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Another approach

Benoit Mandelbrot
I Mandelbrot = father of fractals
I Mandelbrot = almond bread
I Derived Zipf’s law through optimization [11]

I Idea: Language is efficient
I Communicate as much information as possible for as

little cost
I Need measures of information (H) and cost (C)...
I Minimize C/H by varying word frequency
I Recurring theme: what role does optimization play in

complex systems?
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Not everyone is happy...

Mandelbrot vs. Simon:
I Mandelbrot (1953): “An Informational Theory of the

Statistical Structure of Languages” [11]

I Simon (1955): “On a class of skew distribution
functions” [14]

I Mandelbrot (1959): “A note on a class of skew
distribution function: analysis and critique of a paper
by H.A. Simon”

I Simon (1960): “Some further notes on a class of
skew distribution functions”
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Not everyone is happy... (cont.)

Mandelbrot vs. Simon:
I Mandelbrot (1961): “Final note on a class of skew

distribution functions: analysis and critique of a
model due to H.A. Simon”

I Simon (1961): “Reply to ‘final note’ by Benoit
Mandelbrot”

I Mandelbrot (1961): “Post scriptum to ‘final note”’
I Simon (1961): “Reply to Dr. Mandelbrot’s post

scriptum”
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Not everyone is happy... (cont.)

Mandelbrot:
“We shall restate in detail our 1959 objections to Simon’s
1955 model for the Pareto-Yule-Zipf distribution. Our
objections are valid quite irrespectively of the sign of p-1,
so that most of Simon’s (1960) reply was irrelevant.”

Simon:
“Dr. Mandelbrot has proposed a new set of objections to
my 1955 models of the Yule distribution. Like his earlier
objections, these are invalid.”

Plankton:
“You can’t do this to me, I WENT TO
COLLEGE!” “You weak minded fool!”
“That’s it Mister! You just lost your brain
privileges,” etc.
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Zipfarama via Optimization

Mandelbrot’s Assumptions

I Language contains n words: w1, w2, . . . , wn.
I i th word appears with probability pi

I Words appear randomly according to this distribution
(obviously not true...)

I Words = composition of letters is important
I Alphabet contains m letters
I Words are ordered by length (shortest first)
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Zipfarama via Optimization

Word Cost
I Length of word (plus a space)
I Word length was irrelevant for Simon’s method

Objection

I Real words don’t use all letter sequences

Objections to Objection

I Maybe real words roughly follow this pattern (?)
I Words can be encoded this way
I Na na na-na naaaaa...
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Zipfarama via Optimization

Binary alphabet plus a space symbol
i 1 2 3 4 5 6 7 8

word 1 10 11 100 101 110 111 1000
length 1 2 2 3 3 3 3 4

1 + ln2 i 1 2 2.58 3 3.32 3.58 3.81 4

I Word length of 2k th word: = k + 1 = 1 + log2 2k

I Word length of i th word ' 1 + log2 i
I For an alphabet with m letters,

word length of i th word ' 1 + logm i .
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Zipfarama via Optimization

Total Cost C
I Cost of the i th word: Ci ' 1 + logm i
I Cost of the i th word plus space: Ci ' 1 + logm(i + 1)

I Subtract fixed cost: C′
i = Ci − 1 ' logm(i + 1)

I Simplify base of logarithm:

C′
i ' logm(i + 1) =

loge(i + 1)

loge m
∝ ln(i + 1)

I Total Cost:

C ∼
n∑

i=1

piC′
i ∝

n∑
i=1

pi ln(i + 1)
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Zipfarama via Optimization

Information Measure
I Use Shannon’s Entropy (or Uncertainty):

H = −
n∑

i=1

pi log2 pi

I (allegedly) von Neumann suggested ‘entropy’...
I Proportional to average number of bits needed to

encode each ‘word’ based on frequency of
occurrence

I − log2 pi = log2 1/pi = minimum number of bits
needed to distinguish event i from all others

I If pi = 1/2, need only 1 bit (log21/pi = 1)
I If pi = 1/64, need 6 bits (log21/pi = 6)
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Zipfarama via Optimization

Information Measure
I Use a slightly simpler form:

H = −
n∑

i=1

pi loge pi/ loge 2 = −g
n∑

i=1

pi ln pi

where g = 1/ ln 2
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Zipfarama via Optimization

I Minimize
F (p1, p2, . . . , pn) = C/H

subject to constraint

n∑
i=1

pi = 1

I Tension:
(1) Shorter words are cheaper
(2) Longer words are more informative (rarer)

