

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Some problems for sociologists

How are social networks structured?

- How do we define connections?
- How do we measure connections?
- (remote sensing, self-reporting)

What about the dynamics of social networks?

- How do social networks evolve?
- How do social movements begin?
- How does collective problem solving work?
- How is information transmitted through social networks?

The Small-World Phenomenon History An online

Previous theoretical work An improved model

Frame 3/47

Outline

History

An online experiment

Previous theoretical work

An improved model

References

Social Search

A small slice of the pie:

- Q. Can people pass messages between distant individuals using only their existing social connections?
- A. Apparently yes...

Handles:

- The Small World Phenomenon
- or "Six Degrees of Separation."

The Small-World Phenomenon

An online

Previous theoretical work

model References

The Small-World Phenomenon

History An online

experiment

Previous theoretical work

> n improved odel

eferences

The problem

Stanley Milgram et al., late 1960's:

- ► Target person worked in Boston as a stockbroker.
- > 296 senders from Boston and Omaha.
- > 20% of senders reached target.
- average chain length \simeq 6.5.

The problem

Two features characterize a social 'Small World':

1. Short paths exist

and

2. People are good at finding them.

The problem

The Small-World

Phenomenon

heoretical work

References

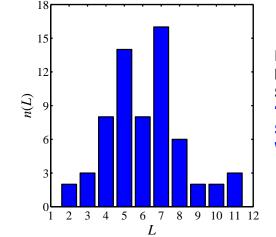
Frame 5/47

न १२०९ कि

The Small-World

Phenomenon

theoretical work


Frame 7/47

日 りへで

History

History

Lengths of successful chains:

History

The Small-World

Phenomenon

An online experiment

theoretical work

From Travers and Milgram (1969) in Sociometry:^[4] "An Experimental Study of the Small World Problem."

Social Search

Milgram's small world experiment with e-mail^[2]

The Small-World Phenomenon

An online experiment

Previous theoretical work

An improved model

eferences

Frame 8/47

Social search—the Columbia experiment

- 60,000+ participants in 166 countries
- 18 targets in 13 countries including
 - a professor at an Ivy League university,
 - an archival inspector in Estonia,
 - a technology consultant in India,
 - a policeman in Australia, and
 - a veterinarian in the Norwegian army.
- 24,000+ chains

Social search—the Columbia experiment

- Motivation/Incentives/Perception matter.
- ► If target seems reachable ⇒ participation more likely.
- Small changes in attrition rates
 ⇒ large changes in completion rates
- e.g., \ 15% in attrition rate

 → 800% in completion rate

The Small-World

Phenomenon

The Small-World

Phenomenon

An online

Previous

nodel

experiment

theoretical work

Social search—the Columbia experiment

The Small-World Phenomenon

An online experiment

theoretical work

References

Milgram's participation rate was roughly 75%

- Email version: Approximately 37% participation rate.
- Probability of a chain of length 10 getting through:

 $.37^{10}\simeq 5\times 10^{-5}$

▶ \Rightarrow 384 completed chains (1.6% of all chains).

Frame 10/47 日 のへへ

> The Small-World Phenomenon

An online experiment

Previous

theoretical work

model

References

weak ties (Granovetter)

Successful chains disproportionately used

Social search—the Columbia experiment

- professional ties (34% vs. 13%)
- ties originating at work/college
- target's work (65% vs. 40%)

... and disproportionately avoided

- hubs (8% vs. 1%) (+ no evidence of funnels)
- family/friendship ties (60% vs. 83%)

$Geography \to Work$

 Frame 12/47

ଣ ୬.୯୯

Social search—the Columbia experiment

Senders of successful messages showed little absolute dependency on

- age, gender
- country of residence
- income
- religion
- relationship to recipient

Range of completion rates for subpopulations:

30% to 40%

Social search—the Columbia experiment

Mildly bad for continuing chain:

choosing recipients because "they have lots of friends" or because they will "likely continue the chain."

Why:

- Specificity important
- Successful links used relevant information.
 (e.g. connecting to someone who shares same profession as target.)

Frame 13/47

B 990

The Small-World

Phenomenon

An online

Previous

nodel

Frame 15/47

theoretical work

experiment

Social search—the Columbia experiment

Nevertheless, some weak discrepencies do exist...

An above average connector:

Norwegian, secular male, aged 30-39, earning over \$100K, with graduate level education working in mass media or science, who uses relatively weak ties to people they met in college or at work.

