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Optimal supply networks

What’s the best way to distribute stuff?

I Stuff = medical services, energy, people,
I Some fundamental network problems:

1. Distribute stuff from a single source to many sinks
2. Distribute stuff from many sources to many sinks
3. Redistribute stuff between nodes that are both

sources and sinks
I Supply and Collection are equivalent problems
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River network models

Optimality:

I Optimal channel networks [10]

I Thermodynamic analogy [11]

versus...

Randomness:
I Scheidegger’s directed random networks
I Undirected random networks
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Optimization approaches

Cardiovascular networks:
I Murray’s law (1926) connects branch radii at forks: [8]

r3
0 = r3

1 + r3
2

where r0 = radius of main branch
and r1 and r2 are radii of sub-branches

I Calculation assumes Poiseuille flow
I Holds up well for outer branchings of blood networks
I Also found to hold for trees
I Use hydraulic equivalent of Ohm’s law:

∆p = ΦZ ⇔ V = IR

where ∆p = pressure difference, Φ = flux
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Optimization approaches

Cardiovascular networks:
I Fluid mechanics: Poiseuille impedance for smooth

flow in a tube of radius r and length `:

Z =
8η`

πr4

where η = dynamic viscosity
I Power required to overcome impedance:

Pdrag = Φ∆p = Φ2Z

I Also have rate of energy expenditure in maintaining
blood:

Pmetabolic = cr2`

where c is a metabolic constant.
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Optimization approaches

Aside on Pdrag

I Work done = F · d = energy transferred by force F
I Power = rate work is done = F · v
I ∆P = Force per unit area
I Φ = Volume per unit time

= cross-sectional area · velocity
I So Φ∆P = Force · velocity
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Optimization approaches

Murray’s law:

I Total power (cost):

P = Pdrag + Pmetabolic = Φ2 8η`

πr4 + cr2`

I Observe power increases linearly with `

I But r ’s effect is nonlinear:
I increasing r makes flow easier but increases

metabolic cost (as r2)
I decreasing r decrease metabolic cost but impedance

goes up (as r−4)
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Optimization

Murray’s law:

I Minimize P with respect to r :

∂P
∂r

=
∂

∂r

(
Φ2 8η`

πr4 + cr2`

)

= −4Φ2 8η`

πr5 + c2r` = 0

I Rearrange/cancel/slap:

Φ2 =
cπr6

16η
= k2r6

where k = constant.
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Optimization

Murray’s law:

I So we now have:
Φ = kr3

I Flow rates at each branching have to add up (else
our organism is in serious trouble...):

Φ0 = Φ1 + Φ2

where again 0 refers to the main branch and 1 and 2
refers to the offspring branches

I All of this means we have a groovy cube-law:

r3
0 = r3

1 + r3
2
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Optimization

Murray meets Tokunaga:

I Φω = volume rate of flow into an order ω vessel
segment

I Tokunaga picture:

Φω = 2Φω−1 +
ω−1∑
k=1

TkΦω−k

I Using φω = kr3
ω

r3
ω = 2r3

ω−1 +
ω−1∑
k=1

Tk r3
ω−k

I Find Horton ratio for vessell radius Rr = rω/rω−1...
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Optimization

Murray meets Tokunaga:

I Find R 3
r satisfies same equation as Rn and Rv

(v is for volume):

R3
r = Rn = Rv = R3

n

I Is there more we could do here to constrain the
Horton ratios and Tokunaga constants?
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Optimization

Murray meets Tokunaga:

I Isometry: Vω ∝ ` 3
ω

I Gives
R3

` = Rv = Rn

I We need one more constraint...
I West et al (1997) [16] achieve similar results following

Horton’s laws.
I So does Turcotte et al. (1998) [15] using Tokunaga

(sort of).
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Optimization approaches

The bigger picture:

I Rashevsky (1960’s) [9] showed using a network story
that power output of heart should scale as M 2/3

I West et al. (1997 on) [16, 2] managed to find M 3/4

(a mess—super long story—see previous course...)
I Banavar et al. [1] attempt to derive a general result for

all natural branching networks
I Again, something of a mess [2]

I We’ll look at and build on Banavar et al.’s work...
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Simple supply networks

I Banavar et al.,
Nature,
(1999) [1]

I Very general
attempt to find
most efficient
transportation
networks.
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Simple supply networks

I Banavar et al. find ‘most efficient’ networks with

P ∝ Md/(d+1)

I ... but also find

Vblood ∝ M(d+1)/d

I Consider a 3 g shrew with Vblood = 0.1Vbody

I ⇒ 3000 kg elephant with Vblood = 10Vbody

I Such a pachyderm would be rather miserable.
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Pachydermal sadness

Checking that last statement:

I For d = 3, we have Vblood = cV (d+1)/d = cV 4/3

I If our shrew has V (shrew)
blood = 0.1V (shrew) then

c = 0.1(V (shrew))−1/3.
I Assuming V (elephant) = 106V shrew, we have

V (elephant)
blood = c(V (elephant))4/3

= 0.1(V (shrew))−1/3︸ ︷︷ ︸
c

(106V (shrew))︸ ︷︷ ︸
V (elephant)

4/3

= 107V (shrew) = 10V (elephant).

I Oops.
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Geometric argument

I Consider one source supplying many sinks in a d
dimensional volume

I Material draw by sinks is invariant.
I Assume some cap on flow speed of material, vmax

I See network as a bundle of virtual vessels:

I The right question: how does number of sustainable
sinks Nsinks scale with volume V for the most efficient
network design?

I Or: what is highest α for Nsinks ∝ V α?
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Geometric argument

L

r

I Best case: lengths of virtual vessels ∝ r .
I Worst case: lengths of virtual vessels ∝ Ld .
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Geometric argument

I Banavar et al. assume sink density ρ is uniform
I If we allow ρ to vary, then we find

Vblood ∝ ρLd+1

I Since Vblood ∝ Ld , we must have ρ ∝ L−1.
I ⇒ capillary density must decrease as M increases

(observed).
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Geometric argument

I

Nsinks ∝ ρLd ∝ L−1Ld ∝ M(d−1)/d

I so for d = 3, we have α = 2/3.
I for d = 2, we have α = 1/2.
I Claim: If volume shapes change allometrically, the

exponent decreases.
I Claim: Less Efficient networks have lower exponents

too (b/c they must have lower densities of sinks).
I We’ll work through these claims in detail...
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Geometric argument

I Reminder: we break network up into virtual vessels:

I Assume flow rate at each sink is independent of
system size.

