Power Law Size Distributions

Principles of Complex Systems Course 300, Fall, 2008

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Power Law Size Distributions Overview Introduction Examples Zipt's law Wild vs. Mild CCDFs References

Outline

Overview

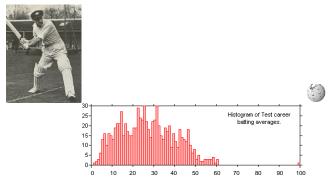
Introduction
Examples
Zipf's law
Wild vs. Mild
CCDFs

References

Power Law Size Distributions Overview Introduction Examples Zipf's law Wild vs. Mild CODFs References

The Don

Extreme deviations in test cricket



Don Bradman's batting average = 166% next best.

Power Law Size Distributions Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Frame 3/33

母 りへで

Frame 1/33

回 りへで

Size distributions

The sizes of many systems' elements appear to obey an inverse power-law size distribution:

$$P(\text{size} = x) \sim c x^{-\gamma}$$

where
$$x_{\min} < x < x_{\max}$$
 and $\gamma > 1$

- ▶ Typically, $2 < \gamma < 3$.
- $\rightarrow x_{\min} = \text{lower cutoff}$
- $\rightarrow x_{\text{max}} = \text{upper cutoff}$

回 りへで

Size distributions

Usually, only the tail of the distribution obeys a power law:

$$P(x) \sim c x^{-\gamma}$$
 as $x \to \infty$.

Still use term 'power law distribution'

Power Law Size Size distributions Distributions

Many systems have discrete sizes *k*:

- Word frequency
- ▶ Node degree (as we have seen): # hyperlinks, etc.
- ▶ number of citations for articles, court decisions, etc.

$$P(k) \sim c \, k^{-\gamma}$$
 where $k_{
m min} < k < k_{
m max}$

Power Law Size Distributions Overview References Frame 7/33 **回 り**へで

Size distributions

Power law size distributions are sometimes called Pareto distributions after Italian scholar Vilfredo Pareto.

- Pareto noted wealth in Italy was distributed unevenly (80-20 rule).
- ► Term used especially by economists

Frame 6/33

₽ 990

Overview

Introduction

References

Size distributions

Negative linear relationship in log-log space:

$$\log P(x) = \log c - \gamma \log x$$

Power Law Size Distributions Overview References

Frame 9/33

回 りへで

Frame 8/33

Size distributions

Examples:

► Earthquake magnitude (Gutenberg Richter law): $P(M) \propto M^{-3}$

▶ Number of war deaths: $P(d) \propto d^{-1.8}$

Sizes of forest fires

▶ Sizes of cities: $P(n) \propto n^{-2.1}$

Number of links to and from websites

Power Law Size Distributions Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs References

Size distributions

Examples:

▶ Number of citations to papers: $P(k) \propto k^{-3}$.

▶ Individual wealth (maybe): $P(W) \propto W^{-2}$.

▶ Distributions of tree trunk diameters: $P(d) \propto d^{-2}$.

► The gravitational force at a random point in the universe: $P(F) \propto F^{-5/2}$.

▶ Diameter of moon craters: $P(d) \propto d^{-3}$.

▶ Word frequency: e.g., $P(k) \propto k^{-2.2}$ (variable)

(Note: Exponents range in error; see M.E.J. Newman arxiv.org/cond-mat/0412004v3 (\boxplus))

Size distributions

Power-law distributions are..

- often called 'heavy-tailed'
- or said to have 'fat tails'

Important!:

- ▶ Inverse power laws aren't the only ones:
 - lognormals, stretched exponentials, ...

Power Law Size Distributions Overview Introduction Examples

References

Frame 11/33

母 り00

Zipfian rank-frequency plots

George Kingsley Zipf:

- noted various rank distributions followed power laws, often with exponent -1 (word frequency, city sizes...) "Human Behaviour and the Principle of Least-Effort" [2] Addison-Wesley, Cambridge MA, 1949.
- ▶ We'll study Zipf's law in depth...

Power Law Size Distributions

Overview Introduction Examples Zipf's law Wild vs. Mild CCDFs

References

Frame 13/33

Frame 15/33

Zipfian rank-frequency plots

Zipf's way:

- \triangleright s_i = the size of the *i*th ranked object.
- ightharpoonup i = 1 corresponds to the largest size.
- \triangleright s_1 could be the frequency of occurrence of the most common word in a text.
- Zipf's observation:

 $s_i \propto i^{-\alpha}$

Power Law Size Distributions Overview Zipf's law References

Frame 16/33

雪 かくい

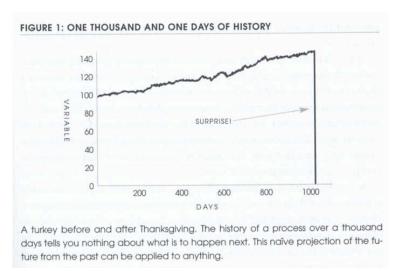
Power law distributions

Gaussians versus power-law distributions:

- Example: Height versus wealth.
- Mild versus Wild (Mandelbrot)
- ► Mediocristan versus Extremistan (See "The Black Swan" by Nassim Taleb [1])

Power Law Size Distributions Overview Wild vs. Mild References Frame 18/33 **回 り**へで

Turkeys...