I (Good) question: how much does choice of C/H as
function to minimize affect things?
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Zipfarama via Optimization

Time for Lagrange Multipliers:

I Minimize
Ψ(p1, p2, . . . , pn) =

F (p1, p2, . . . , pn) + λG(p1, p2, . . . , pn)

where

F (p1, p2, . . . , pn) =
C
H

=

∑n
i=1 pi ln(i + 1)

−g
∑n

i=1 pi ln pi

and the constraint function is

G(p1, p2, . . . , pn) =
n∑

i=1

pi − 1 = 0

I [Insert assignment problem...]
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Zipfarama via Optimization

Some mild suffering leads to:

I

pj = e−1−λH2/gC(j + 1)−H/gC ∝ (j + 1)−H/gC

I A power law appears [applause]: α = H/gC

I Next: sneakily deduce λ in terms of g, C, and H.
I Find

pj = (j + 1)−H/gC
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Zipfarama via Optimization
Differentiate with respect to pj :

I

∂Ψ

∂pj
=

∂(C/H)

∂pj
+

∂

∂pj
λ

(
n∑

i=1

pi − 1

)
(= 0)

I

=

∂C
∂pj

H − C ∂H
∂pj

H2 + λ

I

=

∂
∂pj

(∑n
i=1 pi ln(i + 1)

)
H − C ∂

∂pj

(
−g
∑n

i=1 pi ln pi
)

H2 +λ

I

H ln (j + 1) + gC(ln pj + pj/pj���pj/pj 11)

H2 + λ = 0



More Power-Law
Mechanisms

Optimization
Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

Extra

Robustness
HOT theory

Predicting social
catastrophe

Self-Organized Criticality

COLD theory

Network robustness

References

Frame 22/67

Zipfarama via Optimization

Keep going...

I
H ln (j + 1) + gC(ln pj + 1)

H2 + λ = 0.

I

ln pj = −1− H ln (j + 1) + λH2

gC
I

pj = exp
{
−1− H ln (j + 1) + λH2

gC

}
I

pj = e−1−λH2/gC(j + 1)−H/gC ∝ (j + 1)−H/gC

I A power law appears [applause]: α = H/gC
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Zipfarama via Optimization

Finding the exponent

I Expressions for H and C are implicit functions.
I Not terribly obvious what the exponent will be.
I Let’s find out...
I First: Determine λ

I Sneakiness: Subsitute form for pj into H
I Find λ = −gC/H2

Our form for pj reduces:

pj = e−1−λH2/gC(j + 1)−H/gC

= e−1+1(j + 1)−H/gC = (j + 1)−H/gC
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Zipfarama via Optimization

Finding the exponent

I Now use the normalization constraint:

1 =
n∑

j=1

pj =
n∑

j=1

(j + 1)−H/gC =
n∑

j=1

(j + 1)−α

I As n →∞, we end up with ζ(H/gC) = 2
where ζ is the Riemann Zeta Function

I Gives α ' 1.73 (> 1, too high)
I If cost function changes (j + 1 → j + a) then

exponent is tunable
I Increase a, decrease α
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Zipfarama via Optimization

All told:
I Reasonable approach: Optimization is at work in

evolutionary processes
I But optimization can involve many incommensurate

elements: monetary cost, robustness, happiness,...
I Mandelbrot’s argument is not super convincing
I Exponent depends too much on a loose definition of

cost
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More

Reconciling Mandelbrot and Simon

I Mixture of local optimization and randomness
I Numerous efforts...

1. Carlson and Doyle, 1999:
Highly Optimized Tolerance
(HOT)—Evolved/Engineered Robustness [5]

2. Ferrer i Cancho and Solé, 2002:
Zipf’s Principle of Least Effort [8]

3. D’Souza et al., 2007:
Scale-free networks [7]
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More

Other mechanisms:
Much argument about whether or not monkeys typing
could produce Zipf’s law... (Miller, 1957) [12]
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Others are also not happy

Krugman and Simon

I “The Self-Organizing Economy” (Paul Krugman,
1995) [10]

I Krugman touts Zipf’s law for cities, Simon’s model
I “Déjà vu, Mr. Krugman” (Berry, 1999)
I Substantial work done by Urban Geographers
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Who needs a hug?

From Berry [4]

I Déjà vu, Mr. Krugman. Been there, done that. The
Simon-Ijiri model was introduced to geographers in
1958 as an explanation of city size distributions, the
first of many such contributions dealing with the
steady states of random growth processes, ...