I Take the cross-sectional area a of virtual vessels to
be constant.

I Minimizing the volume of the network is then
equivalent to minimizing the sum of the path lengths
from the source to all sinks.
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Geometric argument

I Note: we are ignoring issues such as impedance.
I Changes in impedance (e.g., due to combining of

flows) may change material speed but not overall
flow rate

I Scaling of material volume must be ∝ system
volume—it’s a 0th order concern.
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Geometric argument

I Consider families of systems that grow allometrically.
I Family = a basic shape Ω indexed by volume V .

Ω Ω L’2

L 1 L’

2L

1

(V)
(V’)

I Orient shape to have dimensions L1 × L2 × ...× Ld

I In 2-d, L1 ∝ Aγ1 and L2 ∝ Aγ2 where A = area.
I In general, have d lengths which scale as Li ∝ V γi .
I For above example, width grows faster than height:

γ1 > γ2.
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Geometric argument

Some generality:

I Consider d dimensional spatial regions living in D
dimensional ambient spaces. Notation: Ωd ,D(V ).

I River networks: d = 2 and D = 3
I Cardiovascular networks: d = 3 and D = 3
I Star-convexity of Ωd ,D(V ): A spatial region is

star-convex if from at least one point, all other points
in the region can be reached by travelling along
straight lines while remaining within the region.

I Assume source can be located at a point which has
direct line of sight to all sources.

I We can generalize to a much broader class of
shapes...
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Geometric argument

I Reminder of best and worst configurations

a b

I Basic idea: Minimum volume of material in system
Vnet ∝ sum of distance from the source to the sinks.

I See what this means for sink density ρ if sinks do not
change their feeding habits with overall size.
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Geometric argument

Assumptions in detail:

I Each region Ωd ,D(V ) has overall dimensions
L1 × L2 × · · · × Ld .

I Specifically, V = cL1L2 · · ·Ld where c ≤ 1 is a shape
factor dependent of Ω.

I We allow for arbitrary shape scaling:

Li = c−1
i V γi

where
∏d

i=1 ci = c and
∑d

i=1 γi = 1.
I For isometric growth, γi = 1/d .
I For allometric growth, we must have at least two of

the {γi} being different
I We choose the Li so that γ1 ≥ γ2 ≥ . . . ≥ γd
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Computing the minimal network volume:

I

min Vnet ∝
∫

Ωd,D(V )
ρ ||~x || d~x

= ρ

∫
Ωd,D(V )

(x2
1 + x2

2 + . . . + x2
d )1/2d~x

I Substituting xi = Liui , we have

min Vnet ∝ ρL1 · · ·Ld

∫
Ωd,D(c)

(L2
1u2

1 + . . . + L2
du2

d)1/2d~u

∝ ρV
∫

Ωd,D(c)
(L2

1u2
1 + L2

2u2
2 + . . . + L2

du2
d)1/2d~u

where we have rescaled to a volume of size c < 1
where c is the shape factor.
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Computing the minimal network volume:

I We are here:

min Vnet ∝ ρV
∫

Ωd,D(c)
(L2

1u2
1 + L2

2u2
2 + . . .+ L2

du2
d)1/2d~u

I Observe that the integrand will be dominated by the
Li that scale strongest with V .

I Assume first k ≤ d dimensions scale with equal
strength, Li = c−1

i V γ∗ .
I Plug in scaling for Li in terms of V and pull V γ∗ out to

the front.

min Vnet ∝ ρVV γ∗

∫
Ωd,D(c)

(c−2
1 u2

1 + . . . + c2
k u2

k + . . .

c−2
k+1V 2(γk+1−γ∗)u2

k+1 + . . . + c−2
d V 2(γd−γ∗)u2

d)1/2d~u
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Computing the minimal network volume:

I Where we are now:

min Vnet ∝ ρV 1+γ∗

∫
Ωd,D(c)

(c−2
1 u2

1 + . . . + c−2
k u2

k + . . .

c2
k+1V 2(γk+1−γ∗)u2

k+1 + . . . + c2
dV 2(γd−γ∗)u2

d)1/2d~u

I Now allow V →∞ and see that part of integrand
vanishes:

min Vnet → ρV 1+γ∗

∫
Ωd,D(c)

(c2
1u2

1 + . . . + c2
k u2

k )1/2d~u

∝ ρV 1+γ∗

since integral is now nice and friendly and small.
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Geometric argument
I Our general result:

min Vnet ∝ ρV 1+γ∗

I For scaling is isometric, we have γ∗ = γiso = 1/d and
all the Li scale as V 1/d :

min Vnet/iso ∝ ρV 1+1/d = ρV (d+1)/d

I If scaling is allometric, we have
γ∗ = γallo = maxi γi > 1/d and

min Vnet/allo ∝ ρV 1+γallo

I We see that isometrically scaling volumes require
less network volume than allometrically scaling
volumes:

min Vnet/iso

min Vnet/allo
→ 0 as V →∞
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Geometric argument

Blood networks
I Material costly ⇒ expect lower optimal bound of

Vnet ∝ ρV (d+1)/d ∝ ρLd+1 to be closely followed.
I For cardiovascular networks, d = D = 3.
I Know that volume of blood scales linearly with blood

volume [12], Vnet ∝ VΩ ∝ Ld .
I Since we have shown Vnet ∝ ρLd+1, sink density

must also decrease as volume increases:

ρ ∝ L−1 ∝ V−1/d .
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Geometric argument

Blood networks
I We assume, reasonably, that V ∝ M where M is

mass.
I It next follows that P, the rate of overall energy use in

Ω, can at most scale with volume as

P ∝ ρV ∝ ρM ∝ M(d−1)/d

I For three dimensional organisms, we have
P ∝ M 2/3.

I Much controversy about all this [2] but for small
mammals and birds, 2/3 scaling looks good for
resting metabolic rate.
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Some data on metabolic rates
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[10−Dec−2001 peter dodds]

I Heusner’s
data (1991) [5]

I 391 Mammals
I blue line: 2/3
I red line: 3/4.
I B = P =

power
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Geometric argument

Interesting result from quantum mechanics:

I Homeothermic organisms need to keep their
temperature static

I A good amount of heat loss is through infra-red
radiation (when resting)

I For mammals with M ≤ 10 kg:
P = 2.57× 105M 2/3erg/sec.

I Stefan-Boltzmann’s law (�): dE
dt = σεST 4

where T is absolute temperature, S is surface area, ε
= emissivity < 1 and σ depends on Planck’s
constant, speed of light, π5, these sorts of things.

