# Power Law Size Distributions

Principles of Complex Systems Course 300, Fall, 2008

### Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont



Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs

References

## Outline

### **Overview**

Introduction Examples Zipf's law Wild vs. Mild CCDFs

References

#### Power Law Size Distributions

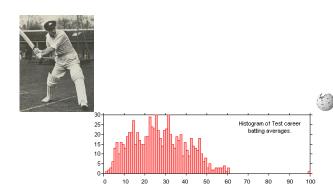
Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs

References

Frame 2/34

The Don

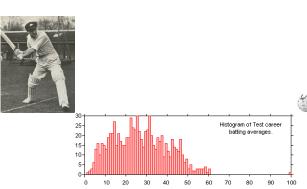
Extreme deviations in test cricket



#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

The Don



Extreme deviations in test cricket

Don Bradman's batting average = 166% next best.

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

# Outline

## Overview Introduction

Examples Zipf's law Wild vs. Mild CCDFs

References

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs

Frame 4/34

The sizes of many systems' elements appear to obey an inverse power-law size distribution:

$$P({
m size}=x)\sim c\,x^{-\gamma}$$

where 
$$x_{\min} < x < x_{\max}$$
  
and  $\gamma > 1$ 

- Typically,  $2 < \gamma < 3$ .
- $\blacktriangleright$   $x_{\min}$  = lower cutoff
- $\blacktriangleright x_{max} = upper cutoff$

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 5/34

The sizes of many systems' elements appear to obey an inverse power-law size distribution:

$$P({
m size}=x)\sim c\,x^{-\gamma}$$

where  $x_{\min} < x < x_{\max}$ and  $\gamma > 1$ 

► Typically, 2 < γ < 3.</p>

 $\blacktriangleright$   $x_{\min} = \text{lower cutoff}$ 

 $\blacktriangleright x_{max} = upper cutoff$ 

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 5/34

The sizes of many systems' elements appear to obey an inverse power-law size distribution:

$$P({
m size}=x)\sim c\,x^{-\gamma}$$

where 
$$x_{\min} < x < x_{\max}$$
  
and  $\gamma > 1$ 

- Typically,  $2 < \gamma < 3$ .
- $\blacktriangleright x_{\min} = \text{lower cutoff}$
- X<sub>max</sub> = upper cutoff

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 5/34

### Usually, only the tail of the distribution obeys a power law:

 $P(x) \sim c x^{-\gamma}$  as  $x \to \infty$ .

Still use term 'power law distribution'

#### Power Law Size Distributions

Overview Introduction Examples Zipt's law Wild vs. Mild CCDFs References

Frame 6/34

### Usually, only the tail of the distribution obeys a power law:

 $P(x) \sim c x^{-\gamma}$  as  $x \to \infty$ .

Still use term 'power law distribution'

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 6/34

Many systems have discrete sizes k:

- Word frequency
- ► Node degree (as we have seen): # hyperlinks, etc.
- number of citations for articles, court decisions, etc.

 $P(k) \sim c k^{-\gamma}$ where  $k_{\min} < k < k_{\max}$ 

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 7/34

Power law size distributions are sometimes called Pareto distributions after Italian scholar Vilfredo Pareto.

- Pareto noted wealth in Italy was distributed unevenly (80–20 rule).
- Term used especially by economists

#### Power Law Size Distributions

Overview Introduction Examples Zipt's law Wild vs. Mild CCDFs References

### Negative linear relationship in log-log space:

$$\log P(x) = \log c - \gamma \log x$$

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs

Frame 9/34

# Outline

### Overview

Introduction

### Examples

Zipf's law Wild vs. Mild CCDFs

References

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs

Frame 10/34

## Examples:

- Earthquake magnitude (Gutenberg Richter law):  $P(M) \propto M^{-3}$
- Number of war deaths:  $P(d) \propto d^{-1.8}$
- Sizes of forest fires
- Sizes of cities:  $P(n) \propto n^{-2.1}$
- Number of links to and from websites

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 11/34

## Examples:

- Number of citations to papers:  $P(k) \propto k^{-3}$ .
- Individual wealth (maybe):  $P(W) \propto W^{-2}$ .
- Distributions of tree trunk diameters:  $P(d) \propto d^{-2}$ .
- ► The gravitational force at a random point in the universe: P(F) ∝ F<sup>-5/2</sup>.
- Diameter of moon craters:  $P(d) \propto d^{-3}$ .
- Word frequency: e.g.,  $P(k) \propto k^{-2.2}$  (variable)

(Note: Exponents range in error; see M.E.J. Newman arxiv.org/cond-mat/0412004v3 (⊞))

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 12/34 日 のへで

## Power-law distributions are ..

- often called 'heavy-tailed'
- or said to have 'fat tails'

## Important!:

- Inverse power laws aren't the only ones:
  - Iognormals, stretched exponentials, ...

