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Scaling-at-large

_ All about scaling:

General observation:
» Definitions.

Systems (complex or not) » Examples.

that cross many spatial and temporal scales >

>

often exhibit some form of scaling.
J Mechanisms giving rise to your power-laws.
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How to measure your power-law relationship.

Scaling
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Scaling

Scaling-at-large
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Scaling

Definitions Soaling Definitions

Scaling-at-large Scaling-at-large

A power law relates two variables x and y as follows: » The prefactor ¢ must balance dimensions.

» eg., length ¢ and volume v of common nails are

. Q
y=cx related as:

¢ =cv'/4

» «is the scaling exponent (or just exponent) > Using [] to indicate dimension, then

» (a can be any number in principle but we will find
various restrictions.)

» cis the prefactor (which can be important!)

[c] = [N/IV/4] = L/L3* = LA,

Frame 5/114 Frame 6/114
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Looking at data Sealng A beautiful, heart-warming example: Sealng
Scaling-at-large 10 i Scaling-at-large
» Power-law relationships are linear in log-log space: Al Sl o~ 1.23
y = ox“ 7 gray
£ i matter:
= log, y = alog, x +log, ¢ . | ‘computing
with slope equal to «, the scaling exponent. gmz i elements’
» Much searching for straight lines on log-log or E .
. . o 1 white
double-logarithmic plots.
. log,  W=(1.23+0.01) log, G- (1.47 £ 0.04) m atter :
» Good practice: Always, always, always use base 10. i " 1 ‘wiring’
» Talk only about orders of magnitude (powers of 10). o ‘ ‘ ‘ . ‘

10
Gray Matter Volume G ( mm

from Zhang & Sejnowski, PNAS (2000) (¢!
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Why is a ~ 1.237

Quantities (following Zhang and Sejnowski):

» G = Volume of gray matter (cortex/processors)

» W = Volume of white matter (wiring)
» T = Cortical thickness (wiring)

» S = Cortical surface area

» L = Average length of white matter fibers
>

p = density of axons on white matter/cortex interface

A rough understanding:

» G ~ ST (convolutions are okay)

» W~ %pSL

» G~ L® — this'is a little sketchy...

» Eliminate S and L to find W o« G*/3/T

Why is a ~ 1.237

log, G = (0.955 +0.002) log, | V+ (0.061 £ 0.009)
10°F  r=09998

Gray Matter Volume G

White Matter Volume W

Volume in mm?
=

log,, W= (1.174 +0.007) log,,, V- (140 +0.03)
r=0.9988

10! 10? 10° 10* 10° 10° 107
Total Volume V= G+ W{(mm?3)

Trickiness:
» With V = G + W, some power laws must be
approximations.
» Measuring exponents is a hairy business...

Scaling

Scaling-at-large
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Scaling

Scaling-at-large
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Why is a ~ 1.237

A rough understanding:

» We are here: W G4/3/T

» Observe weak scaling T oc G0-10+0.02,

> (Implies S oc G%9 — convolutions fill space.)
> = W o GH3/T o G1:234002

Good scaling:

General rules of thumb:

» High quality: scaling persists over
three or more orders of magnitude
for each variable.

» Medium quality: scaling persists over
three or more orders of magnitude
for only one variable and at least one for the other.

» Very dubious: scaling ‘persists’ over
less than an order of magnitude
for both variables.

Scaling

Scaling-at-large
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Scaling

Unconvincing scaling:

Scaling-at-large

Average walking speed as a function of city
population:

0.8

0.6

=0.093 R®=0.80

Two problems:
1. use of natural log, and

2. minute varation in
dependent variable.

0.4

0.2

0

LN[Walking Speed (m/s)]

-0.2

-0.4

6 8 10 12 14 16
LNI[N (population)]

from Bettencourt et al. (2007) [°/; otherwise very interesting!
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Scale invariance

Scaling-at-large

Our friend y = cx“:

» Ifwerescale xas x=rx"and y as y = r*y’,
» then

rey’ = c(rx')”
>
=y =cr*xr
>
=y =cx

Frame 15/114
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Definitions

Power laws are the signature of
scale invariance:

Scale invariant ‘objects’
look the ‘same’

when they are appropriately
rescaled.

» Objects = geometric shapes, time series, functions,
relationships, distributions,...

» ‘Same’ might be ‘statistically the same’

» To rescale means to change the units of
measurement for the relevant variables

Scale invariance

Compare with y = ce=**:
» If we rescale x as x = rx/, then

y = Ce—)\rx’

» Original form cannot be recovered.
» = scale matters for the exponential.

Scaling

Scaling-at-large
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Scale invariance

More on y = ce **:

» Say xo = 1/\ is the characteristic scale.

» For x > X, y is small,
while for x < xp, y is large.

» = More on this later with size distributions.

Definitions:

Isometry:
dimensions scale
linearly with each
other.

Allometry:
dimensions scale
nonlinearly.