I Rough estimates of these constants give

P ' 105M 2/3erg/sec.

Not bad...

http://en.wikipedia.org/wiki/Stefan-Boltzmann_law
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Geometric argument

Organisms at work:

I What about organisms working as hard as possible?
I For short bursts, power scales closer to mass.
I Energy is stored locally muscles and we have

accounted for this.
I Also: apparently some capillaries are dormant during

rest.
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Geometric argument

I River networks can be seen as collection networks.
I Many sources and one sink.
I For river networks, we know ρ is constant so

Vnet ∝ ρV (d+1)/d = constant× V 3/2

I Hmmm: now network volume is growing faster than
basin ‘volume’ (really area).

I It’s all okay:
Landscapes are 2-d surfaces living in 3-d.

I D = 3 and d = 2.
I Streams can grow not just in width but in depth...
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Geometric argument

I Volume of water in river network can be calculated by
adding up basin areas

I (Discreteness of data means summing instead of
integrating)

I Each site on discrete lattice is a source.
I Imagine a steady flow from each source to outlet.
I Flows sum in such a way that

Vnet =
∑

all pixels

apixel i
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Geometric argument

I Banavar et al.’s
approach [1] is
okay because ρ
really is constant.

I The irony: shows
optimal basins are
isometric

I Optimal Hack’s
law: a ∼ `h with
h = 1/2

I (Zzzzz)
From Banavar et al. (1999) [1]
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Geometric argument: evidence

Montgomery and Dietrich [7]

I

Fig. 1. Without a scale bar it
is almost impossible to de-
termine even the approxi-
mate scale of a topographic
map. The upper two maps
show adjacent drainage ba-
sins in the Oregon Coast
Range and illustrate the ef-
fect of depicting an area of
similar topography at diffier-
ent scales. The map on the
right covers an area four
times as large as, and has
twice the contour interval
of, the map on the left. The
lower two maps depict very
different landscapes, and de-
tailed mapping was done to
resolve the finest scale val- - --
leys, which determine the -
extent, or scale, of landscape
dissection. The map on the
left shows a portion of a/
small badlands area at Perth
Amboy, New Jersey (28)
(scale bar represents 2 m;
contour interval is 0.3 in).
The map on the right shows
a portion of the San Gabriel
Mountains of southern Cal-
ifornia (20) (scale bar repre-
sents 100 m; contour inter-
val is 15 in). Dashed fines on
both lower maps represent
the limit of original map-
ping. The drainage basin outlet on each map is oriented toward the bottom of the page. All four maps
suggest a limit to landscape dissection, defined by the size of the hilislopes, separating valleys. This
apparent limit, however, only corresponds to the extent of valley dissection definable in the field for the
case of the lower two maps.

We collected data from small drainage
basins in a variety of geologic settings that
represent a range in climate and vegetation
(4, 5). We measured the drainage area (A),
basin length (L), and local slope (S) for
locations in convergent topography along
low-order channel networks, at channel
heads, and along unchanneled valleys in
drainage basins where we had mapped the
channel networks in the field (4, 5). Drain-
age area was defined as the area upslope of
the measurement location, basin length was
defined as the length along the main valley
axis to the drainage divide, and local slope
was measured in the field. The structural
relation ofdrainage area to basin length (10)
for our composite data set is

L = 1.78 A49 (1)

E

5
c
U

Drainage area (m2)

where L and A are expressed in meters. This
relation is well approximated by the simple,
isometric relation

L (3 A)05 (2)
Inclusion of reported drainage area and
mainstream length data from larger net-
works (11-15) provides a composite data
set that also is reasonably fit (5) by this
relation. The data span a range of more
than 11 orders of magnitude in basin area,
from unchanneled hillside depressions to
the world's largest rivers (Fig. 2). This
relation suggests that there is a basic geo-
metric similarity between drainage basins
and the smaller basins contained within
them that holds down to the finest scale to
which the landscape is dissected (Fig. 3).
In the field this scale is easily recognized as

Fig. 2. Basin length versus drainage
area for unchanneled valleys, source
areas, and low-order channels mapped
in this study (0) and mainstream
length versus drainage area data report-
ed for large channel networks (0).
Sources of mainstream length data are
given in (5).

Fig. 3. The coherence of the data in Fig. 2 across
11 orders of magnitude indicates a geometric
similarity between small drainage basins and the
larger drainage basins that contain them. Al-
though the variance about the trend in Fig. 2
indicates a range in individual basin shapes, this
general relation apparently characterizes the land-
scape down to the finest scale of convergent
topography.

that ofthe topographically divergent ridges
that separate these fine-scale valleys.
Equation 1 differs, however, from the

relation between the mainstream length
and drainage area first reported by Hack
(11), in which basin area increases as L`.
Many subsequent workers interpreted sim-
ilar relations as indicating that drainage
network planform geometry changes with
increasing scale. Relations between main-
stream length and drainage area also have
been used to infer the fractal dimension of
individual channels and channel networks
(1, 16). Mueller (15), however, reported
that the exponent in the relation of main-
stream length to drainage area is not con-
stant, but decreases from 0.6 to -0.5 with
increasing network size, and Hack (11)
noted that the exponent in this relation
varies for individual drainage networks.
We cannot compare our data more quanti-
tatively with those reported by others be-
cause the mainstream length will diverge
from the basin length in proportion to the
area upslope of the stream head. We sus-
pect that the difference in the relations
derived from our data and those reported
previously reflects variation in the head-
ward extent ofthe stream network depicted
on maps of varying scale (17) as well as
downstream variations in both channel sin-
uosity (14) and drainage density (18). The
general scale independence indicated in
Fig. 2 suggests that landscape dissection
results in an integrated network of valleys
that capture geometrically similar drainage
basins at scales ranging from the largest
rivers to the finest scale valleys. Within this
scale range there appears to be little inher-
ent to the channel network and to the
corresponding shape ofthe drainage area it
captures that provides reference to an ab-
solute scale.

Nonetheless, field studies in semiarid to
humid regions demonstrate that there is a
finite extent to the branching channel net-
work (4, 5, 19-22). Channels do not occupy
the entire landscape; rather, they typically
begin at the foot of an unchanneled valley,
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I Composite data set: includes everything from
unchanneled valleys up to world’s largest rivers.