A below average connector:

Italian, Islamic or Christian female earning less than \$2K, with elementary school education and retired, who uses strong ties to family members.

Frame 14/47 日 のへへ

Social search—the Columbia experiment

Basic results:

- $\langle L \rangle = 4.05$ for all completed chains
- L_{*} = Estimated 'true' median chain length (zero attrition)
- Intra-country chains: $L_* = 5$
- Inter-country chains: $L_* = 7$
- All chains: $L_* = 7$
- Milgram: $L_* \simeq 9$

The Small-World Phenomenon

An online experiment

Previous theoretical work

An improved nodel

References

The Small-World Phenomenon

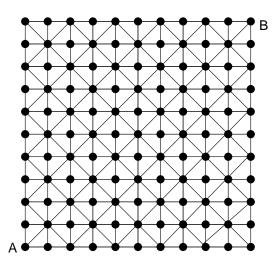
An online experiment

Previous theoretical work An improved

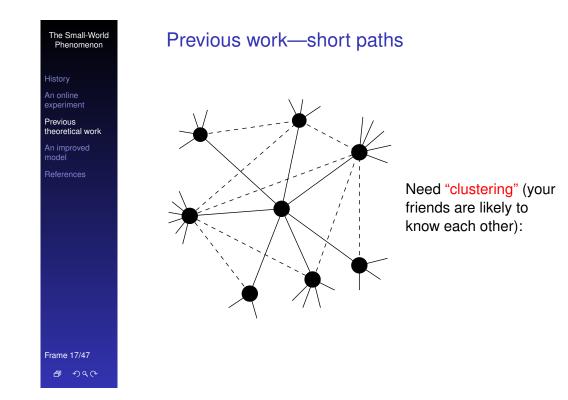
References

Previous work—short paths

Connected random networks have short average path lengths:


$$\langle d_{AB}
angle \sim \log(N)$$

N = population size,


 d_{AB} = distance between nodes *A* and *B*.

But: social networks aren't random...

 $d_{AB} = 10 \rightarrow$ too many long paths.

Randomness + regularity

Now have $d_{AB} = 3$

The Small-World

Phenomenon

Previous

theoretical work

Frame 19/47

ন ৩৫৫

 $\langle d \rangle$ decreases overall

B

Frame 20/47

Phenomenon

The Small-World

Frame 18/47

न १२०९ कि

The Small-World

Phenomenon

Previous

theoretical work

An improved model

An online experiment

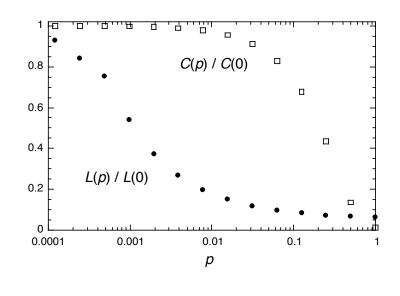
Previous theoretical work

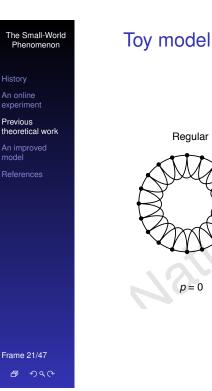
An improved model

References

Small-world networks

Introduced by Watts and Strogatz (Nature, 1998)^[5] "Collective dynamics of 'small-world' networks."


Small-world networks were found everywhere:


- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

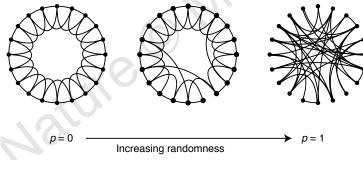
Very weak requirements:

local regularity + random short cuts

The Small-World

Phenomenon

Previous


model

theoretical work

An improved

Frame 23/47

P

Small-world

Previous work-finding short paths

But are these short cuts findable?

No.

Nodes cannot find each other quickly with any local search method.

The Small-World Phenomenon

Frame 22/47

日 りへで

The Small-World

Phenomenon

Previous

Random

theoretical work

An online

experiment

Previous theoretical work

model

eferences

Frame 24/47

Previous work-finding short paths

- What can a local search method reasonably use?
- How to find things without a map?
- Need some measure of distance between friends and the target.

Some possible knowledge:

- Target's identity
- Friends' popularity
- Friends' identities
- Where message has been

Previous work-finding short paths

Kleinberg's Network:

- 1. Start with regular d-dimensional cubic lattice.
- 2. Add local links so nodes know all nodes within a distance *q*.
- 3. Add *m* short cuts per node.
- 4. Connect *i* to *j* with probability
 - $p_{ij} \propto d_{ij}^{-lpha}.$
- $\alpha = 0$: random connections.
- α large: reinforce local connections.
- $\alpha = d$: same number of connections at all scales.

