
Scheidegger
Networks

First return
random walk

References

Frame 1/11

Scheidegger Networks—A Bonus
Calculation

Complex Networks, Course 295A, Spring, 2008

Prof. Peter Dodds

Department of Mathematics & Statistics
University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Scheidegger
Networks

First return
random walk

References

Frame 2/11

Outline

First return random walk

References

Scheidegger
Networks

First return
random walk

References

Frame 3/11

Random walks

I We’ve seen that Scheidegger networks have random
walk boundaries [1, 2]

I Determining expected shape of a ‘basin’ becomes a
problem of finding the probability that a 1-d random
walk returns to the origin after t time steps

I We solved this with a counting argument for the
discrete random walk the preceding Complex
Systems course

I For fun and the constitution, let’s work on the
continuous time Wiener process version

I A classic, delightful problem
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Random walks

The Wiener process (�)

http://en.wikipedia.org/wiki/Wiener_process
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Random walking on a sphere...

The Wiener process (�)
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Random walks

I Wiener process = Brownian motion
I

x(t2)− x(t1) ∼ N (0, t2 − t1)

where
N (x , t) =

1√
2πt

e−x2/2t

I Continuous but nowhere differentiable
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I Objective: find g(t), the probability that Wiener
process first returns to the origin at time t .

I Use what we know: the probability density for a
return (not necessarily the first) at time t is

f (t) =
1√
2πt

e−0/2t =
1√
2πt

I Observe that f and g are connected like this:

f (t) =

∫ t

τ=0
f (τ)g(t − τ)dτ + δ(t)︸︷︷︸

Dirac delta function

I In words: Probability of returning at time t equals the
integral of the probability of returning at time τ and
then not returning until exactly t − τ time units later.
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I Next see that right hand side of
f (t) =

∫ t
τ=0 f (τ)g(t − τ)dτ + δ(t) is a juicy

convolution.
I So we take the Laplace transform:

L[f (t)] = F (s) =

∫ ∞

t=0−
f (t)e−stdt

I and obtain
F (s) = F (s)G(s) + 1

I Rearrange:
G(s) = 1− 1/F (s)

http://en.wikipedia.org/wiki/Wiener_process
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I We are here: G(s) = 1− 1/F (s)

I Now we want to invert G(s) to find g(t)
I Use calculation that F (s) = (2s)−1/2

I

G(s) = 1− (2s)1/2 ' e−(2s)1/2
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Groovy aspects of g(t) ∼ t−3/2:

I Variance is infinite (weird but okay...)
I Mean is also infinite (just plain crazy...)
I Distribution is normalizable so process always

returns to 0.
I For river networks: P(`) ∼ `−γ so γ = 3/2 for

Scheidegger networks.
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