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Definitions

General observation:

Systems (complex or not)
that cross many spatial and temporal scales
often exhibit some form of scaling.
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Outline

All about scaling:

I Definitions.
I Examples.
I How to measure your power-law relationship.
I Mechanisms giving rise to your power-laws.



Scaling

Scaling-at-large

Allometry
Definitions

Examples

History: Metabolism

Measuring exponents

History: River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

Frame 5/114

Definitions

A power law relates two variables x and y as follows:

y = cxα

I α is the scaling exponent (or just exponent)
I (α can be any number in principle but we will find

various restrictions.)
I c is the prefactor (which can be important!)
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Definitions

I The prefactor c must balance dimensions.
I eg., length ` and volume v of common nails are

related as:
` = cv1/4

I Using [·] to indicate dimension, then

[c] = [l]/[V 1/4] = L/L3/4 = L1/4.
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Looking at data

I Power-law relationships are linear in log-log space:

y = cxα

⇒ logb y = α logb x + logb c

with slope equal to α, the scaling exponent.
I Much searching for straight lines on log-log or

double-logarithmic plots.
I Good practice: Always, always, always use base 10.
I Talk only about orders of magnitude (powers of 10).
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A beautiful, heart-warming example:

α ' 1.23

gray
matter:
‘computing
elements’

white
matter:
‘wiring’

from Zhang & Sejnowski, PNAS (2000) [26]
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Why is α ' 1.23?

Quantities (following Zhang and Sejnowski):

I G = Volume of gray matter (cortex/processors)
I W = Volume of white matter (wiring)
I T = Cortical thickness (wiring)
I S = Cortical surface area
I L = Average length of white matter fibers
I p = density of axons on white matter/cortex interface

A rough understanding:

I G ∼ ST (convolutions are okay)
I W ∼ 1

2pSL
I G ∼ L3 ← this is a little sketchy...
I Eliminate S and L to find W ∝ G 4/3/T
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Why is α ' 1.23?

A rough understanding:

I We are here: W ∝ G 4/3/T
I Observe weak scaling T ∝ G 0.10±0.02.
I (Implies S ∝ G 0.9 → convolutions fill space.)
I ⇒W ∝ G 4/3/T ∝ G 1.23±0.02
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Why is α ' 1.23?

Trickiness:

7. Limitation of Power Law Scaling
A problem arises when comparing Fig. 2 with Fig. 5 (8, 9), where
the total volume

V ! G " W [15]

is defined as the sum of gray and white matter volumes. Because
we already have the power law W ! G# with # " 1 (Fig. 2), it
is mathematically impossible to accommodate two additional

power laws G ! V$ and W ! V% without violating Eq. 15. An
inescapable conclusion is that at least two of the power laws, and
possibly all three of them, must be approximate, even in theory.
Suppose one of them is genuine and known, then how can the
other two approximate power laws be justified? (We would
choose W ! G# as genuine, given our theory. Consistently, the
power law G ! V$ in Fig. 5 is unlikely to be exact, despite its high
correlation coefficient, because of the small but systematic
deviations.) Given any one exponent, the other two exponents
can be determined as a linear approximation by solving the
following equations:

#$ ! %, $Ĝ " %Ŵ ! Ĝ " Ŵ , [16]

where Ĝ # exp($ln G%) and Ŵ # exp($ln W %) are averages
performed in log space. For the data in Figs. 1 and 5, we have
Ĝ # 5200 mm3 and Ŵ # 1248 mm3, and the three exponents
determined directly by least squares are # # 1.2284, $ # 0.9549,
and % # 1.1739. Given #, for instance, both $ and % can be
predicted within 0.3% of error by Eqs. 16.

The effect of adding power laws has been studied in allometry
(35) and brain scaling (C. F. Stevens, personal communication).
Brain volume has many components, such as cell bodies, den-
drites, axons, blood vessels, and glia cells. Unless all components
scale with the same exponent, it is logically inconsistent to
assume rigorous power law relations among different compo-
nents and their sums. Although power laws are often excellent
approximations, a theory for power laws should be expected only
to reveal the leading contributing factors. Additional informa-
tion may be obtained by examining the relationships between the
residuals from the fits (36).

8. Determining the Constants
The theory presented in this paper contains a total of three free
parameters, namely, p, q, and c, all of which are dimensionless
constants. Their values are not constrained by the theory and
have to be estimated separately. Because they are related by Eq.
6, only two are independent.

The constant p is the fraction of the cortical surface area that
is occupied by the total cross section of the fibers in white matter

p ! &a! , [17]

where a! is the average cross-sectional area of a single axonal fiber
either entering or leaving the white matter, and & is the total
number of these axons per a unit surface area of the cortex. The
diameters of axons, which may vary over an order of magnitude,
have an average value of roughly 1 'm in corpus callosum (37,
38). A rough estimate a! & 0.8 'm2 for the average cross-sectional
area of a single fiber, corresponding to a diameter about 1 'm,
is loosely compatible with the distributions shown in ref. 20. Sholl
(26) estimated that the density of the axons crossing the gray–
white boundary in cat cortex is about & # 105!mm2, the same
order of magnitude as neuron density per unit area (22, 28, 30).
Taken together, we obtain a crude estimate p # &a! & 0.08.