Scaling

Scaling-at-large
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Scaling

Frame 20/114

F Dae

Definitions

Allometry (H):

[refers to] differential growth rates of the parts of a living
organism’s body part or process.

Definitions

Isometry versus Allometry:

» Isometry = ‘same measure’
» Allometry = ‘other measure’

Confusingly, we use allometric scaling to refer to
both:
1. nonlinear scaling (e.g., x « y'/3)

2. and the relative scaling of different measures
(e.g., resting heart rate as a function of body size)

Scaling
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http://en.wikipedia.org/wiki/Allometry

A wonderful treatise on scaling: Scaling
ON SIZE AND LIFE

Examples

THOMAS A. McMAHON AND JOHN TYLER BONNER

Bonner and
McMahon, 1983 ©!

Frame 23/114
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Scaling

Examples
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p. 2, Bonner and McMahon [6] F Dae

For the following slide:

The biggest living things (left). All the organ-
isms are drawn to the same scale. 7, The
largest flying bird (albatross); 2, the largest
known animal (the blue whale), 3, the larg-
est extinct land mammal (Baluchitherium)
with a human figure shown for scale; 4,
the tallest living land animal (giraffe); 5, Ty-
rannosaurus; 6, Diplodocus; 7, one of the
largest flying reptiles (Pteranodon); 8, the
largest extinct snake; 9, the length of

the largest tapeworm found in man; 70,
the largest living reptile (West African croc-
odile); 71, the largest extinct lizard; 72, the
largest extinct bird (Aepyornis); 13, the
largest jellyfish (Cyanea); 14, the largest liv-
ing lizard (Komodo dragon); 75, sheep; 76,
the largest bivalve mollusc (Tridacna); 17,
the largest fish (whale shark); 78, horse;
19, the largest crustacean (Japanese spider
crab); 20, the largest sea scorpion (Euryp-
terid); 27, large tarpon; 22, the largest lob-
ster; 23, the largest mollusc (deep-water
squid, Architeuthis); 24, ostrich; 25, the
lower 105 feet of the largest organism
(giant sequoia), with a 100-foot larch su-
perposed.

p. 2, Bonner and McMahon [6]

For the following slide:

Medium-sized creatures (above). 1, Dog; 2,
common herring; 3, the largest egg
(Aepyornis); 4, song thrush with egg; 5,
the smallest bird (hummingbird) with egg;
6, queen bee; 7, common cockroach; 8, the
largest stick insect; 9, the largest polyp
(Branchiocerianthus); 10, the smallest mam-
mal (flying shrew); 77, the smallest verte-
brate (a tropical frog); 72, the largest frog
(goliath frog); 73, common grass frog; 74,
house mouse; 75, the largest land snail
(Achatina) with egg; 16, common snail; 77,
the largest beetle (goliath beetle); 78,
human hand; 79, the largest starfish (Luidia);
20, the largest free-moving protozoan (an
extinct nummulite).

p. 2, Bonner and McMahon [6]

Scaling

Examples
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The many scales of life: For the following slide:

Small, "“naked-eye' creatures (lower left).
1, One of the smallest fishes (Trimmatom
nanus); 2, common brown hydra, ex-
panded; 3, housefly; 4, medium-sized ant;
5, the smallest vertebrate (a tropical frog,
the same as the one numbered 77 in the
figure above); 6, flea (Xenopsylla cheopis);
7, the smallest land snail; 8, common water
flea (Daphnia).

Examples

Examples

The smallest ‘“naked-eye'" creatures and
some large microscopic animals and cells
(below right). 1, Vorticella, a ciliate; 2, the
largest ciliate protozoan (Bursaria); 3, the
smallest many-celled animal (a rotifer); 4,
smallest flying insect (Elaphis); 5, another
ciliate (Paramecium); 6, cheese mite; 7,
human sperm; 8, human ovum; 9, dysen-
tery amoeba; 70, human liver cell; 77, the
foreleg of the flea (numbered 6 in the fig-
ure to the feft).

Frame 28/114

p. 3, Bonner and McMahon [6] [6
5 o p. 2, Bonner and McMahon ] 5 Ao

Frame 27/114
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The many scales of life: ize range and cell differentiation: e
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[6] T TR R Frame 30/114
p. 3, Bonner and McMahon
F HA Number of cell types F A
p. 3, Bonner and McMahon [6]



Non-uniform growth: Scaling

Examples

042 075 275 675 1275 2575
Frame 31/114

p. 32, Bonner and McMahon [6] F DA

2/3 Scaling

ifter

Welght“ﬂ:lng Mworldrecord 0.8 M1
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Examples
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Log body weight

Idea: Power ~ cross-sectional area of isometric lifters.

p. 53, Bonner and McMahon [6]
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Non-uniform growth—arm length versus Seaing
height:

Good example of a break in scaling: Exanpis

100 T T T 7 T T T TT

15
S
T 11T

©w
=
I

Arm length (cm)

0.42
10 1 N I TN T I
10 20 30 40 50 60 80 100 200 300 400 500 700 900

Body height (cm)

A crossover in scaling occurs around a height of 1 metre.
p. 32, Bonner and McMahon [6]
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H . 4 Scalin
Titanothere horns: Lyom ~ L,y ?