I Esimated fit:
L ' 1.78a 0.49

I N.b., data is a mixture of basin and main stream
lengths.
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World’s largest rivers only:
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I Data from Leopold (1994) [6]

I Estimate of Hack exponent: h = 0.50± 0.06
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Optimal river networks

Large scale deviations in Hack’s law
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I Rivers seem generally relatively long (but isometric).
I Measured width/length ratio unexplained.
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Many sources, many sinks

How do we distribute sources?
I Focus on 2-d (results generalize to higher

dimensions)
I Sources = hospitals, post offices, pubs, ...
I Key problem: How do we cope with uneven

population densities?
I Obvious: if density is uniform then sources are best

distributed uniformly
I Which lattice is optimal? The hexagonal lattice

Q1: How big should the hexagons be?
I Q2: Given population density is uneven, what do we

do?
I We’ll follow work by Stephan [13, 14] and by Gastner

and Newman (2006) [4] and work cited by them.
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Optimal source allocation

Solidifying the basic problem

I Given a region with some population distribution ρ,
most likely uneven.

I Given resources to build and maintain N facilities.
I Q: How do we locate these N facilities so as to

minimize the average distance between an
individual’s residence and the nearest facility?
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Optimal source allocation

The value of s!r" is constrained by the requirement that
there be p facilities in total. Noting that s!r" is constant and
equal to s!ri" within Voronoi cell Vi, we see that the integral
of #s!r"$−1 over Vi is

%
Vi

#s!r"$−1d2r = #s!ri"$−1%
Vi

d2r = 1. !3"

Summing over all Vi, we can then express the constraint on
the number of facilities in the form

%
A

#s!r"$−1d2r = p . !4"

Subject to this constraint, optimization of the mean dis-
tance f above gives

!

!s!r"&g%
A

"!r"#s!r"$1/2d2r − #'p − %
A

#s!r"$−1d2r() = 0,

!5"

where # is a Lagrange multiplier. Performing the functional
derivatives and rearranging for s!r", we find s!r"
= #2# / !g"!r""$2/3. The Lagrange multiplier can be evaluated
by substituting into Eq. !4", and we arrive at the result

D!r" =
1

s!r"
= p

#"!r"$2/3

% #"!r"$2/3d2r

, !6"

where we have introduced the notation D!r"= #s!r"$−1 for the
density of the facilities.

Thus, if facilities are distributed optimally for the given
population distribution, their density should increase with
population density but it should do so slower than linearly, as
a power law with exponent 2

3 #29$. In addition to the argu-
ment given here, which roughly follows Ref. #10$, this result
has also been derived previously by a number of other meth-
ods #5–9$, although all are approximate.

Equation !6" places most facilities in the densely popu-
lated areas where most people live while still providing rea-
sonable service to those in sparsely populated areas where a
strictly population-proportional allocation might leave inhab-
itants with little or nothing. Its derivation makes two ap-
proximations: it assumes that the geometric factor g is the
same for all Voronoi cells and that s!r" is a continuous func-
tion. Neither assumption is strictly true, but we expect them
to be approximately valid if " varies little over the typical
size of a Voronoi cell. As a test of these assumptions, we
have optimized numerically the distribution of p=5000 fa-
cilities over the lower 48 states of the United States !Fig. 1"
using population data from the most recent U.S. Census #11$,
which counts the number of residents within more than 8
million blocks across the study region. To create a continu-
ous density function ", we convolved these data with a nor-
malized Gaussian distribution of width 20 km #30$. The fa-
cility locations were then determined by optimizing the full
p-median objective function !1" by simulated annealing #12$.

The relation D$"2/3 can be tested as follows. First, we
determine the Voronoi cell around each facility. Then we

calculate D!r" as the inverse of the area of the corresponding
cell and " as the number of people living in the cell divided
by its area. Figure 2 shows a scatter plot of the resulting data
on doubly logarithmic scales. If the anticipated 2

3-power re-
lation holds, we expect the data to fall along a line of slope
2
3 . And indeed a least-squares fit !solid line in the figure"
yields a slope 0.66 with r2=0.94.

Some statistical concerns might be raised about this
method. First, we used the Voronoi cell area to calculate both
D and ", so the measurements of x and y values in the plot
are not independent, and one might argue that a positive
slope could thus be a result of artificial correlations between
the values rather than a real result #13$. Second, it is known
that estimating the exponent of a power law such as Eq. !6"
from a log-log plot can introduce systematic biases #14,15$.
In the next section, we introduce an entirely different test of
Eq. !6" that, in addition to being of interest in its own right,
suffers from neither of these problems.

III. DENSITY-EQUALIZING PROJECTIONS

If we neglect finite-size effects, it is straightforward to
demonstrate that optimally located facilities in a uniformly

FIG. 1. !Color online" Facility locations determined by simu-
lated annealing and the corresponding Voronoi tessellation for p
=5000 facilities located in the lower 48 United States, based on
population data from the U.S. Census for the year 2000.

FIG. 2. !Color online" Facility density D from Fig. 1 vs popu-
lation density " on a log-log plot. A least-squares linear fit to the
data gives a slope of 0.66 !solid line, r2=0.94".

MICHAEL T. GASTNER AND M. E. J. NEWMAN PHYSICAL REVIEW E 74, 016117 !2006"

016117-2

From Gastner and Newman (2006) [4]

I Approximately optimal location of 5000 facilities.

I Based on 2000 Census data.

I Simulated annealing + Voronoi tessellation.
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Optimal source allocation

The value of s!r" is constrained by the requirement that
there be p facilities in total. Noting that s!r" is constant and
equal to s!ri" within Voronoi cell Vi, we see that the integral
of #s!r"$−1 over Vi is

%
Vi

#s!r"$−1d2r = #s!ri"$−1%
Vi

d2r = 1. !3"

Summing over all Vi, we can then express the constraint on
the number of facilities in the form

%
A

#s!r"$−1d2r = p . !4"

Subject to this constraint, optimization of the mean dis-
tance f above gives

!

!s!r"&g%
A

"!r"#s!r"$1/2d2r − #'p − %
A

#s!r"$−1d2r() = 0,

!5"

where # is a Lagrange multiplier. Performing the functional
derivatives and rearranging for s!r", we find s!r"
= #2# / !g"!r""$2/3. The Lagrange multiplier can be evaluated
by substituting into Eq. !4", and we arrive at the result

D!r" =
1

s!r"
= p

#"!r"$2/3

% #"!r"$2/3d2r

, !6"

where we have introduced the notation D!r"= #s!r"$−1 for the
density of the facilities.