Another independent estimate of p is possible by using
Greilich’s estimate of the distance of corticocortical connections
in mouse (30). From the histogram in figure 62 of ref. 30, we
estimate that in mouse the average axon length in white matter
is around L # 3 mm. From Eqs. 1 and 2:

p ! 2
WT
GL ! 2

D
L , [18]

where D ' W!S # WT!G can be interpreted as the average
thickness of the layer of white matter, with S being the cortical
surface area. Inserting the estimate of L and other known
quantities (gray matter volume G # 112 mm3, white matter

Fig. 4. The coefficient of variation (standard deviation!mean) of the dimen-
sionless number c(() plotted as a function of the test exponent ( in Eq. 14. The
theoretical optimal value 4!3, as indicated by the dashed line, is close to the
empirical minimum (●) reached at ( # 1.36 ((0.06, SD by bootstrap). Data were
from table 1 in ref. 11 (27 species).

Fig. 5. The same data as in Fig. 1 plotted against the total volume of gray
matter and white matter, showing the approximate nature of power laws for
additive components. Of the three power laws shown here and in Fig. 1, at
most one can be assumed to be rigorously true in theory without logical
inconsistency.

Zhang and Sejnowski PNAS " May 9, 2000 " vol. 97 " no. 10 " 5625
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I With V = G + W , some power laws must be
approximations.

I Measuring exponents is a hairy business...
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Good scaling:

General rules of thumb:
I High quality: scaling persists over

three or more orders of magnitude
for each variable.

I Medium quality: scaling persists over
three or more orders of magnitude
for only one variable and at least one for the other.

I Very dubious: scaling ‘persists’ over
less than an order of magnitude
for both variables.
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Unconvincing scaling:

Average walking speed as a function of city
population:

24

Two problems:
1. use of natural log, and
2. minute varation in

dependent variable.

from Bettencourt et al. (2007) [3]; otherwise very interesting!
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Definitions

Power laws are the signature of
scale invariance:

Scale invariant ‘objects’
look the ‘same’
when they are appropriately
rescaled.

I Objects = geometric shapes, time series, functions,
relationships, distributions,...

I ‘Same’ might be ‘statistically the same’
I To rescale means to change the units of

measurement for the relevant variables
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Scale invariance

Our friend y = cxα:

I If we rescale x as x = rx ′ and y as y = rαy ′,
I then

rαy ′ = c(rx ′)α

I

⇒ y ′ = crαx ′αr−α

I

⇒ y ′ = cx ′α
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Scale invariance

Compare with y = ce−λx :

I If we rescale x as x = rx ′, then

y = ce−λrx ′

I Original form cannot be recovered.
I ⇒ scale matters for the exponential.
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Scale invariance

More on y = ce−λx :

I Say x0 = 1/λ is the characteristic scale.
I For x � x0, y is small,

while for x � x0, y is large.
I ⇒ More on this later with size distributions.
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Definitions

Allometry (�):

[refers to] differential growth rates of the parts of a living
organism’s body part or process.
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Definitions:

Isometry:
dimensions scale
linearly with each
other.

Allometry:
dimensions scale
nonlinearly.

Scaling

Scaling-at-large

Allometry
Definitions

Examples

History: Metabolism

Measuring exponents

History: River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

Frame 21/114

Definitions

Isometry versus Allometry:

I Isometry = ‘same measure’
I Allometry = ‘other measure’

Confusingly, we use allometric scaling to refer to
both:

1. nonlinear scaling (e.g., x ∝ y1/3)
2. and the relative scaling of different measures

(e.g., resting heart rate as a function of body size)

http://en.wikipedia.org/wiki/Allometry
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A wonderful treatise on scaling:

Bonner and
McMahon, 1983 [6]
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For the following slide:

p. 2, Bonner and McMahon [6]
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The many scales of life:

p. 2, Bonner and McMahon [6]
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For the following slide:

p. 2, Bonner and McMahon [6]
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The many scales of life:

p. 3, Bonner and McMahon [6]
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For the following slide:

p. 2, Bonner and McMahon [6]
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The many scales of life:

p. 3, Bonner and McMahon [6]
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Size range and cell differentiation:

p. 3, Bonner and McMahon [6]
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Non-uniform growth:

p. 32, Bonner and McMahon [6]
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Non-uniform growth—arm length versus
height:

Good example of a break in scaling:

A crossover in scaling occurs around a height of 1 metre.
p. 32, Bonner and McMahon [6]
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Weightlifting: Mworldrecord ∝ M 2/3
lifter

Idea: Power ∼ cross-sectional area of isometric lifters.
p. 53, Bonner and McMahon [6]
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Titanothere horns: Lhorn ∼ L4
skull

p. 36, Bonner and McMahon [6]
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The allometry of nails:

I Diameter ∝ Mass3/8

I Length ∝ Mass1/4

I Diameter ∝ Length2/3

p. 58–59, Bonner and McMahon [6]
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The allometry of nails:

A buckling instability?:

I Physics/Engineering result: Columns buckle under a
load which depends on d4/`2.

I To drive nails in, resistive force ∝ nail circumference
= πd .

I Match forces independent of nail size: d4/`2 ∝ d .
I Leads to d ∝ `2/3.