Frame 25/47

B 990

The Small-World

Phenomenon

Previous

nodel

theoretical work

Frame 27/47

ð

Previous work-finding short paths

Jon Kleinberg (Nature, 2000)^[3] "Navigation in a small world."

Allowed to vary:

- 1. local search algorithm and
- 2. network structure.

Previous work-finding short paths

Theoretical optimal search:

- "Greedy" algorithm.
- Same number of connections at all scales: $\alpha = d$.

Search time grows slowly with system size (like $\log^2 N$).

But: social networks aren't lattices plus links.

The Small-World Phenomenon

An online

Previous theoretical work

References

Frame 26/47 日 のへへ

The Small-World Phenomenon

An online

Previous theoretical work

model

Frame 28/47

Previous work—finding short paths

▶ If networks have hubs can also search well: Adamic et al. (2001)^[1]

 $P(k_i) \propto k_i^{-\gamma}$

where k = degree of node i (number of friends).

- Basic idea: get to hubs first (airline networks).
- But: hubs in social networks are limited.

The problem

The Small-World

Phenomenon

experiment Previous

theoretical work

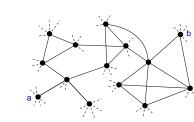
References

Frame 29/47

Previous

An improved

Frame 31/47


0 v C

model

heoretical work

B 990

If there are no hubs and no underlying lattice, how can search be efficient?

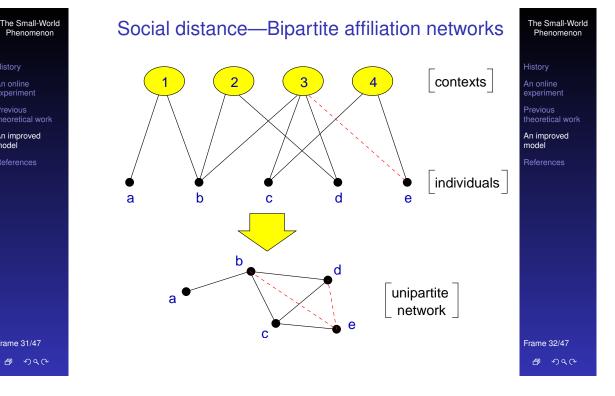
Which friend of a is closest to the target b?

What does 'closest' mean?

What is 'social distance'?

Frame 30/47 **日** りへや

The Small-World


Phenomenon

heoretical work

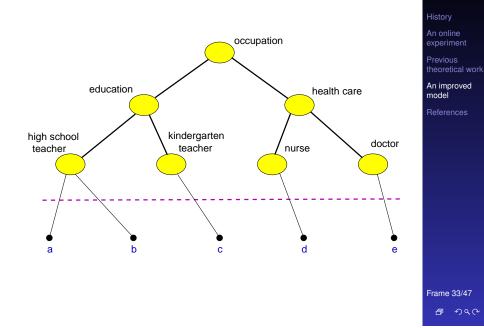
An improved

References

model

The model

One approach: incorporate identity.


Identity is formed from attributes such as:

- Geographic location
- Type of employment
- Religious beliefs
- Recreational activities.

Groups are formed by people with at least one similar attribute.

Attributes \Leftrightarrow Contexts \Leftrightarrow Interactions \Leftrightarrow Networks.

Social distance—Context distance

The model

- Individuals are more likely to know each other the closer they are within a hierarchy.
- Construct z connections for each node using

$$p_{ij} = c \exp\{-\alpha x_{ij}\}$$

- $\alpha = 0$: random connections.
- α large: local connections.

The model

The Small-World

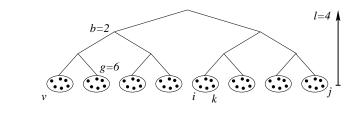
Phenomenon

The Small-World

Phenomenon

Previous

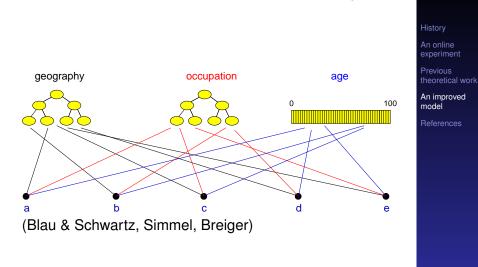
model


theoretical work

An improved

Frame 35/47

日 りへで


Distance between two individuals x_{ij} is the height of lowest common ancestor.