600 —

400

Examples

200 —

100

80 —
60 (—

40

Horn length (mm)

20 —

400 600 800 1000
Basilar length of skull (mm)

Frame 34/114
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The allometry of nails: Seaing The allometry of nails: Saaing

L S N RN
— . E
: - Examples Examples
A buckling instability?:
] » Physics/Engineering result: Columns buckle under a
1 i load which depends on d*/¢2.
1 / . . . . . . .
/ i » To drive nails in, resistive force oc nail circumference
' A T =7d.
- » Match forces independent of nail size: d*//?  d.
» Diameter o« Mass®/® » Leads to d o (2/3.
» Length o« Mass'/*
» Diameter o Length?/3
p. 58-59, Bonner and McMahon [6]
Frame 35/114 Frame 36/114
&F LA &F LA
Rowing: Speed « (number of rowers)!/® Seelng Scaling in Cities: S
Vo. of Beam, b :::: y " ;’;j:"ﬁ’”“” "'7 - Examples « . . . . . Examples
casen (IR ' & ® N : » “Growth, innovation, scaling, and the pace of life in g
: OB O Lo cities”
: i 4 4 ssaw Bettencourt et al., PNAS, 2007. °
B B » Quantified levels of
E o R » Infrastructure
1 » Wealth
. 3 » Crime levels
: /// ] » Disease
1 F 1 » Energy consumption
r i as a function of city size N (population).
e

Frame 37/114 Frame 38/114
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Scaling in Cities: Scaling in Cities:

Table 1. Scaling exponents for urban indicators vs. city size

Intriguing findings:

Y B 95% Cl Adj-R?  Observations Country-year

New patents 1.27 [1.25,1.29] 0.72 331 U.S. 2001 . .

Inventors 125 (221271 076 331 U.s. 2001 S » Global supply costs scale sublinearly with N (G < 1). S
Private R&D employment 134 [1.29,1.39] 0.92 266 U.S. 2002 .

"Supercreative” employment 115 [1.11,1.18] 0.89 287 U.S. 2003 > Returns to Scale for |nfraStrUCture-

R&D establishments 1.19 [1.14,1.22] 0.77 287 U.S. 1997 . e . .

R&D employment 126 (118143 093 295 China 2002 » Total individual costs scale linearly with N (8 = 1)
Total 1.12 1.09,1.13 0.96 361 U.S. 2002 . . . .

T b eposits e B o U5 tose » Individuals consume similar amounts independent of
GDP 1.15 [1.06,1.23] 0.96 295 China 2002 Clty SIZG

GDP 1.26 [1.09,1.46] 0.64 196 EU 1999-2003 '

GDP 1.13  [1.03,1.23] 0.94 37 Germany 2003 i 1+ H i

Total electrical consumption 1.07 [1.03,1.11] 0.88 392 Germany 2002 > SOCIaI quantltles Scale Superllnearly Wlth N (ﬁ > 1)
New AIDS cases 1.23 [1.18,1.29] 0.76 93 U.S. 2002-2003 Vi i i

ew AIDS case e B e U 2002 » Creativity (# patents), wealth, disease, crime, ...

Total housing 1.00 [0.99,1.01] 0.99 316 U.S. 1990

Total employment 1.01 [0.99,1.02] 0.98 331 U.S. 2001

Household electrical consumption 1.00 [0.94,1.06] 0.88 377 Germany 2002 . y

Household electrical consumption 1.05 [0.89,1.22] 0.91 295 China 2002 DenSIty doesn t Seem tO matter .

Household water consumption 1.01 [0.89,1.11] 0.96 295 China 2002

Gasoline stations 0.77 [0.74,0.81] 0.93 318 U.S. 2001 S H

Gasoline sales 0.79 [0.73,0.80] 0.94 318 U.S. 2001 > Surpns'ng glven that aCf'OSS the World’ We Observe
Length of electrical cables 0.87 [0.82,0.92] 0.75 380 Germany 2002 i 1ati i

ength of el Py B i o 0s two orders of magnitude variation in area covered by

agglomerations of fixed populations.

Data sources are shown in S/ Text. Cl, confidence interval; Adj-R?, adjusted R%; GDP, gross domestic product.

Frame 39/114 Frame 40/114
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Ecology—Species-area law: Nypecies < A” Sealng A focus: Scaling

Examples Examples

Allegedly (data is messy):
gedly ( y) » How much energy do organisms need to live?

> Onislands: § ~ 1/4. » And how does this scale with organismal size?

» On continuous land: g ~ 1/8.