Thus, if facilities are distributed optimally for the given
population distribution, their density should increase with
population density but it should do so slower than linearly, as
a power law with exponent 2

3 #29$. In addition to the argu-
ment given here, which roughly follows Ref. #10$, this result
has also been derived previously by a number of other meth-
ods #5–9$, although all are approximate.

Equation !6" places most facilities in the densely popu-
lated areas where most people live while still providing rea-
sonable service to those in sparsely populated areas where a
strictly population-proportional allocation might leave inhab-
itants with little or nothing. Its derivation makes two ap-
proximations: it assumes that the geometric factor g is the
same for all Voronoi cells and that s!r" is a continuous func-
tion. Neither assumption is strictly true, but we expect them
to be approximately valid if " varies little over the typical
size of a Voronoi cell. As a test of these assumptions, we
have optimized numerically the distribution of p=5000 fa-
cilities over the lower 48 states of the United States !Fig. 1"
using population data from the most recent U.S. Census #11$,
which counts the number of residents within more than 8
million blocks across the study region. To create a continu-
ous density function ", we convolved these data with a nor-
malized Gaussian distribution of width 20 km #30$. The fa-
cility locations were then determined by optimizing the full
p-median objective function !1" by simulated annealing #12$.

The relation D$"2/3 can be tested as follows. First, we
determine the Voronoi cell around each facility. Then we

calculate D!r" as the inverse of the area of the corresponding
cell and " as the number of people living in the cell divided
by its area. Figure 2 shows a scatter plot of the resulting data
on doubly logarithmic scales. If the anticipated 2

3-power re-
lation holds, we expect the data to fall along a line of slope
2
3 . And indeed a least-squares fit !solid line in the figure"
yields a slope 0.66 with r2=0.94.

Some statistical concerns might be raised about this
method. First, we used the Voronoi cell area to calculate both
D and ", so the measurements of x and y values in the plot
are not independent, and one might argue that a positive
slope could thus be a result of artificial correlations between
the values rather than a real result #13$. Second, it is known
that estimating the exponent of a power law such as Eq. !6"
from a log-log plot can introduce systematic biases #14,15$.
In the next section, we introduce an entirely different test of
Eq. !6" that, in addition to being of interest in its own right,
suffers from neither of these problems.

III. DENSITY-EQUALIZING PROJECTIONS

If we neglect finite-size effects, it is straightforward to
demonstrate that optimally located facilities in a uniformly

FIG. 1. !Color online" Facility locations determined by simu-
lated annealing and the corresponding Voronoi tessellation for p
=5000 facilities located in the lower 48 United States, based on
population data from the U.S. Census for the year 2000.

FIG. 2. !Color online" Facility density D from Fig. 1 vs popu-
lation density " on a log-log plot. A least-squares linear fit to the
data gives a slope of 0.66 !solid line, r2=0.94".

MICHAEL T. GASTNER AND M. E. J. NEWMAN PHYSICAL REVIEW E 74, 016117 !2006"

016117-2

From Gastner and Newman (2006) [4]

I Optimal facility density D vs. population density ρ.
I Fit is D ∝ ρ0.66 with r2 = 0.94.
I Looking good for a 2/3 power...
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Optimal source allocation

Size-density law:

I

D ∝ ρ2/3

I Why?
I Again: Different story to branching networks where

there was either one source or one sink.
I Now sources sinks are distributed throughout

region...
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Optimal source allocation

I We first examine Stephan’s treatment (1977) [13, 14]

I “Territorial Division: The Least-Time Constraint
Behind the Formation of Subnational Boundaries”
(Science, 1977)

I Zipf-like approach: invokes principle of minimal effort.
I Also known as the Homer principle.
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Optimal source allocation

I Consider a region of area A and population P with a
single functional center that everyone needs to
access every day.

I Build up a general cost function based on time
expended to access and maintain center.

I Write average travel distance to center is d̄ and
assume average speed of travel is v̄ .

I Note that average travel distance will be on the
length scale of the region which is A1/2

I Average time expended per person in accessing
facility is therefore

d̄/v̄ = cA1/2/v̄

where c is an unimportant shape factor.



Supply Networks

Introduction

Optimal branching
Murray meets Tokunaga

Single Source
History

Reframing the question

Minimal volume calculation

Blood networks

River networks

Distributed
Sources
Facility location

Size-density law

Cartograms

References

Frame 58/85

Optimal source allocation

I Next assume facility requires regular maintenance
(person-hours per day)

I Call this quantity τ

I If burden of mainenance is shared then average cost
per person is τ/P.

I Replace P by ρA where ρ is density.
I Total average time cost per person:

T = d̄/v̄ + τ/(ρA) = gA1/2/v̄ + τ/(ρA).

I Now Minimize with respect to A...
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Optimal source allocation

I Differentiating...

∂T
∂A

=
∂

∂A

(
cA1/2/v̄ + τ/(ρA)

)
= c/(2v̄A1/2 − τ/(ρA2) = 0

I Rearrange:

A = (2v̄τ/cρ)2/3 ∝ ρ−2/3

I # facilities per unit area ∝

A−1 ∝ ρ2/3

I Groovy...
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Optimal source allocation

An issue:
I Maintenance (τ ) is assumed to be independent of

population and area (P and A)
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Optimal source allocation

Stephan’s online book
“The Division of Territory in Society” is here (�).

http://www.ac.wwu.edu/~stephan/Book/contents.html
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Cartograms

Standard world map:
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Cartograms

Cartogram of countries ‘rescaled’ by population:
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Cartograms

Diffusion-based cartograms:

I Idea of cartograms is to distort areas to more
accurately represent some local density ρ (e.g.
population).

I Many methods put forward—typically involve some
kind of physical analogy to spreading or repulsion.

I Algorithm due to Gastner and Newman (2004) [3] is
based on standard diffusion:

∇2ρ− ∂ρ

∂t
= 0.

I Allow density to diffuse and trace the movement of
individual elements and boundaries.

I Diffusion is constrained by boundary condition of
surrounding area having density ρ̄.
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Cartograms

Child mortality:
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Cartograms

Energy consumption:



Supply Networks

Introduction

Optimal branching
Murray meets Tokunaga

Single Source
History

Reframing the question

Minimal volume calculation

Blood networks

River networks

Distributed
Sources
Facility location

Size-density law

Cartograms

References

Frame 68/85

Cartograms

Gross domestic product:
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Cartograms

Greenhouse gas emissions:
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Cartograms

Spending on healthcare:
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Cartograms

People living with HIV:
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Cartograms

I The preceding sampling of Gastner & Newman’s
cartograms lives here (�).