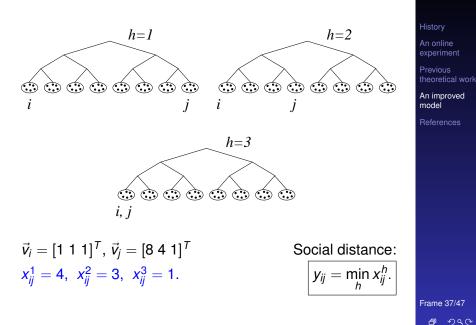
 $x_{ij} = 3, x_{ik} = 1, x_{iv} = 4.$

The Small-World

Phenomenon

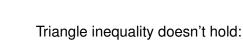
Social distance—Generalized context space

The Small-World Phenomenon


An online

theoretical work

An improved model References


Frame 36/47

The model

The model

- Individuals know the identity vectors of
 - 1. themselves,
 - 2. their friends,
 - and
 - 3. the target.
- Individuals can estimate the social distance between their friends and the target.
- Use a greedy algorithm + allow searches to fail randomly.

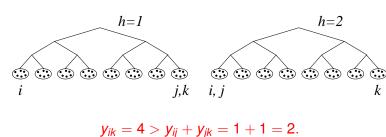
The model

The Small-World

Phenomenon

The Small-World

Phenomenon


heoretical work

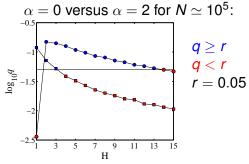
An improved

Frame 39/47

日 りへで

model

The Small-World Phenomenon


n online

Previous theoretical work

The model-results—searchable networks

q = probability an arbitrary message chain reaches a target.

- A few dimensions help.
- Searchability decreases as population increases.
- Precise form of hierarchy largely doesn't matter.

An online experiment

Previous theoretical work


An improved model

leferences

Frame 40/47

The model-results

Milgram's Nebraska-Boston data:

Social Search—Real world uses

- Tags create identities for objects
- Website tagging: http://www.del.icio.us
- (e.g., Wikipedia)
- Photo tagging: http://www.flickr.com
- Dynamic creation of metadata plus links between information objects.
- Folksonomy: collaborative creation of metadata

Social search—Data

The Small-World

Phenomenon

experiment

theoretical work

An improved

Frame 41/47

日 りへで

The Small-World

Phenomenon

History

Previous

model

heoretical work

An improved

Frame 43/47

model

Adamic and Adar (2003)

- For HP Labs, found probability of connection as function of organization distance well fit by exponential distribution.

The Small-World Phenomenon

Frame 42/47

日 りへや

An online

Previous theoretical work

An improved model

eferences

Recommender systems:

Social Search—Real world uses

- Amazon uses people's actions to build effective connections between books.
- Conflict between 'expert judgments' and tagging of the hoi polloi.

The Small-World Phenomenon

An online

theoretical work

model

References

Frame 44/47

Conclusions

- ► Bare networks are typically unsearchable.
- Paths are findable if nodes understand how network is formed.
- Importance of identity (interaction contexts).
- Improved social network models.
- Construction of peer-to-peer networks.
- Construction of searchable information databases.

References II

D. J. Watts and S. J. Strogatz. Collective dynamics of 'small-world' networks. *Nature*, 393:440–442, 1998. pdf (⊞)

References I

	L. Adamic, R. Lukose, A. Puniyani, and B. Huberman.	History
		An online experiment
	Search in power-law networks.	Previous theoretical w
_	<i>Phys. Rev. E</i> , 64:046135, 2001. <u>pdf</u> (⊞)	An improved model
r r	P. S. Dodds, R. Muhamad, and D. J. Watts. An experimental study of search in global social networks. <i>Science</i> , 301:827–829, 2003. pdf (⊞)	References
1	J. Kleinberg. Navigation in a small world. <i>Nature</i> , 406:845, 2000. pdf (⊞)	
/	J. Travers and S. Milgram. An experimental study of the small world problem. <i>Sociometry</i> , 32:425–443, 1969. <u>pdf</u> (⊞)	Frame 46/47 ඕ එඉ

The Small-World

Phenomenon

tical work

46/47

न १२०९ कि

The Small-World

Phenomenon

Previous

model

An improved

Frame 45/47

न १२०९ कि