From "The Black Swan" [1]

Taleb's table [1]

Mediocristan/Extremistan

- Most typical member is mediocre/Most typical is either giant or tiny
- Winners get a small segment/Winner take almost all
- ▶ When you observe for a while, you know what's going on/ It takes a very long time to figure out what's going on
- Prediction is easy/Prediction is hard
- History crawls/History makes jumps
- ► Tyranny of the collective/Tyranny of the accidental

Power Law Size Distributions

Overview Wild vs. Mild

References

Frame 20/33

Complementary Cumulative Distribution Function:

CCDF:

$$P_{>}(x) = P(x' \ge x) = 1 - P(x' < x)$$

$$= \int_{x'=x}^{\infty} P(x') \mathrm{d}x'$$

$$\propto \int_{x'=x}^{\infty} (x')^{-\gamma} \mathrm{d}x'$$

$$= \frac{1}{-\gamma+1} (x')^{-\gamma+1} \Big|_{x'=x}^{\infty}$$

$$\propto x^{-\gamma+1}$$

Power Law Size Distributions

Overview CCDFs

References

Complementary Cumulative Distribution Function:

CCDF:

$$P_{\geq}(x) \propto x^{-\gamma+1}$$

- ▶ Use when tail of P follows a power law.
- Increases exponent by one.
- Useful in cleaning up data.

Power Law Size Distributions Overview CCDFs References Frame 23/33 母 りへで

Complementary Cumulative Distribution Function:

Discrete variables:

$$P_{\geq}(k) = P(k' \geq k)$$

$$=\sum_{k'=k}^{\infty}P(k)$$

$$\propto k^{-\gamma+1}$$

Use integrals to approximate sums.

Power Law Size Distributions

Frame 22/33

母 り00

Overview CCDFs

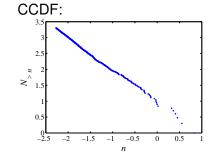
References

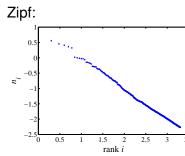
Frame 24/33

母 り00

Size distributions

Brown Corpus (1,015,945 words):





- ► The, of, and, to, a, ... = 'objects'
- 'Size' = word frequency
- Beep: CCDF and Zipf plots are related...

Power Law Size Distributions

CCDFs

References

Frame 25/33

回 り900

Size distributions

Observe:

- ▶ $NP_{\geq}(x)$ = the number of objects with size at least x where N = total number of objects.
- ▶ If an object has size x_i , then $NP_{>}(x_i)$ is its rank i.
- ► So

$$x_i \propto i^{-\alpha} = (NP_{>}(x_i))^{-\alpha}$$

$$\propto X_i^{(-\gamma+1)(-\alpha)}$$

Since $P_{>}(x) \sim x^{-\gamma+1}$,

$$\alpha = \frac{1}{\gamma - 1}$$

A rank distribution exponent of $\alpha = 1$ corresponds to a size distribution exponent $\gamma = 2$.

Power Law Size Distributions

Overview
Introduction
Examples
Zipf's law
Wild vs. Mild
CCDFs

References

Details on the lack of scale:

Let's find the mean:

$$\langle x \rangle = \int_{x=x_{\text{min}}}^{x_{\text{max}}} x P(x) dx$$
$$= c \int_{x=x_{\text{min}}}^{x_{\text{max}}} x x^{-\gamma} dx$$
$$= \frac{c}{2-\gamma} \left(x_{\text{max}}^{2-\gamma} - x_{\text{min}}^{2-\gamma} \right).$$

Power Law Size Distributions

Overview
Introduction
Examples
Zipf's law
Wild vs. Mild
CCDFs

References

Frame 27/33

The mean:

$$\langle x
angle \sim rac{c}{2-\gamma} \left(x_{\mathsf{max}}^{2-\gamma} - x_{\mathsf{min}}^{2-\gamma}
ight).$$

- ▶ Mean blows up with upper cutoff if γ < 2.
- ▶ Mean depends on lower cutoff if $\gamma > 2$.
- $ightharpoonup \gamma < 2$: Typical sample is large.
- $ightharpoonup \gamma > 2$: Typical sample is small.

Power Law Size Distributions

Frame 26/33

母 り00

Overview
Introduction
Examples
Zipf's law
Wild vs. Mild
CCDFs

References

And in general...

Moments:

- All moments depend only on cutoffs.
- ▶ No internal scale dominates (even matters).
- Compare to a Gaussian, exponential, etc.

Power Law Size Distributions

Overview
Introduction
Examples
Zipf's law
Wild vs. Mild
CCDFs

References

Frame 28/33

Frame 29/33

Moments

For many real size distributions:

$$2 < \gamma < 3$$

- mean is finite (depends on lower cutoff)
- σ^2 = variance is 'infinite' (depends on upper cutoff)
- Width of distribution is 'infinite'

Power Law Size Distributions

Overview

References

Moments

Standard deviation is a mathematical convenience!:

- ▶ Variance is nice analytically...
- Another measure of distribution width: Mean average deviation (MAD) =

$$\langle |x - \langle x \rangle| \rangle$$

► MAD is unpleasant analytically...

Power Law Size Distributions CCDFs References Frame 31/33 **回 り**へで

Frame 30/33

References I

How sample sizes grow...

Given $P(x) \sim cx^{-\gamma}$:

▶ We can show that after *n* samples, we expect the largest sample to be

$$x_1 \gtrsim n^{1/(\gamma-1)}$$

- Sampling from a 'mild' distribution gives a much slower growth with n.
- e.g., for $P(x) = \lambda e^{-\lambda x}$, we find

$$x_1 \gtrsim \frac{1}{\lambda} \ln n$$
.

Power Law Size Distributions Overview

CCDFs

N. N. Taleb. The Black Swan. Random House, New York, 2007.

G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Power Law Size Distributions References

Frame 33/33

母 りへで

Frame 32/33