I A larger collection can be found at
worldmapper.org (�).

http://www-personal.umich.edu/~mejn/cartograms/
http://www.worldmapper.org/
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Size-density law

populated space lie on the vertices of a regular triangular
lattice !16". It has been conjectured that for a non uniform
population there is a general class of map projections that
will transform the pattern of facilities to a similarly regular
structure !17". The obvious candidate projections are popu-
lation density equalizing maps or cartograms, i.e., maps in
which the sizes of geographic regions are proportional to the
populations of those regions !18–21". Densely populated re-
gions appear larger on a cartogram than on an equal-area
map such as Fig. 1, and the opposite is true for sparsely
populated regions. Since most facilities are located where the
population density is high, a cartogram projection will effec-
tively reduce the facility density in populated areas and in-
crease it where the population density is low. Therefore, one
might expect that a cartogram leads to a more uniform facil-
ity density than that shown in Fig. 1. And indeed some au-
thors have used population density equalizing projections as
the basis for facility location methods !22,23".

In Fig. 3#a$, we show the facilities of Fig. 1 on a popula-
tion density equalizing cartogram created using the
diffusion-based technique of !24". Although the population
density is now equal everywhere, the facility density is ob-
viously far from uniform. A comparison between Figs. 1 and
3#a$ reveals that we have overshot the mark since the facili-
ties are now concentrated in areas where there are few in
actual space.

Equation #6$ makes clear what is wrong with this ap-
proach. Since D grows slower than linearly with !, a projec-
tion that equalizes ! will necessarily overcorrect the density
of facilities. On the other hand, based on our earlier result,
we would expect a projection equalizing !2/3 instead of ! to
spread out the facilities approximately uniformly. Hence, one
way to determine the actual exponent for the density of fa-
cilities is to create cartograms that equalize !x, x"0, and
find the value of x that minimizes the variation of the
Voronoi cell sizes on the cartogram. This approach does not
suffer from the shortcomings of our previous method based
on the doubly logarithmic plot in Fig. 2, since we neither use
the Voronoi cells to calculate the population density nor take
logarithms. One might argue that the Voronoi cells on the
cartogram are not equal to the projections of the Voronoi
cells in actual space, which is true—the cells generally will
not even remain polygons under the cartogram transforma-
tion. The difference, however, is small if the density does not
vary much between neighboring facilities.

In Fig. 4, we show the measured coefficient of variation
#i.e., the ratio of the standard deviation to the mean$ for
Voronoi cell sizes on !x cartograms as a function of the ex-

ponent x #solid curve$. As the figure shows, the minimum is
indeed attained at or close to the predicted value of x= 2

3 .
Figure 3#b$ shows the corresponding cartogram for this ex-
ponent. This projection finds a considerably better compro-
mise between regions of high and low population density
than either Fig. 1 or Fig. 3#a$.

For comparison, we have also made the same measure-
ment for 5000 points distributed randomly in proportion to
population. Since the density of these points is by definition
equal to !, we expect the minimum standard deviation of the
cell areas to occur on a cartogram with x=1. Our numerical
results for this case #dashed curve in Fig. 4$ agree well with
this prediction. Comparing the solid and the dashed curves in
the plot, we see that not only the positions of the minima
differ, but also the minimal values themselves. The lower
standard deviation for the p-median distribution indicates
that optimally located facilities are not randomly distributed
with a density #!2/3. Instead, the optimally located facilities
occupy space in a relatively regular fashion reminiscent of
the triangular lattice of the uniform population case !16,25".
We can confirm this observation by measuring the interior
angles formed by the edges of the Voronoi cells. The Voronoi
cells of a triangular lattice are regular hexagons and hence all
the interior angles are 120°. Figure 5 shows a histogram of
the angles for the cells in the equal-area projection of Fig. 1.
Since the population is nonuniform, the cells are not exactly
regular hexagons, but, as Fig. 5 shows, the angles are none-

FIG. 3. #Color online$ Near-
optimal facility location on #a$ a
cartogram equalizing the popula-
tion density ! and #b$ a cartogram
equalizing !2/3.

FIG. 4. #Color online$ The coefficient of variation #i.e., the ratio
of the standard deviation to the mean$ for Voronoi cell areas as they
appear on a cartogram, against the exponent x of the underlying
density !x for a p-median #solid curve$ and a random population-
proportional distribution #dashed curve$. Inset: An expanded view
of the minimum for the p-median distribution.

OPTIMAL DESIGN OF SPATIAL DISTRIBUTION NETWORKS PHYSICAL REVIEW E 74, 016117 #2006$

016117-3

I Left: population density-equalized cartogram.
I Right: (population density)2/3-equalized cartogram.
I Facility density is uniform for ρ2/3 cartogram.

From Gastner and Newman (2006) [4]
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theless narrowly distributed around 120°—more so than for
the cells of the random distribution.

IV. OPTIMAL NETWORKS OF FACILITIES

In many cases of practical interest, finding the optimal
location of facilities is only half the problem. Often facilities
are interconnected to form networks, such as airports con-
nected by flights or warehouses connected by truck deliver-
ies. In these cases, one would also like to find the best way to
connect the facilities so as to optimize the performance of the
system as a whole.

Consider then a situation in which our facilities form the
nodes or vertices of a network and connections between
them form the edges. The efficiency of this network, as we
will consider it here, depends on two factors. On the one
hand, the smaller the sum of the lengths of all edges, the
cheaper the network is to construct and maintain. On the
other hand, the shorter the distances through the network
between vertices, the faster the network can perform its in-
tended function !e.g., transportation of passengers between
nodes or distribution of mail or cargo". These two objectives
generally oppose each other: a network with few and short
connections will not provide many direct links between dis-
tant points, and paths through the network will tend to be
circuitous, while a network with a large number of direct
links is usually expensive to build and operate. The optimal
solution lies somewhere between these extremes.

Let us define lij to be the shortest geographic distance
between two vertices i and j measured along the edges in the
network. If there is no path between i and j, we formally set
lij =!. Introducing the adjacency matrix A with elements
Aij =1 if there is an edge between i and j and Aij =0 other-
wise, we can write the total length of all edges as

T = #
i"j

Aijlij . !7"

We assume this quantity to be proportional to the cost of
maintaining the network. Clearly this assumption is only ap-
proximately correct; networked systems in the real world
will have many factors affecting their maintenance costs that
are not accounted for here. It is, however, the obvious first
assumption to make and, as we will see, can provide us with
good insight about network structure.

