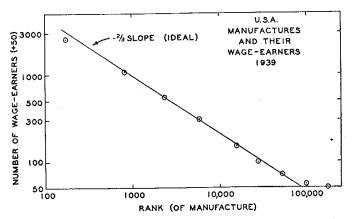

Fig. 5-3. The number of different articles of like length in samples of the 11th edition of the *Encyclopaedia Britannica*. Lengths in inches.


• (?) slope of -3/5 corresponds to $\gamma = 5/3$.

Data from our man Zipf

Zipf in brief Zipfian empirics References

Population size of districts:

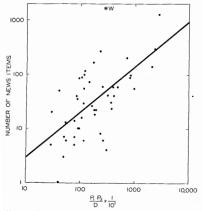


• $\alpha = 1$ corresponds to $\gamma = 1 + 1/\alpha = 2$.

Data from our man Zipf

Zipf in brief Zipfian empirics References

Number of employees in organizations


Data from our man Zipf

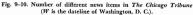
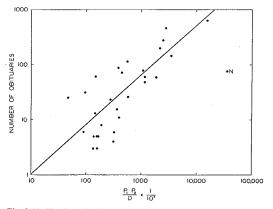
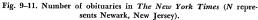

> Zipf in brief Zipfian empirics References

Fig. 9-8. Manufactures and their wage earners in the U. S. A. in 1939, with the manufactures ranked in the order of their decreasing number of wage earners.

•
$$\alpha = 2/3$$
 corresponds to $\gamma = 1 + 1/\alpha = 5/2$.

- # news items as a function of population P₂ of location in the Chicago Tribune
- D = distance, P_1 = Chicago's population
- Solid line = +1 exponent.




Data from our man Zipf

Zipf in brief Zipfian empirics References

Frame 14/20 日 かへへ

- # obituaries in the New York Times for locations with population P₂.
- D = distance, P_1 = New York's population
- Solid line = +1 exponent.

Data from our man Zipf

Zipf in brief Zipfian empirics References

- Movement of stuff between cities
- D = distance, P_1 and P_2 = city populations.
- Solid line = +1 exponent.

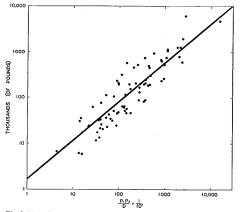


Fig. 9-14. Railway express. The movement by weight (less carload lots) between 13 arbitrary cities in the U. S. A., May 1939.

Data from our man Zipf

Zipf in brief Zipfian empirics References

Frame 16/20 日 のへで

Length of trip versus frequency of trip.

Solid line = -1/2 exponent corresponds to $\gamma = 2$.

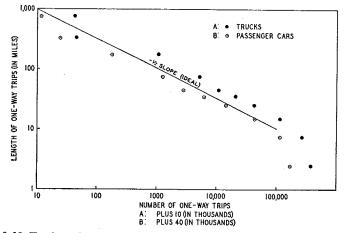


Fig. 9-19. Trucks and passenger cars: the number of one-way trips of like length.

Data from our man Zipf

The probability of marriage?

γ = 1?

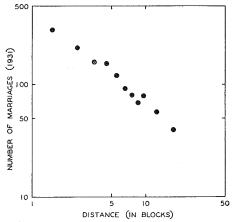
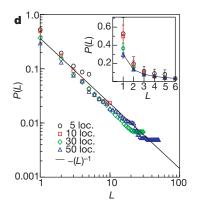



Fig. 9-22. Number of marriage licenses issued to 5,000 pairs of applicants living within Philadelphia in 1931 and separated by varying distances (the data of J. H. S. Bossard).

Data from our man Zipf

Zipf in brief Zipfian empirics References

Recent Zipf action:

- Probability of people being in certain locations follows a Zipfish law...
- From Gonzàlez et al., Nature (2008)
 "Understanding individual human mobility patterns"^[1]

Data from our man Zipf

Zipf in brief Zipfian empirics References

References I

M. C. González, C. A. Hidalgo, and A.-L. Barabási. Understanding individual human mobility patterns. *Nature*, 453:779–782, 2008. pdf (⊞)

G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949. Data from our man Zipf

Zipf in brief Zipfian empirics References