Frame 41/114 Frame 42/114
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Animal power Sl P—cMe° scaling

Prefactor ¢ depends on body plan and body temperature:
Fundamental biological and ecological constraint:

P = basal metabolic rate

Birds 39-41°C

Eutherian Mammals 36-38°C
Marsupials 34-36°C
Monotremes 30-31°C

M = organismal body mass

Frame 44/114 Frame 45/114
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What one might expect: The prevailing belief of the church of
quarterology

«a = 2/3 because ...

» Dimensional analysis suggests
an energy balance surface law:

Pox S o V33 5 M2/3

» Lognormal fluctuations:

Gaussian fluctuations in log P around log cM®. P M3/4
» Stefan-Boltzmann relation for radiated energy:
dE 4 Huh?
d7t = O'€ST

Frame 46/114 Frame 47/114

F DA F DHaAx




Related putative scalings:

» number of capillaries oc M3/4
» time to reproductive maturity oc M1/4
» heart rate oc M~1/4

» cross-sectional area of aorta oc M3/4
» population density o« M —3/4

History

1840’s: Sarrus and Rameaux °?! first suggested a = 2/3.

Scaling The great ‘law’ of heartbeats:

Assuming:

» Average lifespan oc M”?
» Average heart rate oc M5
» Irrelevant but perhaps 5 = 1/4.

Then:

» Average number of heart beats in a lifespan
~ (Average lifespan) x (Average heart rate)
o MPB—8
x MO
» Number of heartbeats per life time is independent of
organism size!

» =~ 1.5 billion....
Frame 48/114
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el History

1883: Rubner ?'l found a ~ 2/3.

rm
Né B ) )

Frame 50/114
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Scaling

Frame 49/114
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Scaling

Frame 51/114

F Dae




Scaling

History Scaling History
1930’s: Brody, Benedict study mammals. !’/ Hior: Wtablim 1932: Kleiber analyzed 13 mammals. '] Hisor: etablim
Found a ~ 0.73 (standard). Found a = 0.76 and suggested oo = 3/4.
T R L A
0 70 80 90 100
Il‘ll LI
HIH III‘IH !ll\l.ll‘l |
o T 50 Tda0 7
6 1:5 1:4 13 12
- Sl N
Frame 52/114 Frame 53/114
&F LA &F LA
HIStOFy Scaling Hlstory Scaling
1950/1960: Hemmingsen '3 14 1964: Troon, Scotland: ! s
Extension to unicellular organisms. — 3rd symposium on energy metabolism. can
a = 3/4 assumed true. a = 3/4 made official . .. ...29 1o zip.
.

Frame 55/114

Frame 54/114
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Today Scaling Some data on metabolic rates Sealne

» 3/4 is held by many to be the one true exponent.
» Heusner’s
data
In the Beat of a Heart: Life, Energy, and (1991) [15]
the Unity of Nature—by John Whitfield > 391 Mammals
» blue line: 2/3
» red line: 3/4.
» But—much controversy... N 10-Dec-200 pter docs] » (B=P)
» See ‘Re-examination of the “3/4-law” of metabolism’ °o 1 2 Ig l\jl > 6 7
Dodds, Rothman, and Weitz '] 910
Frame 56/114 Frame 57/114
&F LA &F LA
Some data on metabolic rates el Linear regression Sealng
2
— .664
1g B=0041 Vs
1 » Bennett and Important:
Harvey’s data
D 05 (1987))/[2] » Ordinary Least Squares (OLS) Linear regression is
g o 398 bird only appropriate for analyzing a dataset {(x;, y;)}
N > .|r S when we know the x; are measured without error.
03 g quelIme: 213 » Here we assume that measurements of mass M
A > red line: 3/4. have less error than measurements of metabolic rate
» (B=P) B.
13 1 2 3 4 5 » Linear regression assumes Gaussian errors.
IoglOM
Passerine vs. non-passerine... Frame 58/114 Frame 60/114

F DA F DHaAx




Scaling

Measuring exponents e Measuring exponents

More on reg,jressmn. , , For Standardized Major Axis Linear Regression:
If (a) we don’t know what the errors of either variable are,

or (b) no variable can be considered independent, standard deviation of y data

slopeg, = —
dard deviat f x dat
then we need to use Standardized Major Axis Linear Verv simoel standard deviation of x data
Regression. aka Reduced Major Axis = RMA. ery simpie:

Frame 61/114 Frame 62/114

F DA 5 vaco

Measuring exponents e Heusner’s data, 1991 (391 Mammals) e

range of M | N &

Relationship to ordinary least squares regression is
simple:

<0.1kg | 167 | 0.678 +£0.038

Slopegy, = ' X SI0PEoL, on, <1kg | 276 | 0.662+0.032

= I xSlopos san, <10kg | 357 | 0.668+0.019
where r = standard correlation coefficient:
r— S (X = X) (i —¥)

VI — 2L (3 - 7)?