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Power-law distributions are ..

- often called 'heavy-tailed'
- or said to have 'fat tails'

Important!:

- Inverse power laws aren't the only ones:
  - Iognormals, stretched exponentials, ...

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Power-law distributions are ..

- often called 'heavy-tailed'
- or said to have 'fat tails'

## Important!:

- Inverse power laws aren't the only ones:
  - Iognormals, stretched exponentials, ...

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Power-law distributions are ..

- often called 'heavy-tailed'
- or said to have 'fat tails'

## Important!:

- Inverse power laws aren't the only ones:
  - lognormals, stretched exponentials, ...

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

# Outline

### Overview

Introduction Examples Zipf's law Wild vs. Mild CCDFs

References

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs

Frame 14/34

## George Kingsley Zipf:

noted various rank distributions followed power laws, often with exponent -1 (word frequency, city sizes...) "Human Behaviour and the Principle of Least-Effort" [8] Addison-Wesley, Cambridge MA, 1949.

We'll study Zipf's law in depth...

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 15/34

## George Kingsley Zipf:

- noted various rank distributions followed power laws, often with exponent -1 (word frequency, city sizes...) "Human Behaviour and the Principle of Least-Effort" [8] Addison-Wesley, Cambridge MA, 1949.
- We'll study Zipf's law in depth...

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 15/34

## Zipf's way:

- $s_i$  = the size of the *i*th ranked object.
- i = 1 corresponds to the largest size.
- s<sub>1</sub> could be the frequency of occurrence of the most common word in a text.

Zipf's observation:

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 16/34

## Zipf's way:

- $s_i$  = the size of the *i*th ranked object.
- i = 1 corresponds to the largest size.
- s<sub>1</sub> could be the frequency of occurrence of the most common word in a text.
- Zipf's observation:

$$s_i \propto i^{-lpha}$$

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 16/34

# Outline

### Overview

Introduction Examples Zipf's law Wild vs. Mild CCDFs

References

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs

Frame 17/34

### Gaussians versus power-law distributions:

- Example: Height versus wealth.
- Mild versus Wild (Mandelbrot)
- Mediocristan versus Extremistan (See "The Black Swan" by Nassim Taleb<sup>[7]</sup>)

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

### Gaussians versus power-law distributions:

- Example: Height versus wealth.
- Mild versus Wild (Mandelbrot)
- Mediocristan versus Extremistan (See "The Black Swan" by Nassim Taleb<sup>[7]</sup>)

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

### Gaussians versus power-law distributions:

- Example: Height versus wealth.
- Mild versus Wild (Mandelbrot)
- Mediocristan versus Extremistan (See "The Black Swan" by Nassim Taleb<sup>[7]</sup>)

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

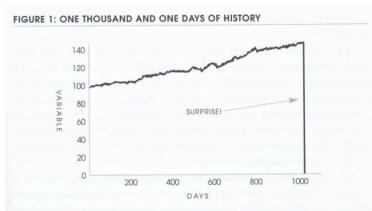
Gaussians versus power-law distributions:

- Example: Height versus wealth.
- Mild versus Wild (Mandelbrot)
- Mediocristan versus Extremistan (See "The Black Swan" by Nassim Taleb<sup>[7]</sup>)

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

# Turkeys...



Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

A turkey before and after Thanksgiving. The history of a process over a thousand days tells you nothing about what is to happen next. This naïve projection of the future from the past can be applied to anything.

