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Some problems for sociologists

How are social networks structured?
I How do we define connections?
I How do we measure connections?
I (remote sensing, self-reporting)

What about the dynamics of social networks?

I How do social networks evolve?
I How do social movements begin?
I How does collective problem solving work?
I How is information transmitted through social

networks?
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Social Search

A small slice of the pie:

I Q. Can people pass messages between distant
individuals using only their existing social
connections?

I A. Apparently yes...

Handles:

I The Small World Phenomenon
I or “Six Degrees of Separation.”
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The problem

Stanley Milgram et al., late 1960’s:

I Target person worked in Boston as a stockbroker.
I 296 senders from Boston and Omaha.
I 20% of senders reached target.
I average chain length ' 6.5.
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The problem

Lengths of successful chains:
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From Travers and
Milgram (1969) in
Sociometry: [4]

“An Experimental
Study of the Small
World Problem.”
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The problem

Two features characterize a social ‘Small World’:

1. Short paths exist
and

2. People are good at finding them.
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Social Search

Milgram’s small world experiment with e-mail [2]
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Social search—the Columbia experiment

I 60,000+ participants in 166 countries

I 18 targets in 13 countries including

I a professor at an Ivy League university,
I an archival inspector in Estonia,
I a technology consultant in India,
I a policeman in Australia,

and
I a veterinarian in the Norwegian army.

I 24,000+ chains
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Social search—the Columbia experiment

I Milgram’s participation rate was roughly 75%

I Email version: Approximately 37% participation rate.
I Probability of a chain of length 10 getting through:

.3710 ' 5× 10−5

I ⇒ 384 completed chains (1.6% of all chains).
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Social search—the Columbia experiment

I Motivation/Incentives/Perception matter.

I If target seems reachable
⇒ participation more likely.

I Small changes in attrition rates
⇒ large changes in completion rates

I e.g., ↘ 15% in attrition rate
⇒↗ 800% in completion rate
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Social search—the Columbia experiment

Successful chains disproportionately used

I weak ties (Granovetter)
I professional ties (34% vs. 13%)
I ties originating at work/college
I target’s work (65% vs. 40%)

. . . and disproportionately avoided

I hubs (8% vs. 1%) (+ no evidence of funnels)
I family/friendship ties (60% vs. 83%)

Geography → Work
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Social search—the Columbia experiment

Senders of successful messages showed
little absolute dependency on

I age, gender

I country of residence
I income
I religion
I relationship to recipient

Range of completion rates for subpopulations:
30% to 40%
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Social search—the Columbia experiment

Nevertheless, some weak discrepencies do exist...

An above average connector:
Norwegian, secular male, aged 30-39, earning over
$100K, with graduate level education working in mass
media or science, who uses relatively weak ties to people
they met in college or at work.

A below average connector:
Italian, Islamic or Christian female earning less than $2K,
with elementary school education and retired, who uses
strong ties to family members.
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Social search—the Columbia experiment

Mildly bad for continuing chain:
choosing recipients because “they have lots of friends” or
because they will “likely continue the chain.”

Why:

I Specificity important
I Successful links used relevant information.

(e.g. connecting to someone who shares same
profession as target.)
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Social search—the Columbia experiment

Basic results:
I 〈L〉 = 4.05 for all completed chains

I L∗ = Estimated ‘true’ median chain length (zero
attrition)

I Intra-country chains: L∗ = 5
I Inter-country chains: L∗ = 7
I All chains: L∗ = 7
I Milgram: L∗ ' 9
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Previous work—short paths

I Connected random networks have short average
path lengths:

〈dAB〉 ∼ log(N)

N = population size,
dAB = distance between nodes A and B.

I But: social networks aren’t random...
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Previous work—short paths

Need “clustering” (your
friends are likely to
know each other):
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Non-randomness gives clustering

A

B

dAB = 10 → too many long paths.
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Randomness + regularity

B

A

Now have dAB = 3 〈d〉 decreases overall
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Small-world networks

Introduced by
Watts and Strogatz (Nature, 1998) [5]

“Collective dynamics of ‘small-world’ networks.”

Small-world networks were found everywhere:

I neural network of C. elegans,
I semantic networks of languages,
I actor collaboration graph,
I food webs,
I social networks of comic book characters,...

Very weak requirements:

I local regularity

+ random short cuts
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv " 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
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available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized
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We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
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sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.
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Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.
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exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic
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4. Connect i to j with probability

pij ∝ dij
−α.