<25kg | 366 | 0.669+0.018

<35kg | 371 |0.675+0.018

<350kg | 389 | 0.706 +0.016

<3670kg | 391 | 0.710 £ 0.021

Frame 63/114 Frame 64/114
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Bennett and Harvey, 1987 (398 birds) Seaing Hypothesis testing Scaing
Mmax N 6[

Test to see if o/ is consistent with our data {(M;, B;)}:
<0.032 | 162 | 0.636 + 0.103

Hy:a=da and Hy : a # d.

<0.1 | 236 | 0.602 + 0.060

» Assume each B; (now a random variable) is normally
distributed about o' logyq M; + log, C.

» Follows that the measured « for one realization
obeys a t distribution with N — 2 degrees of freedom.
» Calculate a p-value: probability that the measured «

is as least as different to our hypothesized o’ as we
observe.

<0.32 | 290 | 0.607 £+ 0.039
<A1 334 | 0.652 +0.030
<3.2 | 371 | 0.655+0.023
<10 | 391 | 0.664 +0.020

> (see, for example, DeGroot and Scherish, “Probability and

<32 | 396 | 0.665+0.019 Statistics” [])

Frame 66/114

<100 | 398 | 0.664 +0.019 e

F DA F DA

Revisiting the past—mammals e Revisiting the past—mammals Scaling

M <10 kg:
N a P23 P3/a

Full mass range:
N

o

P2/3 P3/4 Kleiber 5 0.667 0.99 0.088

Kleiber 13 0738 < 10°° 0.11 Brody 26 0709 <103 <1078

Heusner 357 0.668  0.91 <1015

M > 10 kg:
N & P23 P3/a

Brody 35 0718 <10™* <1072

Heusner 391 0.710 <10% <10°°

Bennett 398 0664 0.69 < 10-15 Kieiber 8 0754 <107  0.66

and Harvey Brody 9 0760 <10° 0.56

Heusner 34 0.877 <1072 <1077

Frame 67/114 Frame 68/114
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Fluctuations—Kolmogorov-Smirnov test

[07-Nov-1999 peter dodds]

3.5 20 bins °

0
log, B/M #°

P(B|M) = 1/M?/3f(B/M?/3)

Analysis of residuals

We use the spiffing Spearman Rank-Order Correlation
Cofficient.

Basic idea:
» Given {(x;, yi)}, rank the {x;} and {y;} separately
from smallest to largest. Call these ranks R; and S;.

» Now calculate correlation coefficient for ranks, rs:

> _ —
>iia(Ri—R)(Si - 9)

SR RRSL (s 5P

» Perfect correlation: x;’s and y;’s both increase
monotonically.

Scaling

Frame 69/114

F Dae

Scaling

Frame 71/114

F Dae

Analysis of residuals

1. Presume an exponent of your choice: 2/3 or 3/4.

2. Fit the prefactor (log,, ¢) and then examine the
residuals:

r =logyy Bi — (a/ logyg M; — logq €).

3. Hy: residuals are uncorrelated
H;: residuals are correlated.

4. Measure the correlations in the residuals and
compute a p-value.

Analysis of residuals

We assume all rank orderings are equally likely:

» rs is distributed according to a Student’s distribution
with N — 2 degrees of freedom.

» Excellent feature: Non-parametric—real distribution
of x’s and y’s doesn’t matter.

» Bonus: works for non-linear monotonic relationships
as well.

» See “Numerical Recipes in C/Fortran” which contains
many good things. [*%!

Scaling

Frame 70/114
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Scaling

Frame 72/114
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Analysis of residuals—mammals eatne Analysis of residuals—birds Sl

0 - 0
h
Al i\ ® -l
)
_2 - -JI- _2 -
|
-3 -3
o 1 . -4 \ \ -4
ma 0.6 2/30.7 3/4 0.8 0.6 2/30.7 3/4 08 .8 0.
S o0 - 0 - 0 -
h h h
b S\ O LN O Al @
|
_2 ........ JI_-_ _2 ........ [ [P _2 ........ [ [P
|
-3 ' -3 -3
_4 1 1 _4 1 1 _4 1 1 _4 1 1
0.6 2/30.7 3/4 0.8 0.6 2/30.7 3/4 08 0.6 2/30.7 3/4 0.8 0.6 2/30.7 3/4 08
a’ a’

(@) M < 3.2kg, (b) M < 10 kg, (c) M < 32 kg, (d) all mammals. (@) M < .1 kg, (b) M < 1 kg, (c) M < 10 kg, (d) all birds.

Frame 73/114 Frame 74/114
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Basic basin quantities: a, /, LH’ LL: Scaing River networks Scaling

1957: J. T. Hack |2
“Studies of Longitudinal Stream Profiles in Virginia
and Maryland”

v

» a=drainage

basin area /o ah
» / = length of
longest (main) h~ 0.6
stream » Anomalous scaling: we would expect h=1/2...
> L=L= » Subsequent studies: 0.5 < h < 0.6
gng;tsui:mal length » Another quest to find universality/god...
» A catch: studies done on small scales.