### From "The Black Swan" [7]

## Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what's going on/ It takes a very long time to figure out what's going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 20/34

## Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what's going on/ It takes a very long time to figure out what's going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 20/34

## Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what's going on/ It takes a very long time to figure out what's going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

## Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what's going on/ It takes a very long time to figure out what's going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

## Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what's going on/ It takes a very long time to figure out what's going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

# Taleb's table [7]

## Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what's going on/ It takes a very long time to figure out what's going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

# Taleb's table [7]

## Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all effects
- When you observe for a while, you know what's going on/ It takes a very long time to figure out what's going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- Tyranny of the collective/Tyranny of the accidental

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 20/34

# Outline

### Overview

Introduction Examples Zipf's law Wild vs. Mild CCDFs

References

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs Reference

Frame 21/34

$$P_{\geq}(x) = P(x' \ge x) = 1 - P(x' < x)$$
$$= \int_{x'=x}^{\infty} P(x') dx'$$
$$\propto \int_{x'=x}^{\infty} (x')^{-\gamma} dx'$$
$$= \frac{1}{-\gamma+1} (x')^{-\gamma+1} \Big|_{x'=x}^{\infty}$$
$$\propto x^{-\gamma+1}$$

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

CCDF:

$$P_{\geq}(x) = P(x' \ge x) = 1 - P(x' < x)$$
$$= \int_{x'=x}^{\infty} P(x') dx'$$
$$\propto \int_{x'=x}^{\infty} (x')^{-\gamma} dx'$$
$$= \frac{1}{-\gamma+1} (x')^{-\gamma+1} \Big|_{x'=x}^{\infty}$$
$$\propto x^{-\gamma+1}$$

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

CCDF:

$$P_{\geq}(x) = P(x' \geq x) = 1 - P(x' < x)$$

$$=\int_{x'=x}^{\infty}P(x')\mathrm{d}x'$$

$$\propto \int_{x'=x}^{\infty} (x')^{-\gamma} \mathrm{d}x'$$

$$= \frac{1}{-\gamma+1} (x')^{-\gamma+1} \Big|_{x'=x}^{\infty}$$

 $\propto x^{-\gamma+1}$ 

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 22/34

CCDF:

$$P_{\geq}(x) = P(x' \ge x) = 1 - P(x' < x)$$
$$= \int_{x'=x}^{\infty} P(x') dx'$$
$$\propto \int_{x'=x}^{\infty} (x')^{-\gamma} dx'$$
$$= \frac{1}{-\gamma+1} (x')^{-\gamma+1} \Big|_{x'=x}^{\infty}$$

 $\propto x^{-\gamma+1}$ 

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

CCDF:

►

$$P_{\geq}(x) = P(x' \ge x) = 1 - P(x' < x)$$
$$= \int_{x'=x}^{\infty} P(x') dx'$$
$$\propto \int_{x'=x}^{\infty} (x')^{-\gamma} dx'$$
$$= \frac{1}{-\gamma+1} (x')^{-\gamma+1} \Big|_{x'=x}^{\infty}$$
$$\propto x^{-\gamma+1}$$

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

CCDF:

►

$$P_{\geq}(x) = P(x' \ge x) = 1 - P(x' < x)$$
$$= \int_{x'=x}^{\infty} P(x') dx'$$
$$\propto \int_{x'=x}^{\infty} (x')^{-\gamma} dx'$$
$$= \frac{1}{-\gamma+1} (x')^{-\gamma+1} \Big|_{x'=x}^{\infty}$$
$$\propto x^{-\gamma+1}$$

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

## CCDF:

 $P_{\geq}(x) \propto x^{-\gamma+1}$ 

- ▶ Use when tail of *P* follows a power law.
- Increases exponent by one.
- Useful in cleaning up data.

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

## CCDF:

### 

 $P_{\geq}(x) \propto x^{-\gamma+1}$ 

### Use when tail of P follows a power law.

- Increases exponent by one.
- Useful in cleaning up data.

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

## CCDF:

$$P_{\geq}(x) \propto x^{-\gamma+1}$$

- Use when tail of P follows a power law.
- Increases exponent by one.

Useful in cleaning up data.

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

## CCDF:

### 

$$P_{\geq}(x) \propto x^{-\gamma+1}$$

- Use when tail of P follows a power law.
- Increases exponent by one.
- Useful in cleaning up data.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Discrete variables:

 $P_{\geq}(k) = P(k' \geq k)$ 

Use integrals to approximate sums.

Power Law Size Distributions

Overview Introduction Examples Zipt's law Wild vs. Mild CCDFs References

Discrete variables:

$$P_{\geq}(k) = P(k' \geq k)$$

$$=\sum_{k'=k}^{\infty}P(k)$$

Use integrals to approximate sums.

