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Size distributions

The sizes of many systems’ elements appear to obey an
inverse power-law size distribution:

P(size = x) ∼ c x−γ

where xmin < x < xmax

and γ > 1

I Typically, 2 < γ < 3.
I xmin = lower cutoff
I xmax = upper cutoff
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Size distributions

I Usually, only the tail of the distribution obeys a power
law:

P(x) ∼ c x−γ as x →∞.

I Still use term ‘power law distribution’
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Size distributions

Many systems have discrete sizes k :

I Word frequency
I Node degree (as we have seen): # hyperlinks, etc.
I number of citations for articles, court decisions, etc.

P(k) ∼ c k−γ

where kmin ≤ k ≤ kmax
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Size distributions

Power law size distributions are sometimes called
Pareto distributions after Italian scholar Vilfredo Pareto.

I Pareto noted wealth in Italy was distributed unevenly
(80–20 rule).

I Term used especially by economists
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Size distributions

I Negative linear relationship in log-log space:

log P(x) = log c − γ log x
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Size distributions

Examples:

I Earthquake magnitude (Gutenberg Richter law):
P(M) ∝ M−3

I Number of war deaths: P(d) ∝ d−1.8

I Sizes of forest fires
I Sizes of cities: P(n) ∝ n−2.1

I Number of links to and from websites
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Size distributions

Examples:

I Number of citations to papers: P(k) ∝ k−3.
I Individual wealth (maybe): P(W ) ∝ W−2.
I Distributions of tree trunk diameters: P(d) ∝ d−2.
I The gravitational force at a random point in the

universe: P(F ) ∝ F−5/2.
I Diameter of moon craters: P(d) ∝ d−3.
I Word frequency: e.g., P(k) ∝ k−2.2 (variable)

(Note: Exponents range in error; see M.E.J. Newman
arxiv.org/cond-mat/0412004v3 (�))

http://www.arxiv.org/cond-mat/0412004v3
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Size distributions

Power-law distributions are..
I often called ‘heavy-tailed’
I or said to have ‘fat tails’

Important!:

I Inverse power laws aren’t the only ones:
I lognormals, stretched exponentials, ...
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Zipfian rank-frequency plots

George Kingsley Zipf:

I noted various rank distributions
followed power laws, often with exponent -1
(word frequency, city sizes...) “Human Behaviour and
the Principle of Least-Effort” [8] Addison-Wesley,
Cambridge MA, 1949.

I We’ll study Zipf’s law in depth...
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Zipfian rank-frequency plots

Zipf’s way:

I si = the size of the i th ranked object.
I i = 1 corresponds to the largest size.
I s1 could be the frequency of occurrence of the most

common word in a text.
I Zipf’s observation:

si ∝ i−α



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 16/34

Zipfian rank-frequency plots

Zipf’s way:

I si = the size of the i th ranked object.
I i = 1 corresponds to the largest size.
I s1 could be the frequency of occurrence of the most

common word in a text.
I Zipf’s observation:

si ∝ i−α



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 17/34

Outline

Overview
Introduction
Examples
Zipf’s law
Wild vs. Mild
CCDFs

References



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 18/34

Power law distributions

Gaussians versus power-law distributions:

I Example: Height versus wealth.
I Mild versus Wild (Mandelbrot)
I Mediocristan versus Extremistan

(See “The Black Swan” by Nassim Taleb [7])



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 18/34

Power law distributions

Gaussians versus power-law distributions:

I Example: Height versus wealth.
I Mild versus Wild (Mandelbrot)
I Mediocristan versus Extremistan

(See “The Black Swan” by Nassim Taleb [7])



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 18/34

Power law distributions

Gaussians versus power-law distributions:

I Example: Height versus wealth.
I Mild versus Wild (Mandelbrot)
I Mediocristan versus Extremistan

(See “The Black Swan” by Nassim Taleb [7])



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 18/34

Power law distributions

Gaussians versus power-law distributions:

I Example: Height versus wealth.
I Mild versus Wild (Mandelbrot)
I Mediocristan versus Extremistan

(See “The Black Swan” by Nassim Taleb [7])



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 19/34

Turkeys...

From “The Black Swan” [7]
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Taleb’s table [7]

Mediocristan/Extremistan

I Most typical member is mediocre/Most typical is either
giant or tiny

I Winners get a small segment/Winner take almost all
effects

I When you observe for a while, you know what’s going on/
It takes a very long time to figure out what’s going on

I Prediction is easy/Prediction is hard

I History crawls/History makes jumps

I Tyranny of the collective/Tyranny of the accidental
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Complementary Cumulative Distribution
Function:
CCDF:

I

P≥(x) = P(x ′ ≥ x) = 1− P(x ′ < x)

I

=

∫ ∞

x ′=x
P(x ′)dx ′

I

∝
∫ ∞

x ′=x
(x ′)−γdx ′

I

=
1

−γ + 1
(x ′)−γ+1

∣∣∣∣∞
x ′=x

I

∝ x−γ+1



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 22/34

Complementary Cumulative Distribution
Function:
CCDF:

I

P≥(x) = P(x ′ ≥ x) = 1− P(x ′ < x)