Scaling

Scaling-at-large

Allometry
Definitions

Examples

History: Metabolism

Measuring exponents

History: River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

Frame 37/114

Rowing: Speed ∝ (number of rowers)1/9 Scaling
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Scaling in Cities:

I “Growth, innovation, scaling, and the pace of life in
cities”
Bettencourt et al., PNAS, 2007. [3]

I Quantified levels of
I Infrastructure
I Wealth
I Crime levels
I Disease
I Energy consumption

as a function of city size N (population).
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Scaling in Cities:

cities that are superficially quite different in form and location,
for example, are in fact, on the average, scaled versions of one
another, in a very specific but universal fashion prescribed by the
scaling laws of Table 1.

Despite the ubiquity of approximate power law scaling, there
is no simple analogue to the universal quarter-powers observed
in biology. Nevertheless, Table 1 reveals a taxonomic universality
whereby exponents fall into three categories defined by ! ! 1
(linear), !"1 (sublinear), and !#1 (superlinear), with ! in each
category clustering around similar values: (i) ! $1 is usually
associated with individual human needs (job, house, household
water consumption). (ii) ! $0.8 "1 characterizes material
quantities displaying economies of scale associated with infra-
structure, analogous to similar quantities in biology. (iii) !
$1.1–1.3 #1 signifies increasing returns with population size and
is manifested by quantities related to social currencies, such as
information, innovation or wealth, associated with the intrinsi-
cally social nature of cities.

The most striking feature of the data is perhaps the many
urban indicators that scale superlinearly (! #1). These indicators
reflect unique social characteristics with no equivalent in biology
and are the quantitative expression that knowledge spillovers
drive growth (25, 26), that such spillovers in turn drive urban
agglomeration (26, 27), and that larger cities are associated with
higher levels of productivity (28, 29). Wages, income, growth
domestic product, bank deposits, as well as rates of invention,
measured by new patents and employment in creative sectors
(21, 22) all scale superlinearly with city size, over different years
and nations with exponents that, although differing in detail, are
statistically consistent. Costs, such as housing, similarly scale
superlinearly, approximately mirroring increases in average
wealth.

One of the most intriguing outcomes of the analysis is that the
value of the exponents in each class clusters around the same
number for a plethora of phenomena that are superficially quite
different and seemingly unrelated, ranging from wages and
patent production to the speed of walking (see below). This

behavior strongly suggests that there is a universal social dynamic
at play that underlies all these phenomena, inextricably linking
them in an integrated dynamical network, which implies, for
instance, that an increase in productive social opportunities, both
in number and quality, leads to quantifiable changes in individual
behavior across the full complexity of human expression (10–
14), including those with negative consequences, such as costs,
crime rates, and disease incidence (19, 42).

For systems exhibiting scaling in rates of resource consump-
tion, characteristic times are predicted to scale as N1%!, whereas
rates scale as their inverse, N!%1. Thus, if ! "1, as in biology, the
pace of life decreases with increasing size, as observed. However,
for processes driven by innovation and wealth creation, ! #1 as
in urban systems, the situation is reversed: thus, the pace of
urban life is predicted to increase with size (Fig. 2). Anecdotally,
this feature is widely recognized in urban life, pointed out long
ago by Simmel, Wirth, Milgram, and others (11–14). Quantita-
tive confirmation is provided by urban crime rates (42), rates of
spread of infectious diseases such as AIDS, and even pedestrian
walking speeds (30), which, when plotted logarithmically, exhibit
power law scaling with an exponent of 0.09 & 0.02 (R2 ! 0.80;
Fig. 2a), consistent with our prediction.

There are therefore two distinct characteristics of cities re-
vealed by their very different scaling behaviors, resulting from
fundamentally different, and even competing, underlying dy-
namics (9): material economies of scale, characteristic of infra-
structure networks, vs. social interactions, responsible for inno-
vation and wealth creation. The tension between these
characteristics is illustrated by the ambivalent behavior of en-
ergy-related variables: whereas household consumption scales
approximately linearly and economies of scale are realized in
electrical cable lengths, total consumption scales superlinearly.
This difference can only be reconciled if the distribution network
is suboptimal, as observed in the scaling of resistive losses, where
! ! 1.11 & 0.06 (R2 ! 0.79). Which, then, of these two dynamics,
efficiency or wealth creation, is the primary determinant of
urbanization, and how does each impact urban growth?

Table 1. Scaling exponents for urban indicators vs. city size

Y ! 95% CI Adj-R2 Observations Country–year

New patents 1.27 '1.25,1.29( 0.72 331 U.S. 2001
Inventors 1.25 '1.22,1.27( 0.76 331 U.S. 2001
Private R&D employment 1.34 '1.29,1.39( 0.92 266 U.S. 2002
)Supercreative) employment 1.15 '1.11,1.18( 0.89 287 U.S. 2003
R&D establishments 1.19 '1.14,1.22( 0.77 287 U.S. 1997
R&D employment 1.26 '1.18,1.43( 0.93 295 China 2002
Total wages 1.12 '1.09,1.13( 0.96 361 U.S. 2002
Total bank deposits 1.08 '1.03,1.11( 0.91 267 U.S. 1996
GDP 1.15 '1.06,1.23( 0.96 295 China 2002
GDP 1.26 '1.09,1.46( 0.64 196 EU 1999–2003
GDP 1.13 '1.03,1.23( 0.94 37 Germany 2003
Total electrical consumption 1.07 '1.03,1.11( 0.88 392 Germany 2002
New AIDS cases 1.23 '1.18,1.29( 0.76 93 U.S. 2002–2003
Serious crimes 1.16 [1.11, 1.18] 0.89 287 U.S. 2003