Frame 76/114 Frame 77/114
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Large-scale networks e World’s largest rivers only: Sealing

(1992) Montgomery and Dietrich ['!:

10
107 ey w—. — 7
%3 g p
= 18 [ o 1 = O@%
g e 5 0o 00g
= 105r 1 éo
E N L, 3 o /Oo/o
S " 1 = 10 0%
E 3 g -0
5 103f *E 6.
@ 1 ¢ 0
‘ BH =
Vol 362 108 100 165 105 107 10 10® 10 100 1002 10/ 1
Drainage area (m?) 4 5 6 7
10 10 10 10

area a (sq mi)

» Composite data set: includes everything from
unchanneled valleys up to world’s largest rivers.

[17, 9]
» Estimated fit: » Data from Leopold (1994)

L ~ 1.785049 » Estimate of Hack exponent: h = 0.50 4 0.06
» Mixture of basin and main stream lengths. Frame 78/114 Frame 79/114
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Earlier theories eeine Earlier theories S

Building on the surface area idea...
, , Building on the surface area idea:
» Blum (1977) I speculates on four-dimensional
biology: » McMahon (70’s, 80’s): Elastic Similarity |8 !

» |dea is that organismal shapes scale allometrically
with 1/4 powers (like nails and trees...)

» Appears to be true for ungulate legs.
» Metabolism and shape never properly connected.

P x M(@=1)/d
» d =3givesa=2/3
» d =4gives o = 3/4
» So we need another dimension...
» Obviously, a bit silly.
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Nutrient delivering networks: eeine Nutrient delivering networks: Scaing

» 1960’s: Rashevsky considers blood networks and
finds a 2/3 scaling.

» 1997: West et al. > use a network story to find 3/4 West et al’s assumptions:

scaling.
A » hierarchical network
» capillaries (delivery units) invariant
» network impedance is minimized via evolution
Mammal Claims:
> P o M3/4
*—_—Apk% » networks are fractal
— "k
» quarter powers everywhere
UK—> -
1 2 3 4. Frame 83/114 Frame 84/114
Model Parameters g Dae F DA
Impedance measures: Sealng Not so fast ... Sealing

o Actually, model shows:
Poiseuille flow (outer branches):

N
PP
= —

T = e

Pulsatile flow (main branches):

ZOCZ 5/2

k=0 "k

» P o M3/* does not follow for pulsatile flow
» networks are not necessarily fractal.

Do find:

» Murray’s cube law (1927) for outer branches:

/2

» Impedance is distributed evenly.
» Can still assume networks are fractal.
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Connecting network structure to o seeing Data from real networks eeine
1. Ratios of network parameters:

st Cirr Mot Network R R R'|-pE | o
Rp = n 7RE: / >RI': r

Tk k K Westetal. | - - - | 12 13 | 3/4

2. Number of capillaries o P o« M*.
rat (PAT) | 276 158 1.60 | 0.45 0.46 | 0.73

N In R,

o= —

In RZR, cat (PAT) | 3.67 1.71 178 | 041 0.44 | 0.79

[24],

(Turcotte et a

(also problematic due to prefactor issues)

o dog (PAT) |3.69 1.67 152 | 0.39 0.32 | 0.90
Soldiering on, assert:
pig (LCX) | 3.57 1.89 220 | 050 0.62 | 0.62

. ) —-1/2
> area-preservingness: R, = R, "/ pig (RCA) |350 1.81 212 | 047 060 | 0.65

» space-fillingness: R, = R;1/3 pig (LAD) 3.51 184 202 | 049 056 | 0.65
> human (PAT) | 3.03 1.60 1.49 | 042 0.36 | 0.83
=a=23/4 human (PAT) | 3.36 156 1.49 | 0.37 0.33 | 0.94

Frame 87/114 Frame 88/114
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Simple supply networks seeing Simple supply networks eeine

» Banavar et al. » Banavar et al. find ‘most efficient’ networks with
Nature, d/(d+1)
(1999) " oM
» Flow rate » ... but also find
argument g
» Ignore Voerwork oc M @1/
impedance > d—3:
» Very general Viioog o M4/
attempt to find _ _
most efficient » Consider a 3 g shrew with V1004 = 0.1 Viyoay

v

= 3000 kg elephant with Vijg0q = 10 Vioay
Such a pachyderm would be rather miserable.

transportation
networks

v
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Geometric argument =l Geometric argument Scaing

» Consider one source supplying many sinks in a
d-dim. volume in a D-dim. ambient space.

» Allometrically growing regions:

» Assume sinks are invariant.

» Assume p = p(V).

» Assume some cap on flow speed of material.
» See network as a bundle of virtual vessels:

%%P\gﬁ@i

» Q: how does the number of sustainable sinks Nk
scale with volume V for the most efficient network

» Have d length scales which scale as
Liox VViwhereyy +v+...+vg=1.