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Discrete variables:

 $P_{\geq}(k) = P(k' \geq k)$ 

$$=\sum_{k'=k}^{\infty} P(k)$$
$$\propto k^{-\gamma+1}$$

Use integrals to approximate sums.

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Discrete variables:

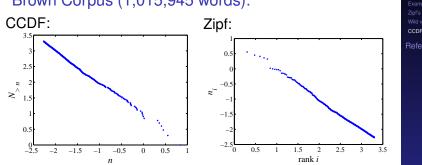
$$P_{\geq}(k) = P(k' \geq k)$$

$$=\sum_{k'=k}^{\infty} P(k)$$
$$\propto k^{-\gamma+1}$$

Use integrals to approximate sums.

Power Law Size Distributions

Overview Introduction Examples Zipt's law Wild vs. Mild CCDFs References



Brown Corpus (1,015,945 words):

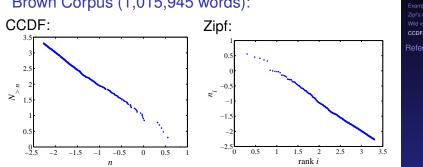
▶ The, of, and, to, a, ... = 'objects'

'Size' = word frequency

#### Power Law Size Distributions

Overview CCDFs References

Frame 25/34 ୬ବ୍ଦ P



Brown Corpus (1,015,945 words):

The, of, and, to, a, ... = 'objects'

- 'Size' = word frequency
- Beep: CCDF and Zipf plots are related...

#### Power I aw Size Distributions

Overview CCDFs References

Frame 25/34  $\mathscr{O}$ P

Observe:

- ► NP<sub>≥</sub>(x) = the number of objects with size at least x where N = total number of objects.
- If an object has size x<sub>i</sub>, then NP≥(x<sub>i</sub>) is its rank i.
   So

 $x_i \propto i^{-lpha} = (NP_{\geq}(x_i))^{-lpha}$ 

$$\propto x_i^{(-\gamma+1)(-lpha)}$$

Since  $P_{\geq}(x) \sim x^{-\gamma+1}$ ,



A rank distribution exponent of  $\alpha = 1$  corresponds to a size distribution exponent  $\gamma = 2$ .

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Observe:

- ► NP<sub>≥</sub>(x) = the number of objects with size at least x where N = total number of objects.
- ▶ If an object has size x<sub>i</sub>, then NP<sub>≥</sub>(x<sub>i</sub>) is its rank i.
   ▶ So

 $\propto x_i^{(-\gamma+1)}$ Since  $P_>(x) \sim x^{-\gamma+1}$ ,

A rank distribution exponent of  $\alpha = 1$  corresponds to a size distribution exponent  $\gamma = 2$ . Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Observe:

- ► NP<sub>≥</sub>(x) = the number of objects with size at least x where N = total number of objects.
- ▶ If an object has size  $x_i$ , then  $NP_{\geq}(x_i)$  is its rank *i*.

So

 $x_i \propto i^{-lpha} = (NP_{\geq}(x_i))^{-lpha}$ 

Since 
$$P_{\geq}(x) \sim x^{-\gamma+1},$$

A rank distribution exponent of  $\alpha =$  1 corresponds to a size distribution exponent  $\gamma =$  2.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Observe:

- NP≥(x) = the number of objects with size at least x where N = total number of objects.
- ▶ If an object has size  $x_i$ , then  $NP_{\geq}(x_i)$  is its rank *i*.

So

 $x_i \propto i^{-lpha} = (NP_{\geq}(x_i))^{-lpha}$ 

$$\propto x_{j}^{(-\gamma+1)(-\alpha)}$$
  
Since  $P_{\geq}(x) \sim x^{-\gamma+1}$ , $lpha = rac{1}{\gamma-1}$ 

A rank distribution exponent of  $\alpha = 1$  corresponds to a size distribution exponent  $\gamma = 2$ .

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Observe:

- ► NP<sub>≥</sub>(x) = the number of objects with size at least x where N = total number of objects.
- ▶ If an object has size  $x_i$ , then  $NP_{\geq}(x_i)$  is its rank *i*.

