Scheidegger Networks－A Bonus Calculation

Complex Networks，Course 295A，Spring， 2008

Prof．Peter Dodds

Department of Mathematics \＆Statistics
University of Vermont

Outline

First return random walk

Outline

First return random walk

References

Random walks

－We＇ve seen that Scheidegger networks have random walk boundaries ${ }^{[1,2]}$

Random walks

- We've seen that Scheidegger networks have random walk boundaries ${ }^{[1,2]}$
- Determining expected shape of a 'basin' becomes a problem of finding the probability that a 1-d random walk returns to the origin after t time steps

Random walks

－We＇ve seen that Scheidegger networks have random walk boundaries ${ }^{[1,2]}$
－Determining expected shape of a＇basin＇becomes a problem of finding the probability that a 1－d random walk returns to the origin after t time steps
－We solved this with a counting argument for the discrete random walk the preceding Complex Systems course

Random walks

－We＇ve seen that Scheidegger networks have random walk boundaries ${ }^{[1,2]}$
－Determining expected shape of a＇basin＇becomes a problem of finding the probability that a 1－d random walk returns to the origin after t time steps
－We solved this with a counting argument for the discrete random walk the preceding Complex Systems course
－For fun and the constitution，let＇s work on the continuous time Wiener process version

Random walks

－We＇ve seen that Scheidegger networks have random walk boundaries ${ }^{[1,2]}$
－Determining expected shape of a＇basin＇becomes a problem of finding the probability that a 1－d random walk returns to the origin after t time steps
－We solved this with a counting argument for the discrete random walk the preceding Complex Systems course
－For fun and the constitution，let＇s work on the continuous time Wiener process version
－A classic，delightful problem

Random walks

The Wiener process（ \boxplus ）

Frame 4／11
官 \quad のく

Random walking on a sphere．．．

The Wiener process (\boxplus)

Random walks

－Wiener process＝Brownian motion

Random walks

- Wiener process = Brownian motion

$$
x\left(t_{2}\right)-x\left(t_{1}\right) \sim \mathcal{N}\left(0, t_{2}-t_{1}\right)
$$

where

$$
\mathcal{N}(x, t)=\frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t}
$$

Random walks

－Wiener process＝Brownian motion

$$
x\left(t_{2}\right)-x\left(t_{1}\right) \sim \mathcal{N}\left(0, t_{2}-t_{1}\right)
$$

where

$$
\mathcal{N}(x, t)=\frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t}
$$

－Continuous but nowhere differentiable

First return

－Objective：find $g(t)$ ，the probability that Wiener process first returns to the origin at time t ．

First return

- Objective: find $g(t)$, the probability that Wiener process first returns to the origin at time t.
- Use what we know: the probability density for a return (not necessarily the first) at time t is

$$
f(t)=\frac{1}{\sqrt{2 \pi t}} e^{-0 / 2 t}=\frac{1}{\sqrt{2 \pi t}}
$$

First return

- Objective: find $g(t)$, the probability that Wiener process first returns to the origin at time t.
- Use what we know: the probability density for a return (not necessarily the first) at time t is

$$
f(t)=\frac{1}{\sqrt{2 \pi t}} e^{-0 / 2 t}=\frac{1}{\sqrt{2 \pi t}}
$$

- Observe that f and g are connected like this:

$$
f(t)=\int_{\tau=0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau+\underbrace{\delta(t)}_{\text {nirac dolta tunt }}
$$

First return

－Objective：find $g(t)$ ，the probability that Wiener process first returns to the origin at time t ．
－Use what we know：the probability density for a return（not necessarily the first）at time t is

$$
f(t)=\frac{1}{\sqrt{2 \pi t}} e^{-0 / 2 t}=\frac{1}{\sqrt{2 \pi t}}
$$

－Observe that f and g are connected like this：

$$
f(t)=\int_{\tau=0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau+\underbrace{\delta(t)}
$$

－In words：Probability of returning at time t equals the integral of the probability of returning at time τ and then not returning until exactly $t-\tau$ time units later．

Frame 7／11
回 つQく

First return

－Next see that right hand side of $f(t)=\int_{\tau=0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau+\delta(t)$ is a juicy convolution．

First return

－Next see that right hand side of $f(t)=\int_{\tau=0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau+\delta(t)$ is a juicy convolution．
－So we take the Laplace transform：

$$
\mathcal{L}[f(t)]=F(s)=\int_{t=0^{-}}^{\infty} f(t) e^{-s t} \mathrm{~d} t
$$

First return

－Next see that right hand side of $f(t)=\int_{\tau=0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau+\delta(t)$ is a juicy convolution．
－So we take the Laplace transform：

$$
\mathcal{L}[f(t)]=F(s)=\int_{t=0^{-}}^{\infty} f(t) e^{-s t} \mathrm{~d} t
$$

－and obtain

$$
F(s)=F(s) G(s)+1
$$

First return

－Next see that right hand side of $f(t)=\int_{\tau=0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau+\delta(t)$ is a juicy convolution．
－So we take the Laplace transform：

$$
\mathcal{L}[f(t)]=F(s)=\int_{t=0^{-}}^{\infty} f(t) e^{-s t} \mathrm{~d} t
$$

－and obtain

$$
F(s)=F(s) G(s)+1
$$

－Rearrange：

$$
G(s)=1-1 / F(s)
$$

First return

－We are here：$G(s)=1-1 / F(s)$

First return

－We are here：$G(s)=1-1 / F(s)$
－Now we want to invert $G(s)$ to find $g(t)$

First return

－We are here：$G(s)=1-1 / F(s)$
－Now we want to invert $G(s)$ to find $g(t)$
－Use calculation that $F(s)=(2 s)^{-1 / 2}$

First return

－We are here：$G(s)=1-1 / F(s)$
－Now we want to invert $G(s)$ to find $g(t)$
－Use calculation that $F(s)=(2 s)^{-1 / 2}$

$$
G(s)=1-(2 s)^{1 / 2}
$$

First return

－We are here：$G(s)=1-1 / F(s)$
－Now we want to invert $G(s)$ to find $g(t)$
－Use calculation that $F(s)=(2 s)^{-1 / 2}$

$$
G(s)=1-(2 s)^{1 / 2} \simeq e^{-(2 s)^{1 / 2}}
$$

First return

Groovy aspects of $g(t) \sim t^{-3 / 2}$ ：

First return

Groovy aspects of $g(t) \sim t^{-3 / 2}$:

- Variance is infinite (weird but okay...)

First return

Groovy aspects of $g(t) \sim t^{-3 / 2}$ ：
－Variance is infinite（weird but okay．．．）
－Mean is also infinite（just plain crazy．．．）

First return

Groovy aspects of $g(t) \sim t^{-3 / 2}$ ：
－Variance is infinite（weird but okay．．．）
－Mean is also infinite（just plain crazy．．．）
－Distribution is normalizable so process always returns to 0 ．

First return

Groovy aspects of $g(t) \sim t^{-3 / 2}$ ：
－Variance is infinite（weird but okay．．．）
－Mean is also infinite（just plain crazy．．．）
－Distribution is normalizable so process always returns to 0 ．
－For river networks：$P(\ell) \sim \ell^{-\gamma}$ so $\gamma=3 / 2$ for Scheidegger networks．

References I

圊 A．E．Scheidegger．
A stochastic model for drainage patterns into an intramontane trench．
Bull．Int．Assoc．Sci．Hydrol．，12（1）：15－20， 1967.
（ A．E．Scheidegger．
Theoretical Geomorphology．
Springer－Verlag，New York，third edition， 1991.