I But then, I suppose, even if Krugman had known
about these studies, they would have been
discounted because they were not written by
professional economists or published in one of the
top five journals in economics!
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Who needs a hug?

From Berry [4]

I ... [Krugman] needs to exercise some humility, for his
world view is circumscribed by folkways that militate
against recognition and acknowledgment of
scholarship beyond his disciplinary frontier.

I Urban geographers, thank heavens, are not so
afflicted.
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Robustness

I Many complex systems are prone to cascading
catastrophic failure: exciting!!!

I Blackouts
I Disease outbreaks
I Wildfires
I Earthquakes

I But complex systems also show persistent
robustness (not as exciting but important...)

I Robustness and Failure may be a power-law story...
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Robustness

I System robustness may result from
1. Evolutionary processes
2. Engineering/Design

I Idea: Explore systems optimized to perform under
uncertain conditions.

I The handle: ‘Highly Optimized Tolerance’
(HOT) [5, 6, 15]

I The catchphrase: Robust yet Fragile
I The people: Jean Carlson and John Doyle
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Robustness

Features of HOT systems: [6]

I High performance and robustness
I Designed/evolved to handle known environmental

variability
I Fragile in the face of unpredicted environmental

signals
I Highly specialized, low entropy configurations
I Power-law distributions
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Robustness

HOT combines things we’ve seen:

I Variable transformation
I Constrained optimization

I Need power law transformation between variables:
(Y = X−α)

I MIWO is good: Mild In, Wild Out
I X has a characteristic size but Y does not
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Robustness

Forest fire example [6]

I Square N × N grid
I Sites contain a tree with probability ρ = density
I Sites are empty with probability 1− ρ

I Fires start at location according to some distribution
Pij

I Fires spread from tree to tree
I Connected clusters of trees burn completely
I Empty sites block fire
I Best case scenario:

Maximize average # trees left intact
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Robustness

Forest fire example [6]

I Build a forest by adding one tree at a time
I Test D ways of adding one tree
I D = design parameter
I Average over Pij = spark probability
I D = 1: random addition
I D = N2: test all possibilities
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HOT Forests

[6]

N = 64

(a) D = 1
(b) D = 2
(c) D = N
(d) D = N2

Pij has a
Gaussian decay

Optimized forests do well on average (robustness)
but rare extreme events occur (fragility)
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Random Forests

D = 1: Random forests = Percolation
I Randomly add trees
I Below critical density ρc , no fires take off
I Above critical density ρc , percolating cluster of trees

burns
I Only at ρc , the critical density, is there a power-law

distribution of tree cluster sizes
I Forest is random and featureless
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HOT forests

HOT forests
I Highly structured
I Power law distribution of tree cluster sizes for ρ > ρc

I No specialness of ρc

I Forest states are tolerant
I Uncertainty is okay if well characterized
I If Pij is characterized poorly, failure becomes highly

likely
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HOT theory

The abstract story:

I Given yi = x−α
i , i = 1, . . . , N

I Design system to minimize 〈y〉
subject to a constraint on the xi

I Minimize cost:

C =
N∑

i=1

Pr(yi)yi

Subject to
∑N

i=1 xi = constant
I Drag out the Lagrange Multipliers, battle away and

find:
pi ∝ y−γ

i
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HOT theory

Optimal fire walls in d dimensions:

I Two costs:
1. Expected size of fire

Cfire ∝
N∑

i=1

(piai)ai =
N∑

i=1

pia2
i

ai = area of i th region
pi = average probability of fire at site in i th region

2. Cost of building and maintaining firewalls

Cfirewalls ∝
N∑

i=1

a1/2
i

In d dimensions, 1/2 is replaced by (d − 1)/d
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HOT theory

I Minimize Cfire given Cfirewalls = constant.
I

∂

∂aj
(Cfire − λCfirewalls) = 0

∝ ∂

∂aj

(
N∑

i=1

pia2
i − λ′a(d−1)/d

i

)

I

pi ∝ a−γ
i = a−(1+1/d)

i

I

For d = 2, γ = 3/2
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HOT theory

Basic idea of designed tolerance

I Build more firewalls in areas where sparks are likely
I Small connected regions in high-danger areas
I Large connected regions in low-danger areas
I Routinely see many small outbreaks (robust)
I Rarely see large outbreaks (fragile)
I Sensitive to changes in the environment (Pij )
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Predicting social catastrophe isn’t easy...

“Greenspan Concedes Error on Regulation”

I . . . humbled Mr. Greenspan admitted that he had put
too much faith in the self-correcting power of free
markets . . .