So

 $x_i \propto i^{-lpha} = (NP_{\geq}(x_i))^{-lpha}$ 

$$\propto x_i^{(-\gamma+1)(-lpha)}$$
  
Since  $P_\geq(x)\sim x^{-\gamma+1},$   
 $lpha=rac{1}{\gamma-1}$ 

A rank distribution exponent of  $\alpha = 1$  corresponds to a size distribution exponent  $\gamma = 2$ . Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Observe:

- ► NP<sub>≥</sub>(x) = the number of objects with size at least x where N = total number of objects.
- ▶ If an object has size  $x_i$ , then  $NP_{\geq}(x_i)$  is its rank *i*.

So

 $x_i \propto i^{-lpha} = (NP_{\geq}(x_i))^{-lpha}$ 

$$\propto x_i^{(-\gamma+1)(-lpha)}$$
  
Since  $P_\geq(x)\sim x^{-\gamma+1},$   
 $lpha=rac{1}{\gamma-1}$ 

A rank distribution exponent of  $\alpha = 1$  corresponds to a size distribution exponent  $\gamma = 2$ . Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

# Details on the lack of scale:

## Let's find the mean:

$$\langle x \rangle = \int_{x=x_{\min}}^{x_{\max}} x P(x) \mathrm{d}x$$

$$= c \int_{x=x_{\min}}^{x_{\max}} x x^{-\gamma} \mathrm{d}x$$

$$=\frac{c}{2-\gamma}\left(x_{\max}^{2-\gamma}-x_{\min}^{2-\gamma}\right).$$

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

## Details on the lack of scale:

(

## Let's find the mean:

$$\langle x \rangle = \int_{x=x_{\min}}^{x_{\max}} x P(x) \mathrm{d}x$$

$$= c \int_{x=x_{\min}}^{x_{\max}} x x^{-\gamma} \mathrm{d}x$$

$$=\frac{c}{2-\gamma}\left(x_{\max}^{2-\gamma}-x_{\min}^{2-\gamma}\right).$$

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 27/34

## Details on the lack of scale:

## Let's find the mean:

►

 $\langle x \rangle = \int_{x=x_{\min}}^{x_{\max}} x P(x) dx$ =  $c \int_{x=x_{\min}}^{x_{\max}} x x^{-\gamma} dx$ 

$$= \frac{c}{2-\gamma} \left( x_{\max}^{2-\gamma} - x_{\min}^{2-\gamma} \right).$$

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

$$\langle x \rangle \sim rac{c}{2-\gamma} \left( x_{\max}^{2-\gamma} - x_{\min}^{2-\gamma} 
ight).$$

- Mean blows up with upper cutoff if  $\gamma < 2$ .
- ► Mean depends on lower cutoff if γ > 2
- $\gamma$  < 2: Typical sample is large.
- ▶  $\gamma$  > 2: Typical sample is small.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

$$\langle x \rangle \sim rac{c}{2-\gamma} \left( x_{\max}^{2-\gamma} - x_{\min}^{2-\gamma} 
ight).$$

- Mean blows up with upper cutoff if  $\gamma < 2$ .
- Mean depends on lower cutoff if y > 2
- $\gamma$  < 2: Typical sample is large.
- ▶  $\gamma$  > 2: Typical sample is small.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

$$\langle x \rangle \sim \frac{c}{2-\gamma} \left( x_{\max}^{2-\gamma} - x_{\min}^{2-\gamma} \right).$$

- Mean blows up with upper cutoff if  $\gamma < 2$ .
- Mean depends on lower cutoff if  $\gamma > 2$ .
- γ < 2: Typical sample is large.</li>
  γ > 2: Typical sample is small.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

$$\langle x \rangle \sim \frac{c}{2-\gamma} \left( x_{\max}^{2-\gamma} - x_{\min}^{2-\gamma} \right).$$

- Mean blows up with upper cutoff if  $\gamma < 2$ .
- Mean depends on lower cutoff if  $\gamma > 2$ .
- $\gamma < 2$ : Typical sample is large.

▶  $\gamma$  > 2: Typical sample is small.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

$$\langle x \rangle \sim \frac{c}{2-\gamma} \left( x_{\max}^{2-\gamma} - x_{\min}^{2-\gamma} \right).$$

- Mean blows up with upper cutoff if  $\gamma < 2$ .
- Mean depends on lower cutoff if  $\gamma > 2$ .
- $\gamma < 2$ : Typical sample is large.
- >  $\gamma$  > 2: Typical sample is small.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

# And in general...

### Moments:

## All moments depend only on cutoffs.

▶ No internal scale dominates (even matters).