Total housing 1.00 '0.99,1.01( 0.99 316 U.S. 1990
Total employment 1.01 '0.99,1.02( 0.98 331 U.S. 2001
Household electrical consumption 1.00 '0.94,1.06( 0.88 377 Germany 2002
Household electrical consumption 1.05 '0.89,1.22( 0.91 295 China 2002
Household water consumption 1.01 '0.89,1.11( 0.96 295 China 2002

Gasoline stations 0.77 '0.74,0.81( 0.93 318 U.S. 2001
Gasoline sales 0.79 '0.73,0.80( 0.94 318 U.S. 2001
Length of electrical cables 0.87 '0.82,0.92( 0.75 380 Germany 2002
Road surface 0.83 '0.74,0.92( 0.87 29 Germany 2002

Data sources are shown in SI Text. CI, confidence interval; Adj-R2, adjusted R2; GDP, gross domestic product.

Bettencourt et al. PNAS ! April 24, 2007 ! vol. 104 ! no. 17 ! 7303
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Scaling in Cities:

Intriguing findings:

I Global supply costs scale sublinearly with N (β < 1).
I Returns to scale for infrastructure.

I Total individual costs scale linearly with N (β = 1)
I Individuals consume similar amounts independent of

city size.
I Social quantities scale superlinearly with N (β > 1)

I Creativity (# patents), wealth, disease, crime, ...

Density doesn’t seem to matter...

I Surprising given that across the world, we observe
two orders of magnitude variation in area covered by
agglomerations of fixed populations.
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Ecology—Species-area law: Nspecies ∝ Aβ

Allegedly (data is messy):

I On islands: β ≈ 1/4.
I On continuous land: β ≈ 1/8.
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A focus:

I How much energy do organisms need to live?
I And how does this scale with organismal size?
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Animal power

Fundamental biological and ecological constraint:

P = c M α

P = basal metabolic rate

M = organismal body mass
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P = c M α

Prefactor c depends on body plan and body temperature:

Birds 39–41 ◦C
Eutherian Mammals 36–38 ◦C

Marsupials 34–36 ◦C
Monotremes 30–31 ◦C

Scaling

Scaling-at-large

Allometry
Definitions

Examples

History: Metabolism

Measuring exponents

History: River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

Frame 46/114

What one might expect:

α = 2/3 because . . .

I Dimensional analysis suggests
an energy balance surface law:

P ∝ S ∝ V 2/3 ∝ M 2/3

I Lognormal fluctuations:
Gaussian fluctuations in log P around log cMα.

I Stefan-Boltzmann relation for radiated energy:

dE
dt

= σεST 4
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The prevailing belief of the church of
quarterology

α = 3/4

P ∝ M 3/4

Huh?
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Related putative scalings:

I number of capillaries ∝ M 3/4

I time to reproductive maturity ∝ M 1/4

I heart rate ∝ M −1/4

I cross-sectional area of aorta ∝ M 3/4

I population density ∝ M −3/4
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The great ‘law’ of heartbeats:

Assuming:

I Average lifespan ∝ Mβ

I Average heart rate ∝ M−β

I Irrelevant but perhaps β = 1/4.

Then:
I Average number of heart beats in a lifespan
' (Average lifespan)× (Average heart rate)

∝ Mβ−β

∝ M0

I Number of heartbeats per life time is independent of
organism size!

I ≈ 1.5 billion....
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History

1840’s: Sarrus and Rameaux [22] first suggested α = 2/3.
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History

1883: Rubner [21] found α ' 2/3.
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History

1930’s: Brody, Benedict study mammals. [7]

Found α ' 0.73 (standard).
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History

1932: Kleiber analyzed 13 mammals. [16]

Found α = 0.76 and suggested α = 3/4.
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History

1950/1960: Hemmingsen [13, 14]

Extension to unicellular organisms.
α = 3/4 assumed true.
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History

1964: Troon, Scotland: [4]

3rd symposium on energy metabolism.
α = 3/4 made official . . . . . . 29 to zip.
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Today

I 3/4 is held by many to be the one true exponent.

In the Beat of a Heart: Life, Energy, and
the Unity of Nature—by John Whitfield

I But—much controversy...
I See ‘Re-examination of the “3/4-law” of metabolism’

Dodds, Rothman, and Weitz [10]
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Some data on metabolic rates
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I Heusner’s
data
(1991) [15]

I 391 Mammals
I blue line: 2/3
I red line: 3/4.
I (B = P)
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Some data on metabolic rates
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I Bennett and
Harvey’s data
(1987) [2]

I 398 birds
I blue line: 2/3
I red line: 3/4.
I (B = P)

Passerine vs. non-passerine...
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Linear regression

Important:

I Ordinary Least Squares (OLS) Linear regression is
only appropriate for analyzing a dataset {(xi , yi)}
when we know the xi are measured without error.