I “Those of us who have looked to the self-interest of
lending institutions to protect shareholders’ equity,
myself included, are in a state of shocked disbelief”

I Rep. Henry A. Waxman: “Do you feel that your
ideology pushed you to make decisions that you wish
you had not made?”

I Mr. Greenspan conceded: “Yes, I’ve found a flaw. I
don’t know how significant or permanent it is. But I’ve
been very distressed by that fact.”

New York Times, October 23, 2008 (�)

http://www.nytimes.com/2008/10/24/business/economy/24panel.html


More Power-Law
Mechanisms

Optimization
Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

Extra

Robustness
HOT theory

Predicting social
catastrophe

Self-Organized Criticality

COLD theory

Network robustness

References

Frame 48/67

Economics, Schmeconomics

Alan Greenspan (September 18, 2007):
“I’ve been dealing with these big
mathematical models of forecasting the
economy ...

If I could figure out a way to determine
whether or not people are more fearful
or changing to more euphoric,

I don’t need any of this other stuff.

I could forecast the economy better than
any way I know.”

http://wikipedia.org

http://wikipedia.org
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Economics, Schmeconomics

Greenspan continues:
“The trouble is that we can’t figure that out. I’ve been in
the forecasting business for 50 years. I’m no better than I
ever was, and nobody else is. Forecasting 50 years
ago was as good or as bad as it is today. And the reason
is that human nature hasn’t changed. We can’t improve
ourselves.”

Jon Stewart:

“You just bummed the @*!# out of me.”

wildbluffmedia.com

I From the Daily Show (�) (September 18, 2007)
I The full inteview is here (�).

wildbluffmedia.com
http://www.thedailyshow.com
http://www.thedailyshow.com/video/index.jhtml?videoId=102970&title=alan-greenspan
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Economics, Schmeconomics

James K. Galbraith:
I But there are at least 15,000 professional

economists in this country, and you’re saying only
two or three of them foresaw the mortgage crisis?
Ten or 12 would be closer than two or three.

I What does that say about the field of economics,
which claims to be a science? It’s an enormous blot
on the reputation of the profession. There are
thousands of economists. Most of them teach. And
most of them teach a theoretical framework that has
been shown to be fundamentally useless.

From the New York Times, 11/02/2008 (�)

http://www.nytimes.com/2008/11/02/magazine/02wwln-Q4-t.html
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Avalanches on Sand and Rice
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SOC theory

SOC = Self-Organized Criticality

I Idea: natural dissipative systems exist at ‘critical
states’

I Analogy: Ising model with temperature somehow
self-tuning

I Power-law distributions of sizes and frequencies
arise ‘for free’

I Introduced in 1987 by Bak, Tang, and
Weisenfeld [3, 2, 9]:
“Self-organized criticality - an explanation of 1/f
noise”

I Problem: Critical state is a very specific point
I Self-tuning not always possible
I Much criticism and arguing...
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Robustness

HOT versus SOC
I Both produce power laws
I Optimization versus self-tuning
I HOT systems viable over a wide range of high

densities
I SOC systems have one special density
I HOT systems produce specialized structures
I SOC systems produce generic structures
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COLD forests

Avoidance of large-scale failures

I Constrained Optimization with Limited Deviations [13]

I Weight cost of larges losses more strongly
I Increases average cluster of trees...
I ... but reduces chances of catastrophe
I Power law distribution of fire sizes is truncated



More Power-Law
Mechanisms

Optimization
Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

Extra

Robustness
HOT theory

Predicting social
catastrophe

Self-Organized Criticality

COLD theory

Network robustness

References

Frame 57/67

Cutoffs

Aside:
I Power law distributions often have an exponential

cutoff
I

P(x) ∼ x−γ exp−x/xc

I where xc is the approximate cutoff scale.
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Robustness

And we’ve already seen this...

I network robustness.
I Albert et al., Nature, 2000:

“Error and attack tolerance of complex networks” [1]
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Robustness

I Standard random networks (Erdös-Rényi)
versus
Scale-free networks
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd
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I Plots of network
diameter as a function
of fraction of nodes
removed

I Erdös-Rényi versus
scale-free networks

I blue symbols =
random removal

I red symbols =
targeted removal
(most connected first)
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Robustness

I Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

I All very reasonable: Hubs are a big deal.
I But: next issue is whether hubs are vulnerable or not.
I Representing all webpages as the same size node is

obviously a stretch (e.g., google vs. a random
person’s webpage)

I Most connected nodes are either:
1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

I Need to explore cost of various targeting schemes.
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