• Compare to a Gaussian, exponential, etc.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 29/34

# And in general...

### Moments:

- All moments depend only on cutoffs.
- No internal scale dominates (even matters).
- Compare to a Gaussian, exponential, etc.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 29/34

# And in general...

### Moments:

- All moments depend only on cutoffs.
- ► No internal scale dominates (even matters).
- Compare to a Gaussian, exponential, etc.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 29/34

For many real size distributions:

 $\mathbf{2} < \gamma < \mathbf{3}$ 

- mean is finite (depends on lower cutoff)
- $\sigma^2$  = variance is 'infinite' (depends on upper cutoff)
- Width of distribution is 'infinite'

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 30/34

## Standard deviation is a mathematical convenience!:

- Variance is nice analytically...
- Another measure of distribution width: Mean average deviation (MAD) =

$$\langle |x - \langle x \rangle | \rangle$$

MAD is unpleasant analytically...

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

## Standard deviation is a mathematical convenience!:

- Variance is nice analytically...
- Another measure of distribution width: Mean average deviation (MAD) =

 $\langle |x - \langle x \rangle | \rangle$ 

MAD is unpleasant analytically...

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

## Standard deviation is a mathematical convenience!:

- Variance is nice analytically...
- Another measure of distribution width:

Mean average deviation (MAD) =

 $\langle |x - \langle x \rangle | \rangle$ 

MAD is unpleasant analytically...

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

## Standard deviation is a mathematical convenience!:

- Variance is nice analytically...
- Another measure of distribution width:
   Mean average deviation (MAD) =

$$\langle |\mathbf{x} - \langle \mathbf{x} \rangle | \rangle$$

MAD is unpleasant analytically...

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Standard deviation is a mathematical convenience!:

- Variance is nice analytically...
- Another measure of distribution width:
   Mean average deviation (MAD) =

$$\langle |\mathbf{x} - \langle \mathbf{x} \rangle | \rangle$$

MAD is unpleasant analytically...

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

How sample sizes grow...

Given  $P(x) \sim cx^{-\gamma}$ :

We can show that after n samples, we expect the largest sample to be

$$x_1 \gtrsim n^{1/(\gamma-1)}$$

Sampling from a 'mild' distribution gives a much slower growth with n.

• e.g., for  $P(x) = \lambda e^{-\lambda x}$ , we find

$$x_1 \gtrsim \frac{1}{\lambda} \ln n.$$

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 32/34

How sample sizes grow...

Given  $P(x) \sim cx^{-\gamma}$ :

We can show that after n samples, we expect the largest sample to be

$$x_1 \gtrsim n^{1/(\gamma-1)}$$

Sampling from a 'mild' distribution gives a much slower growth with n.

• e.g., for  $P(x) = \lambda e^{-\lambda x}$ , we find

$$x_1 \gtrsim \frac{1}{\lambda} \ln n.$$

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 32/34

How sample sizes grow...

Given  $P(x) \sim cx^{-\gamma}$ :

We can show that after n samples, we expect the largest sample to be

$$x_1\gtrsim n^{1/(\gamma-1)}$$

Sampling from a 'mild' distribution gives a much slower growth with n.

• e.g., for 
$$P(x) = \lambda e^{-\lambda x}$$
, we find

$$x_1\gtrsim rac{1}{\lambda}\ln n.$$

Power Law Size Distributions

Overview Introduction Examples Zipt's law Wild vs. Mild CCDFs References

Frame 32/34

# References I

- M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions. Dover Publications, New York, 1974.
- P. S. Dodds and D. H. Rothman.
   Scaling, universality, and geomorphology.
   Annu. Rev. Earth Planet. Sci., 28:571–610, 2000.
   pdf (⊞)

### **W**

W. Feller.

An Introduction to Probability Theory and Its Applications, volume I. John Wiley & Sons, New York, third edition, 1968.

I. Gradshteyn and I. Ryzhik. Table of Integrals, Series, and Products. Academic Press, San Diego, fifth edition, 1994.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs

References

# **References II**

# 🔋 J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

- A. E. Scheidegger. The algebra of stream-order numbers. United States Geological Survey Professional Paper, 525-B:B187–B189, 1967.
- N. N. Taleb.

The Black Swan. Random House, New York, 2007.

G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

#### Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs

References

Frame 34/34 日 のへで