I α = 0: random connections.
I α large: reinforce local connections.
I α = d : same number of connections at all scales.
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Theoretical optimal search:

I “Greedy” algorithm.

I Same number of connections at all scales: α = d .

Search time grows slowly with system size (like log2 N).

But: social networks aren’t lattices plus links.
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I If networks have hubs can also search well: Adamic
et al. (2001) [1]

P(ki) ∝ k−γ
i

where k = degree of node i (number of friends).

I Basic idea: get to hubs first
(airline networks).

I But: hubs in social networks are limited.
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If there are no hubs and no underlying lattice, how can
search be efficient?

b

a

Which friend of a is closest
to the target b?

What does ‘closest’ mean?

What is ‘social distance’?
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One approach: incorporate identity.

Identity is formed from attributes such as:
I Geographic location
I Type of employment
I Religious beliefs
I Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.
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I Geographic location
I Type of employment
I Religious beliefs
I Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.
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Social distance—Bipartite affiliation networks
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Social distance—Context distance
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The model

Distance between two individuals xij is the height of
lowest common ancestor.

b=2

g=6

i j

l=4

kv

xij = 3, xik = 1, xiv = 4.
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The model

I Individuals are more likely to know each other the
closer they are within a hierarchy.

I Construct z connections for each node using

pij = c exp{−αxij}.

I α = 0: random connections.
I α large: local connections.
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I Construct z connections for each node using

pij = c exp{−αxij}.

I α = 0: random connections.
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Social distance—Generalized context space

100

eca b d
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(Blau & Schwartz, Simmel, Breiger)
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The model

h=2

i j

h=3

i, j

i

h=1

j

~vi = [1 1 1]T , ~vj = [8 4 1]T Social distance:

x1
ij = 4, x2

ij = 3, x3
ij = 1. yij = min

h
xh

ij .
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The model

Triangle inequality doesn’t hold:

k

h=2

i, ji j,k

h=1

yik = 4 > yij + yjk = 1 + 1 = 2.
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The model

I Individuals know the identity vectors of

1. themselves,
2. their friends,

and
3. the target.

I Individuals can estimate the social distance between
their friends and the target.

I Use a greedy algorithm + allow searches to fail
randomly.
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I Individuals know the identity vectors of
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and
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I Individuals can estimate the social distance between

their friends and the target.
I Use a greedy algorithm + allow searches to fail
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I Individuals know the identity vectors of
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and
3. the target.

I Individuals can estimate the social distance between
their friends and the target.

I Use a greedy algorithm + allow searches to fail
randomly.
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The model-results—searchable networks

α = 0 versus α = 2 for N ' 105:

1 3 5 7 9 11 13 15
−2.5

−2

−1.5

−1

−0.5

H

lo
g 10

q

q ≥ r
q < r
r = 0.05

q = probability an arbitrary message chain reaches a
target.

I A few dimensions help.
I Searchability decreases as population increases.
I Precise form of hierarchy largely doesn’t matter.



The Small-World
Phenomenon

History

An online
experiment

Previous
theoretical work

An improved
model

References

Frame 41/47

The model-results

Milgram’s Nebraska-Boston data:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

L

n(
L

)

Model parameters:

I N = 108,
I z = 300, g = 100,
I b = 10,
I α = 1, H = 2;

I 〈Lmodel〉 ' 6.7
I Ldata ' 6.5
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Social search—Data

Adamic and Adar (2003)

I For HP Labs, found probability of connection as
function of organization distance well fit by
exponential distribution.

I Probability of connection as function of real distance
∝ 1/r .
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exponential distribution.

I Probability of connection as function of real distance
∝ 1/r .
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Social Search—Real world uses

I Tags create identities for objects
I Website tagging: http://www.del.icio.us
I (e.g., Wikipedia)
I Photo tagging: http://www.flickr.com
I Dynamic creation of metadata plus links between

information objects.
I Folksonomy: collaborative creation of metadata

http://www.del.icio.us
http://www.flickr.com
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Social Search—Real world uses

Recommender systems:

I Amazon uses people’s actions to build effective
connections between books.

I Conflict between ‘expert judgments’ and
tagging of the hoi polloi.
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Social Search—Real world uses

Recommender systems:

I Amazon uses people’s actions to build effective
connections between books.

I Conflict between ‘expert judgments’ and
tagging of the hoi polloi.
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Conclusions

I Bare networks are typically unsearchable.

I Paths are findable if nodes understand how network
is formed.

I Importance of identity (interaction contexts).
I Improved social network models.
I Construction of peer-to-peer networks.
I Construction of searchable information databases.
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