I Here we assume that measurements of mass M
have less error than measurements of metabolic rate
B.

I Linear regression assumes Gaussian errors.



Scaling

Scaling-at-large

Allometry
Definitions

Examples

History: Metabolism

Measuring exponents

History: River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

Frame 61/114

Measuring exponents

More on regression:
If (a) we don’t know what the errors of either variable are,

or (b) no variable can be considered independent,

then we need to use Standardized Major Axis Linear
Regression. aka Reduced Major Axis = RMA.
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Measuring exponents

For Standardized Major Axis Linear Regression:

slopeSMA =
standard deviation of y data
standard deviation of x data

Very simple!
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Measuring exponents

Relationship to ordinary least squares regression is
simple:

slopeSMA = r−1 × slopeOLS y on x

= r × slopeOLS x on y

where r = standard correlation coefficient:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
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Heusner’s data, 1991 (391 Mammals)

range of M N α̂

≤ 0.1 kg 167 0.678± 0.038

≤ 1 kg 276 0.662± 0.032

≤ 10 kg 357 0.668± 0.019

≤ 25 kg 366 0.669± 0.018

≤ 35 kg 371 0.675± 0.018

≤ 350 kg 389 0.706± 0.016

≤ 3670 kg 391 0.710± 0.021
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Bennett and Harvey, 1987 (398 birds)
Mmax N α̂

≤ 0.032 162 0.636± 0.103

≤ 0.1 236 0.602± 0.060

≤ 0.32 290 0.607± 0.039

≤ 1 334 0.652± 0.030

≤ 3.2 371 0.655± 0.023

≤ 10 391 0.664± 0.020

≤ 32 396 0.665± 0.019

≤ 100 398 0.664± 0.019
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Hypothesis testing

Test to see if α′ is consistent with our data {(Mi , Bi)}:

H0 : α = α′ and H1 : α 6= α′.

I Assume each Bi (now a random variable) is normally
distributed about α′ log10 Mi + log10 c.

I Follows that the measured α for one realization
obeys a t distribution with N − 2 degrees of freedom.

I Calculate a p-value: probability that the measured α
is as least as different to our hypothesized α′ as we
observe.

I (see, for example, DeGroot and Scherish, “Probability and
Statistics” [8])
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Revisiting the past—mammals

Full mass range:
N α̂ p2/3 p3/4

Kleiber 13 0.738 < 10−6 0.11

Brody 35 0.718 < 10−4 < 10−2

Heusner 391 0.710 < 10−6 < 10−5

Bennett 398 0.664 0.69 < 10−15

and Harvey
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Revisiting the past—mammals

M ≤ 10 kg:
N α̂ p2/3 p3/4

Kleiber 5 0.667 0.99 0.088

Brody 26 0.709 < 10−3 < 10−3

Heusner 357 0.668 0.91 < 10−15

M ≥ 10 kg:
N α̂ p2/3 p3/4

Kleiber 8 0.754 < 10−4 0.66

Brody 9 0.760 < 10−3 0.56

Heusner 34 0.877 < 10−12 < 10−7



Scaling

Scaling-at-large

Allometry
Definitions

Examples

History: Metabolism

Measuring exponents

History: River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

Frame 69/114

Fluctuations—Kolmogorov-Smirnov test
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[07−Nov−1999 peter dodds]

P(B |M) = 1/M2/3f (B/M2/3)
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Analysis of residuals

1. Presume an exponent of your choice: 2/3 or 3/4.
2. Fit the prefactor (log10 c) and then examine the

residuals:

ri = log10 Bi − (α′ log10 Mi − log10 c).

3. H0: residuals are uncorrelated
H1: residuals are correlated.

4. Measure the correlations in the residuals and
compute a p-value.
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Analysis of residuals

We use the spiffing Spearman Rank-Order Correlation
Cofficient.

Basic idea:
I Given {(xi , yi)}, rank the {xi} and {yi} separately

from smallest to largest. Call these ranks Ri and Si .
I Now calculate correlation coefficient for ranks, rs:
I

rs =

∑n
i=1(Ri − R̄)(Si − S̄)√∑n

i=1(Ri − R̄)2
√∑n

i=1(Si − S̄)2

I Perfect correlation: xi ’s and yi ’s both increase
monotonically.
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Analysis of residuals

We assume all rank orderings are equally likely:

I rs is distributed according to a Student’s distribution
with N − 2 degrees of freedom.

I Excellent feature: Non-parametric—real distribution
of x ’s and y ’s doesn’t matter.

I Bonus: works for non-linear monotonic relationships
as well.