» For isometric growth, v; = 1/d.

design? » For allometric growth, we must have at least two of
» Or: what is the highest a for Ngpks o< V*? Frame 92/114 the {~;} being different Frame 93/114
F DA 5 vaco
Geometric argument et Minimal network volume: Sl

Real supply networks are close to optimal:
© )

» Best and worst configurations (Banavar et al.)

=

» Rather obviously:
min Vi ox > distances from source to sinks.

(@)

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (¢) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

(2006) Gastner and Newman!'']: “Shape and efficiency in
spatial distribution networks”
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Minimal network volume: =l Geometric argument Scaling

» General result:

Min Ve oc pV/1Hmax

Approximate network volume by integral over region:

mMin Ve oc Min Vieg o / p||X||dX » If scaling is isometric, we have ymax = 1/0:

Qq,0(V)
MiN Vyey/iso o< pV1 19 = py(dtil/d

. 2 2 2\1/2.45 . .
—pV /Q (C)(C1 U+ ..+ cRup)/2di » |f scaling is allometric, we have ymax = Va0 > 1/0:
d,D

and
i 1 allo
o pv1+"{max min Vnet/allo x pV o
» |sometrically growing volumes require less network
volume than allometrically growing volumes:
min Ve /i
: net/iso . 0as V — so
Frame 96/114 min Ve /aio Frame 97/114
&F LA &F LA
Blood networks Scaing Blood networks Scaling

» Material costly = expect lower optimal bound of
Voot x pV(@+1)/d o be followed closely.

» For cardiovascular networks, d = D = 3.

» Blood volume scales linearly with blood volume %%,
Vnet 0.8 V.

» Sink density must .-. decrease as volume increases:

» Then P, the rate of overall energy use in Q, can at
most scale with volume as

PxpVxpMx M (d=1)/d

» For d = 3 dimensional organisms, we have

pox V14,

» Density of suppliable sinks decreases with organism
size.
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ReCap Scaling PrefaCtOr Scaling

Stefan-Boltzmann law:

>

dE .
dil‘ —O'ST

where S is surface and T is temperature.

» Very rough estimate of prefactor based on scaling of
normal mammalian body temperature and surface
area S:

» The exponent o = 2/3 works for all birds and
mammals up to 10-30 kg

» For mammals > 10-30 kg, maybe we have a new
scaling regime

» Economos: limb length break in scaling around 20 kg

» White and Seymour, 2005: unhappy with large
herbivore measurements. Find o« ~ 0.686 &= 0.014

B ~ 10°M?/3erg/sec.
» Measured for M < 10 kg:

B = 2.57 x 10°M?/3erg/sec.

Frame 101/114 Frame 102/114
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River networks Scaling Hack’s law Scaiing

» Volume of water in river network can be calculated by
adding up basin areas

» Flows sum in such a way that

Viee = pixel i

» View river networks as collection networks.
» Many sources and one sink.
» Assume p is constant over time:

all pixels
Vier oc pV(@+1)/d — constant x V3/2 : ,
net X P » Hack’s law again:
h
» Network volume grows faster than basin ‘volume’ t~a
(really area). » Can argue

: h 1+h
» It's all okay: Vaet o Viodin = ajin

Landscapes are d=2 surfaces living in D=3
dimension.

» Streams can grow not just in width but in depth...

where h is Hack’s exponent.
» ... minimal volume calculations gives
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Real data: Scaiing Even better—prefactors match up: seang

20— . .
1o 19l © Amazon
; o Mississippi
» Banavar et al’s i 18F PP
approach!''is 0 SN
okay because p z | > 14}
really is constant. g 1o} 2
» Theirony: shows  <_ S 14t
optimal basins are 0 ; 13l
isometric ; B
. , ol = 12
» Optimal Hack’s = 1l
law: a ~ ¢ with ’ oS
h — 1/2 110° 10! 10° 10° 10* 10° 108 10.
> (ZZZZZ) A (pixel units) 1 of ﬁ
From Banavar et al. (1999) ! 8 5 > 5 T 0 1 o 1
2
Frame 106/114 Ioglo areaa [m ] Frame 107/114
F DA F DA
Conclusion Scaling References | Scaling

[@ J.R.Banavar, A. Maritan, and A. Rinaldo.
Size and form in efficient transportation networks.
Nature, 399:130-132, 1999. pdf (&)

» Supply network story consistent with dimensional
analysis.

» |sometrically growing regions can be more efficiently
supplied than allometrically growing ones.

» Ambient and region dimensions matter
(D = dversus D > d).

» Deviations from optimal scaling suggest inefficiency
(e.g., gravity for organisms, geological boundaries).

[§ P Bennett and P. Harvey.
Active and resting metabolism in birds—allometry,
phylogeny and ecology.
J. Zool., 213:327-363, 1987.