The typical cost of shipping a commodity or traveling
through the network depends on the distances lij as well as
the amount of traffic wij !e.g., weight of cargo, number of
passengers, etc." that flows between vertices i and j $26%. In
a spirit similar to our assumption about maintenance costs,
we assume that the total travel cost is proportional to

Z = #
i"j

wijlij . !8"

We assume that wij is proportional to the product of popula-
tions in the Voronoi cells Vi and Vj around i and j, so that

wij = &
Vi

#!r"d2r&
Vj

#!r!"d2r! !9"

in appropriate units. And the total cost of running the net-
work is proportional to the sum T+$Z with $%0 a constant
that measures the relative importance of the two terms. Then
the optimal network is the one minimizing this sum $27,28%.

Using again the contiguous 48 states of the United States
as an example, we have first determined the optimal place-
ment of p=200 facilities, which we then try to connect to-
gether optimally. The number of edges in the network de-
pends on the parameter $. If $→0, the cost of travel $Z
vanishes and the optimal network is the one that simply
minimizes the total length of edges. That is, it is the mini-
mum spanning tree, with exactly p−1 edges between the p
vertices. Conversely, if $→!, then Z dominates the optimi-
zation, regardless of the cost T of maintaining the network,
so that the optimum is a fully connected network or clique
with all 1

2 p!p−1" possible edges present. For intermediate
values of $, finding the optimal network is a nontrivial com-
binatorial optimization problem. The number of edges in-
creases with $, but it is difficult to determine the exact set of
edges optimizing the cost. Nevertheless, we can derive good,
though usually not perfect, solutions using again the method
of simulated annealing $31%.

There is, however, another complicating factor. In Eq. !8",
we assumed that travel costs are proportional to geometric
distances between vertices, which is a plausible starting
point. In a road network, for example, the quickest and
cheapest route is usually not very different from the shortest
route measured in kilometers. But in other networks, travel
costs can also depend on the number of legs in a journey. In
an airline network, for instance, passengers often spend a lot
of time waiting for connecting flights, so that they care both
about the total distance they travel and the number of stop-
overs they have to make. Similarly, the total time required
for an Internet packet to reach its destination depends on two
factors, the propagation delay proportional to the physical
distance between vertices !computers and routers" and the
store and forward delays introduced by the routers, which
grow with the number of intermediate vertices.

To account for such situations, we generalize our defini-
tion of the length of an edge and assign to each edge an
effective length

FIG. 5. !Color online" The distribution of angles in the Voronoi
diagram for a p-median and a random population-proportional dis-
tribution of facilities.
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I Cartogram’s Voronoi cells are somewhat hexagonal.
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Deriving the optimal source distribution:

I Basic idea: Minimize the average distance from a
random individual to the nearest facility. [3]

I Assume given a fixed population density ρ defined on
a spatial region Ω.

I Formally, we want to find the locations of n sources
{~x1, . . . , ~xn} that minimizes the cost function

F ({~x1, . . . , ~xn}) =

∫
Ω

ρ(~x)min
i
||~x − ~xi ||d~x .

I Also known as the p-median problem.
I Not easy... in fact this one is an NP-hard problem. [3]
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Approximations:

I For a given set of source placements {~x1, . . . , ~xn},
the region Ω is divided up into Voronoi cells (�), one
per source.

I Define A(~x) as the area of the Voronoi cell containing
~x .

I As per Stephan’s calculation, estimate typical
distance from ~x to the nearest source (say i) as

ciA(~x)1/2

where ci is a shape factor for the i th Voronoi cell.
I Approximate ci as a constant c.

http://en.wikipedia.org/wiki/Voronoi_diagram
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Carrying on:

I The cost function is now

F = c
∫

Ω
ρ(~x)A(~x)1/2d~x .

I We also have that the constraint that Voronoi cells
divide up the overall area of Ω:

∑n
i=1 A(~xi) = AΩ.

I Sneakily turn this into an integral constraint:∫
Ω

d~x
A(~x)

= n.

I Within each cell, A(~x) is constant.
I So... integral over each of the n cells equals 1.
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Now a Lagrange multiplier story:

I By varying {~x1, ..., ~xn}, minimize

G(A) = c
∫

Ω
ρ(~x)A(~x)1/2d~x −λ

(
n −

∫
Ω

[
A(~x)

]−1 d~x
)

I Next compute δG/δA, the functional derivative (�) of
the functional G(A).

I This gives∫
Ω

[
−c
2

ρ(~x)A(~x)−1/2 + λ
[
A(~x)

]−2
]

d~x

I Setting the integrand to be zilch, we have:

ρ(~x) = 2λc−1A(~x)−3/2.

http://en.wikipedia.org/wiki/Functional_derivative
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Now a Lagrange multiplier story:

I Rearranging, we have

A(~x) = (2λc−1)2/3ρ−2/3.

I Finally, we indentify 1/A(~x) as D(~x), an
approximation of the local source density.

I Substituting D = 1/A, we have

D(~x) =
( c

2λ
ρ
)2/3

.

I Normalizing (or solving for λ):

D(~x) = n
[ρ(~x)]2/3∫

Ω[ρ(~x)]2/3d~x
∝ [ρ(~x)]2/3.
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Global redistribution networks

One more thing:

I How do we supply these facilities?
I How do we best redistribute mail? People?
I How do we get beer to the pubs?
I Gaster and Newman model: cost is a function of

basic maintenance and travel time:

Cmaint + γCtravel.

I Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance `ij and number of legs to journey:

(1− δ)`ij + δ(#hops).

I When δ = 1, only number of hops matters.
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Global redistribution networks

l̃i j = !1 − !"lij + ! !10"

with 0"!"1. The parameter ! determines the user’s pref-
erence for measuring distance in terms of kilometers or legs.
Now we define the effective distance between two !not nec-
essarily adjacent" vertices to be the sum of the effective
lengths of all edges along a path between them, minimized
over all paths. The travel cost is then proportional to the sum
of all effective path lengths

Z = #
i#j

wijl̃ij , !11"

and the optimal network for given $ and ! is again the one
that minimizes the total cost T+$Z. Since the second term in
Eq. !10" is dimensionless, we normalize the length appearing
in the first term by setting the average “crow flies” distance
between a vertex and its nearest neighbor equal to 1.