I See “Numerical Recipes in C/Fortran” which contains
many good things. [20]
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Analysis of residuals—mammals

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(a)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(b)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(c)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(d)

α’

lo
g 10

 p

(a) M < 3.2 kg, (b) M < 10 kg, (c) M < 32 kg, (d) all mammals.
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Analysis of residuals—birds

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(a)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(b)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(c)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(d)

α’

lo
g 10

 p

(a) M < .1 kg, (b) M < 1 kg, (c) M < 10 kg, (d) all birds.
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Basic basin quantities: a, l , L‖, L⊥:

a
L?0

L? Lk = L
a0 ll0Lk0 I a = drainage

basin area
I ` = length of

longest (main)
stream

I L = L‖ =
longitudinal length
of basin
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River networks

I 1957: J. T. Hack [12]

“Studies of Longitudinal Stream Profiles in Virginia
and Maryland”

` ∼ a h

h ∼ 0.6

I Anomalous scaling: we would expect h = 1/2...
I Subsequent studies: 0.5 . h . 0.6
I Another quest to find universality/god...
I A catch: studies done on small scales.
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Large-scale networks

(1992) Montgomery and Dietrich [19]:

Fig. 1. Without a scale bar it
is almost impossible to de-
termine even the approxi-
mate scale of a topographic
map. The upper two maps
show adjacent drainage ba-
sins in the Oregon Coast
Range and illustrate the ef-
fect of depicting an area of
similar topography at diffier-
ent scales. The map on the
right covers an area four
times as large as, and has
twice the contour interval
of, the map on the left. The
lower two maps depict very
different landscapes, and de-
tailed mapping was done to
resolve the finest scale val- - --
leys, which determine the -
extent, or scale, of landscape
dissection. The map on the
left shows a portion of a/
small badlands area at Perth
Amboy, New Jersey (28)
(scale bar represents 2 m;
contour interval is 0.3 in).
The map on the right shows
a portion of the San Gabriel
Mountains of southern Cal-
ifornia (20) (scale bar repre-
sents 100 m; contour inter-
val is 15 in). Dashed fines on
both lower maps represent
the limit of original map-
ping. The drainage basin outlet on each map is oriented toward the bottom of the page. All four maps
suggest a limit to landscape dissection, defined by the size of the hilislopes, separating valleys. This
apparent limit, however, only corresponds to the extent of valley dissection definable in the field for the
case of the lower two maps.

We collected data from small drainage
basins in a variety of geologic settings that
represent a range in climate and vegetation
(4, 5). We measured the drainage area (A),
basin length (L), and local slope (S) for
locations in convergent topography along
low-order channel networks, at channel
heads, and along unchanneled valleys in
drainage basins where we had mapped the
channel networks in the field (4, 5). Drain-
age area was defined as the area upslope of
the measurement location, basin length was
defined as the length along the main valley
axis to the drainage divide, and local slope
was measured in the field. The structural
relation ofdrainage area to basin length (10)
for our composite data set is

L = 1.78 A49 (1)

E

5
c
U

Drainage area (m2)

where L and A are expressed in meters. This
relation is well approximated by the simple,
isometric relation

L (3 A)05 (2)
Inclusion of reported drainage area and
mainstream length data from larger net-
works (11-15) provides a composite data
set that also is reasonably fit (5) by this
relation. The data span a range of more
than 11 orders of magnitude in basin area,
from unchanneled hillside depressions to
the world's largest rivers (Fig. 2). This
relation suggests that there is a basic geo-
metric similarity between drainage basins
and the smaller basins contained within
them that holds down to the finest scale to
which the landscape is dissected (Fig. 3).
In the field this scale is easily recognized as

Fig. 2. Basin length versus drainage
area for unchanneled valleys, source
areas, and low-order channels mapped
in this study (0) and mainstream
length versus drainage area data report-
ed for large channel networks (0).
Sources of mainstream length data are
given in (5).

Fig. 3. The coherence of the data in Fig. 2 across
11 orders of magnitude indicates a geometric
similarity between small drainage basins and the
larger drainage basins that contain them. Al-
though the variance about the trend in Fig. 2
indicates a range in individual basin shapes, this
general relation apparently characterizes the land-
scape down to the finest scale of convergent
topography.

that ofthe topographically divergent ridges
that separate these fine-scale valleys.
Equation 1 differs, however, from the

relation between the mainstream length
and drainage area first reported by Hack
(11), in which basin area increases as L`.
Many subsequent workers interpreted sim-
ilar relations as indicating that drainage
network planform geometry changes with
increasing scale. Relations between main-
stream length and drainage area also have
been used to infer the fractal dimension of
individual channels and channel networks
(1, 16). Mueller (15), however, reported
that the exponent in the relation of main-
stream length to drainage area is not con-
stant, but decreases from 0.6 to -0.5 with
increasing network size, and Hack (11)
noted that the exponent in this relation
varies for individual drainage networks.
We cannot compare our data more quanti-
tatively with those reported by others be-
cause the mainstream length will diverge
from the basin length in proportion to the
area upslope of the stream head. We sus-
pect that the difference in the relations
derived from our data and those reported
previously reflects variation in the head-
ward extent ofthe stream network depicted
on maps of varying scale (17) as well as
downstream variations in both channel sin-
uosity (14) and drainage density (18). The
general scale independence indicated in
Fig. 2 suggests that landscape dissection
results in an integrated network of valleys
that capture geometrically similar drainage
basins at scales ranging from the largest
rivers to the finest scale valleys. Within this
scale range there appears to be little inher-
ent to the channel network and to the
corresponding shape ofthe drainage area it
captures that provides reference to an ab-
solute scale.

Nonetheless, field studies in semiarid to
humid regions demonstrate that there is a
finite extent to the branching channel net-
work (4, 5, 19-22). Channels do not occupy
the entire landscape; rather, they typically
begin at the foot of an unchanneled valley,
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I Composite data set: includes everything from
unchanneled valleys up to world’s largest rivers.