[ L. M. A. Bettencourt, J. Lobo, D. Helbing, Kihnhert,

References

Actual details of branchi k h and G. B. West.
> Actual details of branching networks not that Crouwth, Innovation. scaling, and the pace of fe in
important. o
> Exact nature of self-similarity varies. Proc. Natl. Acad. Sci., 104(17):7301-7306, 2007.
pdf ()

Frame 109/114 Frame 110/114

F DA F DHaAx



http://www.uvm.edu/~pdodds/research/papers/others/1999/banavar1999a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2007/bettencourt2007a.pdf

Scaling

References Il Scaling References lli

[§ K. L. Blaxter, editor.
Energy Metabolism; Proceedings of the 3rd
symposium held at Troon, Scotland, May 1964.
Academic Press, New York, 1965.

@ J.J.Blum.
On the geometry of four-dimensions and the
relationship between metabolism and body mass.
J. Theor. Biol., 64:599-601, 1977.

[§ J.T. BonnerandT. A. McMahon.

M M. H. DeGroot.
Probability and Statistics.
Addison-Wesley, Reading, Massachusetts, 1975.

[ P S.Dodds and D. H. Rothman.
Scaling, universality, and geomorphology.
Annu. Rev. Earth Planet. Sci., 28:571-610, 2000. References
pdf (E)

[ P S.Dodds, D. H. Rothman, and J. S. Weitz.

References

Or{ SIZ-? and Lnfe. : Re-examination of the “3/4-law” of metabolism.
Scientific American Library, New York, 1983. Journal of Theoretical Biology, 209(1):9-27, March
[ S. Brody. 2001.

Bioenergetics and Growth. . pdf ()

Reinhold, New York, 1945. -

reprint, . Frame 111/114 e R
F DA F DA

References IV Scaing References V Scaing

[§ A.Hemmingsen.
Energy metabolism as related to body size and
respiratory surfaces, and its evolution.

[ M. T. Gastner and M. E. J. Newman.
Shape and efficiency in spatial distribution networks.
J. Stat. Mech.: Theor. & Exp., 1:01015—, 2006.

pdf (H) Rep. Steno Mem. Hosp., 9:1-110, 1960.

[ J.T Hack. [§ A.A. Heusner.
Studies of longitudinal stream profiles in Virginia and o Size and power in mammgls. s
Maryland. slerences Journal of Experimental Biology, 160:25-54, 1991,

United States Geological Survey Professional Paper,
294-B:45-97, 1957.

[§ A. Hemmingsen.
The relation of standard (basal) energy metabolism to
total fresh weight of living organisms.
Rep. Steno Mem. Hosp., 4:1-58, 1950.

[ M. Kleiber.
Body size and metabolism.
Hilgardia, 6:315-353, 1932.

[§ L.B. Leopold.
A View of the River.
Harvard University Press, Cambridge, MA, 1994.

Frame 113/114 Frame 114/114

F DA F DHaAx



http://www.uvm.edu/~pdodds/research/papers/others/2000/dodds2000a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2001/dodds2001d.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2006/gastner2006a.pdf

References VI Scaing References VII Scaing

[ T McMahon.
Size and shape in biology.
Science, 179:1201-1204, 1973. pdf (B)

[@ Sarrus and Rameaux.
Rapport sur une mémoire adressé a I’Académie de

Médecine.
B D. R. Montgomery and W. E. Dietrich. Bull. Acad. R. Méd. (Paris), 3:1094—1100, 1838-39.
Channel initiation and the problem of landscape B W.R. Stahl.
scale. Scaling of respiratory variables in mammals.
Science, 255:826-30, 1992. pdf () Reforonces Journal of Applied Physiology, 22:453-460, 1967. Referonces

[{ W.H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery.
Numerical Recipes in C.
Cambridge University Press, second edition, 1992.

[W D. L. Turcotte, J. D. Pelletier, and W. I. Newman.
Networks with side branching in biology.
Journal of Theoretical Biology, 193:577-592, 1998.

[§ G.B. West, J. H. Brown, and B. J. Enquist.

[¥ M. Rubner. A general model for the origin of allometric scaling
Ueber den einfluss der kdrpergrésse auf stoffund laws in biology.
kraftwechsel. Science, 276:122—126, 1997. pdf (H)
Z. Biol., 19:535-562, 1883. Frame T1S/114 o e e
F Dac F Dae
References VI e

[§ K.Zhang and T. J. Sejnowski.
A universal scaling law between gray matter and
white matter of cerebral cortex.
Proceedings of the National Academy of Sciences,
97:5621-5626, May 2000. pdf (H)

References

Frame 117/114

F Dae



http://www.uvm.edu/~pdodds/research/papers/others/1973/mcmahon1973a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1992/montgomery1992a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1997/west1997a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2000/zhang2000a.pdf

	Scaling-at-large
	Allometry
	Definitions
	Examples
	History: Metabolism
	Measuring exponents
	History: River networks
	Earlier theories
	Geometric argument
	Blood networks
	River networks
	Conclusion

	References