What is a realistic value for $? We can make an order of
magnitude estimate as follows. The sum in Eq. !7" has m
nonzero terms, where m is the number of edges in the net-
work. Most real networks are sparse, with m=O!p". Further-
more, edges are of typical length 1 in our length scale, so
that T=O!p", with p$200 in the examples studied here. The
sum in Eq. !11", on the other hand, contains 1

2 p!p−1"
=O!p2" nonzero terms. If P is the total population, the
weights wij have typical value !P / p"2. Thus Z=O!P2"
$1017 for the U.S. with a current population of P$2.8
%108. Assuming that our investments in maintenance and
travel costs are of the same order of magnitude and setting
T%$Z then leads to an estimate for $ of order 10−15or 10−14.

In Fig. 6, we show the results for $=10−14. When !=0,
passengers !or cargo shippers" care only about total kilome-
ters traveled and the optimal network strongly resembles a
network of roads, such as the U.S. interstate network. As !
increases, the number of legs in a journey starts playing a
more important role and the approximate symmetry between
the vertices is broken as the network begins to form hubs.

Around !=0.5, we see networks emerging that constitute a
compromise between the convenience of direct local connec-
tions and the efficiency of hubs, while by !=0.8 the network
is dominated by a few large hubs in Philadelphia, Columbus,
Chicago, Kansas City, and Atlanta that handle the bulk of the
traffic. On the highly populated California coast, two smaller
hubs around San Francisco and Los Angeles are visible. In
the extreme case !=1, where the user cares only about num-
ber of legs and not about distance at all, the network is domi-
nated by a single central hub in Cincinnati, with a few
smaller local hubs in other locations such as Los Angeles.

V. CONCLUSIONS

We have studied the problem of optimal facility location,
also called the p-median problem, which consists of choos-
ing positions for p facilities in geographic space such that the
mean distance between a member of the population and the
nearest facility is minimized. Analytic arguments indicate
that the optimal density of facilities should be proportional to
the population density to the two-thirds power. We have con-
firmed this relation by solving the p-median problem numeri-
cally and projecting the facility locations on density-
equalizing maps. We have also considered the design of
optimal networks to connect our facilities together. Given
optimally located facilities, we have searched numerically
for the network configuration that minimizes the sum of
maintenance and travel costs. A simple two-parameter model
allows us to take different user preferences into account. The
model gives us intuition about a number of situations of
practical interest, such as the design of transportation net-
works, parcel delivery services, and the Internet backbone.
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FIG. 6. !Color online" Optimal
networks for the population distri-
bution of the United States with
p=200 vertices and $=10−14 for
different values of !.

OPTIMAL DESIGN OF SPATIAL DISTRIBUTION NETWORKS PHYSICAL REVIEW E 74, 016117 !2006"

016117-5

From Gastner and Newman (2006) [4]



Supply Networks

Introduction

Optimal branching
Murray meets Tokunaga

Single Source
History

Reframing the question

Minimal volume calculation

Blood networks

River networks

Distributed
Sources
Facility location

Size-density law

Cartograms

References

Frame 82/85

References I

J. R. Banavar, A. Maritan, and A. Rinaldo.
Size and form in efficient transportation networks.
Nature, 399:130–132, 1999. pdf (�)

P. S. Dodds, D. H. Rothman, and J. S. Weitz.
Re-examination of the “3/4-law” of metabolism.
Journal of Theoretical Biology, 209:9–27, 2001.
pdf (�)

M. T. Gastner and M. E. J. Newman.
Diffusion-based method for producing
density-equalizing maps.
Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf (�)

M. T. Gastner and M. E. J. Newman.
Optimal design of spatial distribution networks.
Phys. Rev. E, 74:Article # 016117, 2006. pdf (�)



Supply Networks

Introduction

Optimal branching
Murray meets Tokunaga

Single Source
History

Reframing the question

Minimal volume calculation

Blood networks

River networks

Distributed
Sources
Facility location

Size-density law

Cartograms

References

Frame 83/85

References II

A. A. Heusner.
Size and power in mammals.
Journal of Experimental Biology, 160:25–54, 1991.

L. B. Leopold.
A View of the River.
Harvard University Press, Cambridge, MA, 1994.

D. R. Montgomery and W. E. Dietrich.
Channel initiation and the problem of landscape
scale.
Science, 255:826–30, 1992. pdf (�)

C. D. Murray.
The physiological principle of minimum work. I. The
vascular system and the cost of blood volume.
Proc. Natl. Acad. Sci. U.S.A, 12:207–214, 1926.



Supply Networks

Introduction

Optimal branching
Murray meets Tokunaga

Single Source
History

Reframing the question

Minimal volume calculation

Blood networks

River networks

Distributed
Sources
Facility location

Size-density law

Cartograms

References

Frame 84/85

References III

N. Rashevsky.
General mathematical principles in biology.
In N. Rashevsky, editor, Physicomathematical
Aspects of Biology, Proceedings of the International
School of Physics “Enrico Fermi”; course 16, pages
493–524, New York, 1962. Academic Press.

I. Rodríguez-Iturbe and A. Rinaldo.
Fractal River Basins: Chance and Self-Organization.
Cambridge University Press, Cambrigde, UK, 1997.

A. E. Scheidegger.
Theoretical Geomorphology.
Springer-Verlag, New York, third edition, 1991.

W. R. Stahl.
Scaling of respiratory variables in mammals.
Journal of Applied Physiology, 22:453–460, 1967.



Supply Networks

Introduction

Optimal branching
Murray meets Tokunaga

Single Source
History

Reframing the question

Minimal volume calculation

Blood networks

River networks

Distributed
Sources
Facility location

Size-density law

Cartograms

References

Frame 85/85

References IV

G. E. Stephan.
Territorial division: The least-time constraint behind
the formation of subnational boundaries.
Science, 196:523–524, 1977. pdf (�)

G. E. Stephan.
Territorial subdivision.
Social Forces, 63:145–159, 1984. pdf (�)

D. L. Turcotte, J. D. Pelletier, and W. I. Newman.
Networks with side branching in biology.
Journal of Theoretical Biology, 193:577–592, 1998.

G. B. West, J. H. Brown, and B. J. Enquist.
A general model for the origin of allometric scaling
laws in biology.
Science, 276:122–126, 1997. pdf (�)


	Introduction
	Optimal branching
	Murray meets Tokunaga

	Single Source
	History
	Reframing the question
	Minimal volume calculation
	Blood networks
	River networks

	Distributed Sources
	Facility location
	Size-density law
	Cartograms

	References