I Estimated fit:
L ' 1.78a 0.49

I Mixture of basin and main stream lengths.
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World’s largest rivers only:
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I Data from Leopold (1994) [17, 9]

I Estimate of Hack exponent: h = 0.50± 0.06

Scaling

Scaling-at-large

Allometry
Definitions

Examples

History: Metabolism

Measuring exponents

History: River networks

Earlier theories

Geometric argument

Blood networks

River networks

Conclusion

References

Frame 81/114

Earlier theories

Building on the surface area idea...

I Blum (1977) [5] speculates on four-dimensional
biology:

P ∝ M (d−1)/d

I d = 3 gives α = 2/3
I d = 4 gives α = 3/4
I So we need another dimension...
I Obviously, a bit silly.
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Earlier theories

Building on the surface area idea:

I McMahon (70’s, 80’s): Elastic Similarity [18, 6]

I Idea is that organismal shapes scale allometrically
with 1/4 powers (like nails and trees...)

I Appears to be true for ungulate legs.
I Metabolism and shape never properly connected.
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Nutrient delivering networks:
I 1960’s: Rashevsky considers blood networks and

finds a 2/3 scaling.
I 1997: West et al. [25] use a network story to find 3/4

scaling.
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Nutrient delivering networks:

West et al.’s assumptions:

I hierarchical network
I capillaries (delivery units) invariant
I network impedance is minimized via evolution

Claims:
I P ∝ M 3/4

I networks are fractal
I quarter powers everywhere
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Impedance measures:

Poiseuille flow (outer branches):

Z =
8µ

π

N∑
k=0

`k

r4
k Nk

Pulsatile flow (main branches):

Z ∝
N∑

k=0

h1/2
k

r5/2
k Nk
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Not so fast . . .

Actually, model shows:

I P ∝ M 3/4 does not follow for pulsatile flow
I networks are not necessarily fractal.

Do find:
I Murray’s cube law (1927) for outer branches:

r3
0 = r3

1 + r3
2

I Impedance is distributed evenly.
I Can still assume networks are fractal.
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Connecting network structure to α
1. Ratios of network parameters:

Rn =
nk+1

nk
, R` =

`k+1

`k
, Rr =

rk+1

rk

2. Number of capillaries ∝ P ∝ Mα.

⇒ α = − ln Rn

ln R2
r R`

(also problematic due to prefactor issues)

Soldiering on, assert:

I area-preservingness: Rr = R−1/2
n

I space-fillingness: R` = R−1/3
n

I

⇒ α = 3/4
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Data from real networks

Network Rn R−1
r R−1

` − ln Rr
ln Rn

− ln R`

ln Rn
α

West et al. – – – 1/2 1/3 3/4

rat (PAT) 2.76 1.58 1.60 0.45 0.46 0.73

cat (PAT) 3.67 1.71 1.78 0.41 0.44 0.79
(Turcotte et al. [24])

dog (PAT) 3.69 1.67 1.52 0.39 0.32 0.90

pig (LCX) 3.57 1.89 2.20 0.50 0.62 0.62
pig (RCA) 3.50 1.81 2.12 0.47 0.60 0.65
pig (LAD) 3.51 1.84 2.02 0.49 0.56 0.65

human (PAT) 3.03 1.60 1.49 0.42 0.36 0.83
human (PAT) 3.36 1.56 1.49 0.37 0.33 0.94
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Simple supply networks

I Banavar et al.,
Nature,
(1999) [1]

I Flow rate
argument

I Ignore
impedance

I Very general
attempt to find
most efficient
transportation
networks
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Simple supply networks

I Banavar et al. find ‘most efficient’ networks with

P ∝ M d/(d+1)

I ... but also find

Vnetwork ∝ M (d+1)/d

I d = 3:
Vblood ∝ M 4/3

I Consider a 3 g shrew with Vblood = 0.1Vbody

I ⇒ 3000 kg elephant with Vblood = 10Vbody

I Such a pachyderm would be rather miserable.
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Geometric argument

I Consider one source supplying many sinks in a
d-dim. volume in a D-dim. ambient space.

I Assume sinks are invariant.
I Assume ρ = ρ(V ).
I Assume some cap on flow speed of material.
I See network as a bundle of virtual vessels:

I Q: how does the number of sustainable sinks Nsinks
scale with volume V for the most efficient network
design?

I Or: what is the highest α for Nsinks ∝ V α?
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Geometric argument

I Allometrically growing regions:

Ω Ω L’2

L 1 L’

2L

1

(V)
(V’)

I Have d length scales which scale as

Li ∝ V γi where γ1 + γ2 + . . . + γd = 1.

I For isometric growth, γi = 1/d .
I For allometric growth, we must have at least two of

the {γi} being different
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Geometric argument

I Best and worst configurations (Banavar et al.)

a b

I Rather obviously:
min Vnet ∝

∑
distances from source to sinks.
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Minimal network volume:

Real supply networks are close to optimal:

J.S
tat.M

ech.
(2006)

P
01015

Shape and efficiency in spatial distribution networks

(a) (b) (c) (d)

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (c) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

Table 1. Number of vertices n, route factor q, and total edge length for each of
the networks described in the text, along with the equivalent results for the star
graphs and minimum spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted from the table.)