I

=

∫ ∞

x ′=x
P(x ′)dx ′

I

∝
∫ ∞

x ′=x
(x ′)−γdx ′

I

=
1

−γ + 1
(x ′)−γ+1

∣∣∣∣∞
x ′=x

I

∝ x−γ+1



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 22/34

Complementary Cumulative Distribution
Function:
CCDF:

I

P≥(x) = P(x ′ ≥ x) = 1− P(x ′ < x)

I

=

∫ ∞

x ′=x
P(x ′)dx ′

I

∝
∫ ∞

x ′=x
(x ′)−γdx ′

I

=
1

−γ + 1
(x ′)−γ+1

∣∣∣∣∞
x ′=x

I

∝ x−γ+1



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 22/34

Complementary Cumulative Distribution
Function:
CCDF:

I

P≥(x) = P(x ′ ≥ x) = 1− P(x ′ < x)

I

=

∫ ∞

x ′=x
P(x ′)dx ′

I

∝
∫ ∞

x ′=x
(x ′)−γdx ′

I

=
1

−γ + 1
(x ′)−γ+1

∣∣∣∣∞
x ′=x

I

∝ x−γ+1



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 22/34

Complementary Cumulative Distribution
Function:
CCDF:

I

P≥(x) = P(x ′ ≥ x) = 1− P(x ′ < x)

I

=

∫ ∞

x ′=x
P(x ′)dx ′

I

∝
∫ ∞

x ′=x
(x ′)−γdx ′

I

=
1

−γ + 1
(x ′)−γ+1

∣∣∣∣∞
x ′=x

I

∝ x−γ+1



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 22/34

Complementary Cumulative Distribution
Function:
CCDF:

I

P≥(x) = P(x ′ ≥ x) = 1− P(x ′ < x)

I

=

∫ ∞

x ′=x
P(x ′)dx ′

I

∝
∫ ∞

x ′=x
(x ′)−γdx ′

I

=
1

−γ + 1
(x ′)−γ+1

∣∣∣∣∞
x ′=x

I

∝ x−γ+1



Power Law Size
Distributions

Overview
Introduction

Examples

Zipf’s law

Wild vs. Mild

CCDFs

References

Frame 23/34

Complementary Cumulative Distribution
Function:

CCDF:
I

P≥(x) ∝ x−γ+1

I Use when tail of P follows a power law.
I Increases exponent by one.
I Useful in cleaning up data.
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Complementary Cumulative Distribution
Function:

I Discrete variables:

P≥(k) = P(k ′ ≥ k)

=
∞∑

k ′=k

P(k)

∝ k−γ+1

I Use integrals to approximate sums.
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Size distributions

Brown Corpus (1,015,945 words):
CCDF:

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

n

N
>

 n

Zipf:

0 0.5 1 1.5 2 2.5 3 3.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

rank i

n i

I The, of, and, to, a, ... = ‘objects’
I ‘Size’ = word frequency

I Beep: CCDF and Zipf plots are related...
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Size distributions
Observe:

I NP≥(x) = the number of objects with size at least x
where N = total number of objects.

I If an object has size xi , then NP≥(xi) is its rank i .
I So

xi ∝ i−α = (NP≥(xi))
−α

∝ x (−γ+1)(−α)
i

Since P≥(x) ∼ x−γ+1,

α =
1

γ − 1

A rank distribution exponent of α = 1 corresponds to
a size distribution exponent γ = 2.
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where N = total number of objects.

I If an object has size xi , then NP≥(xi) is its rank i .
I So

xi ∝ i−α = (NP≥(xi))
−α

∝ x (−γ+1)(−α)
i

Since P≥(x) ∼ x−γ+1,

α =
1

γ − 1

A rank distribution exponent of α = 1 corresponds to
a size distribution exponent γ = 2.
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Details on the lack of scale:

Let’s find the mean:
I

〈x〉 =

∫ xmax

x=xmin

xP(x)dx

= c
∫ xmax

x=xmin

xx−γdx

=
c

2− γ

(
x2−γ

max − x2−γ
min

)
.
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The mean:

〈x〉 ∼ c
2− γ

(
x2−γ

max − x2−γ
min

)
.

I Mean blows up with upper cutoff if γ < 2.
I Mean depends on lower cutoff if γ > 2.
I γ < 2: Typical sample is large.
I γ > 2: Typical sample is small.
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And in general...

Moments:
I All moments depend only on cutoffs.
I No internal scale dominates (even matters).
I Compare to a Gaussian, exponential, etc.
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And in general...
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I All moments depend only on cutoffs.
I No internal scale dominates (even matters).
I Compare to a Gaussian, exponential, etc.
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Moments

For many real size distributions:

2 < γ < 3

I mean is finite (depends on lower cutoff)
I σ2 = variance is ‘infinite’ (depends on upper cutoff)
I Width of distribution is ‘infinite’
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Moments

Standard deviation is a mathematical convenience!:
I Variance is nice analytically...
I Another measure of distribution width:

Mean average deviation (MAD) =

〈|x − 〈x〉|〉

I MAD is unpleasant analytically...
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How sample sizes grow...

Given P(x) ∼ cx−γ:

I We can show that after n samples, we expect the
largest sample to be

x1 & n1/(γ−1)

I Sampling from a ‘mild’ distribution gives a much
slower growth with n.

I e.g., for P(x) = λe−λx , we find

x1 &
1
λ

ln n.
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