Route factor Edge length (km)

Network n Actual MST Actual MST Star

Sewer system 23 922 1.59 2.93 498 421 102 998
Gas (WA) 226 1.13 1.82 5578 4374 245 034
Gas (IL) 490 1.48 2.42 6547 4009 59 595
Rail 126 1.14 1.61 559 499 3 272

set of n − 1 edges joining them such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized4.)

To make the comparison with the star graph, we consider the distance from each non-
root vertex to the root, first along the edges of the network and second along a simple
Euclidean straight line, and calculate the mean ratio of these two distances over all such
vertices. Following [18], we refer to this quantity as the network’s route factor, and denote
it q:

q =
1

n− 1

n−1∑

i=1

li0
di0

, (1)

where li0 is the distance along the edges of the network from vertex i to the root (which
has label 0), and di0 is the direct Euclidean distance. If there is more than one path
through the network to the root, we take the shortest one. Thus, for example, q = 2
would imply that on average the shortest path from a vertex to the root through the
network is twice as long as a direct straight-line connection. The smallest possible value
of the route factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in table 1. As we can see, the
networks are remarkably efficient in this sense, with route factors quite close to 1. Values

4 If we are not restricted to the specified vertex set but are allowed to add vertices freely, then the optimal solution
is the Steiner tree; in practice we find that there is little difference between results for minimum spanning and
Steiner trees in the present context.

doi:10.1088/1742-5468/2006/01/P01015 4

(2006) Gastner and Newman [11]: “Shape and efficiency in
spatial distribution networks”
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Minimal network volume:

Approximate network volume by integral over region:

min Vnet ∝ min Vnet ∝
∫

Ωd,D(V )
ρ ||~x || d~x

→ ρV 1+γmax

∫
Ωd,D(c)

(c2
1u2

1 + . . . + c2
k u2

k )1/2d~u

∝ ρV 1+γmax
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Geometric argument
I General result:

min Vnet ∝ ρV 1+γmax

I If scaling is isometric, we have γmax = 1/d :

min Vnet/iso ∝ ρV 1+1/d = ρV (d+1)/d

I If scaling is allometric, we have γmax = γallo > 1/d :
and

min Vnet/allo ∝ ρV 1+γallo

I Isometrically growing volumes require less network
volume than allometrically growing volumes:

min Vnet/iso

min Vnet/allo
→ 0 as V →∞
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Blood networks

I Material costly⇒ expect lower optimal bound of
Vnet ∝ ρV (d+1)/d to be followed closely.

I For cardiovascular networks, d = D = 3.
I Blood volume scales linearly with blood volume [23],

Vnet ∝ V .
I Sink density must ∴ decrease as volume increases:

ρ ∝ V−1/d .

I Density of suppliable sinks decreases with organism
size.
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Blood networks

I Then P, the rate of overall energy use in Ω, can at
most scale with volume as

P ∝ ρV ∝ ρ M ∝ M (d−1)/d

I For d = 3 dimensional organisms, we have

P ∝ M 2/3
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Recap:

I The exponent α = 2/3 works for all birds and
mammals up to 10–30 kg

I For mammals > 10–30 kg, maybe we have a new
scaling regime

I Economos: limb length break in scaling around 20 kg
I White and Seymour, 2005: unhappy with large

herbivore measurements. Find α ' 0.686± 0.014
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Prefactor:

Stefan-Boltzmann law:
I

dE
dt

= σST 4

where S is surface and T is temperature.
I Very rough estimate of prefactor based on scaling of

normal mammalian body temperature and surface
area S:

B ' 105M2/3erg/sec.

I Measured for M ≤ 10 kg:

B = 2.57× 105M2/3erg/sec.
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River networks

I View river networks as collection networks.
I Many sources and one sink.
I Assume ρ is constant over time:

Vnet ∝ ρV (d+1)/d = constant× V 3/2

I Network volume grows faster than basin ‘volume’
(really area).

I It’s all okay:
Landscapes are d=2 surfaces living in D=3
dimension.

I Streams can grow not just in width but in depth...
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Hack’s law
I Volume of water in river network can be calculated by

adding up basin areas
I Flows sum in such a way that

Vnet =
∑

all pixels

apixel i

I Hack’s law again:
` ∼ a h

I Can argue
Vnet ∝ V 1+h

basin = a1+h
basin

where h is Hack’s exponent.
I ∴ minimal volume calculations gives

h = 1/2
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Real data:

I Banavar et al.’s
approach [1] is
okay because ρ
really is constant.

I The irony: shows
optimal basins are
isometric

I Optimal Hack’s
law: a ∼ `h with
h = 1/2

I (Zzzzz)
From Banavar et al. (1999) [1]
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Even better—prefactors match up:
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Conclusion

I Supply network story consistent with dimensional
analysis.

I Isometrically growing regions can be more efficiently
supplied than allometrically growing ones.

I Ambient and region dimensions matter
(D = d versus D > d).

I Deviations from optimal scaling suggest inefficiency
(e.g., gravity for organisms, geological boundaries).

I Actual details of branching networks not that
important.

I Exact nature of self-similarity varies.
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