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Scale-free networks

I Networks with power-law degree distributions have
become known as scale-free networks.

I Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Pk ∼ k−γ for ‘large’ k

I One of the seminal works in complex networks:
Laszlo Barabási and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” [2]

I Somewhat misleading nomenclature...
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Scale-free networks

I Scale-free networks are not fractal in any sense.
I Usually talking about networks whose links are

abstract, relational, informational, . . . (non-physical)
I Primary example: hyperlink network of the Web
I Much arguing about whether or networks are

‘scale-free’ or not. . .
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Random networks: largest components

γ = 2.5
〈k〉 = 1.8

γ = 2.5
〈k〉 = 1.6

γ = 2.5
〈k〉 = 2.05333

γ = 2.5
〈k〉 = 1.50667

γ = 2.5
〈k〉 = 1.66667

γ = 2.5
〈k〉 = 1.62667

γ = 2.5
〈k〉 = 1.92

γ = 2.5
〈k〉 = 1.8
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Scale-free networks

The big deal:

I We move beyond describing of networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

I How does the exponent γ depend on the
mechanism?

I Do the mechanism details matter?

Scale-Free
Networks

Original model
Introduction

Model details

Analysis

A more plausible
mechanism

Robustness

Redner &
Krapivisky’s model
Generalized model

Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

References

Frame 8/57

Heritage

Work that presaged scale-free networks

I 1924: G. Udny Yule [9]:
# Species per Genus

I 1926: Lotka [4]:
# Scientific papers per author

I 1953: Mandelbrot [5]):
Zipf’s law for word frequency through optimization

I 1955: Herbert Simon [8, 10]:
Zipf’s law, city size, income, publications, and
species per genus

I 1965/1976: Derek de Solla Price [6, 7]:
Network of Scientific Citations
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BA model

I Barabási-Albert model = BA model.
I Key ingredients:

Growth and Preferential Attachment (PA).
I Step 1: start with m0 disconnected nodes.
I Step 2:

1. Growth—a new node appears at each time step
t = 0, 1, 2, . . ..

2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of connecting to
i th node is ∝ ki .

I In essence, we have a rich-gets-richer scheme.
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BA model

I Definition: Ak is the attachment kernel for a node
with degree k .

I For the original model:

Ak = k

I Definition: Pattach(k , t) is the attachment probability.
I For the original model:

Pattach(node i , t) =
ki(t)∑N(t)

j=1 kj(t)
=

ki(t)∑kmax(t)
k=m kNk (t)

where N(t) = m0 + t is # nodes at time t
and Nk (t) is # degree k nodes at time t .
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Approximate analysis

I When (N + 1)th node is added, the expected
increase in the degree of node i is

E(ki,N+1 − ki,N) ' m
ki,N∑N(t)

j=1 kj(t)
.

I Assumes probability of being connected to is small.
I Dispense with Expectation by assuming (hoping) that

over longer time frames, degree growth will be
smooth and stable.

I Approximate ki,N+1 − ki,N with d
dt ki,t :

d
dt

ki,t = m
ki(t)∑N(t)

j=1 kj(t)

where t = N(t)−m0.
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Approximate analysis

I Deal with denominator: each added node brings m
new edges.

∴
N(t)∑
j=1

kj(t) = 2tm

I The node degree equation now simplifies:

d
dt

ki,t = m
ki(t)∑N(t)

j=1 kj(t)
= m

ki(t)
2mt

=
1
2t

ki(t)

I Rearrange and solve:

dki(t)
ki(t)

=
dt
2t
⇒ ki(t) = ci t1/2.

I Next find ci . . .

Scale-Free
Networks

Original model
Introduction

Model details

Analysis

A more plausible
mechanism

Robustness

Redner &
Krapivisky’s model
Generalized model

Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

References

Frame 15/57

Approximate analysis

I Know i th node appears at time

ti,start =

{
i −m0 for i > m0
0 for i ≤ m0

I So for i > m0 (exclude initial nodes), we must have

ki(t) = m
(

t
ti,start

)1/2

for t ≥ ti,start.

I All node degrees grow as t1/2 but later nodes have
larger ti,start which flattens out growth curve.

I Early nodes do best (First-mover advantage).
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Approximate analysis
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I m = 3
I ti,start =

1, 2, 5, and 10.
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Degree distribution

I So what’s the degree distribution at time t?
I Use fact that birth time for added nodes is distributed

uniformly:

P(ti,start)dti,start '
dti,start

t + m0

I Using

ki(t) = m
(

t
ti,start

)1/2

⇒ ti,start =
m2t

ki(t)2 .

and by understanding that later arriving nodes have
lower degrees, we can say this:

Pr(ki < k) = Pr(ti,start >
m2t
k2 ).
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Degree distribution

I Using the uniformity of start times:

Pr(ki < k) = Pr(ti,start >
m2t
k2 ) '

t − m2t
k2

t + m0
.

I Differentiate to find Pr(k):

Pr(k) =
d

dk
Pr(ki < k) =

2m2t
(t + m0)k3

∼ 2m2k−3 as m →∞.
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Degree distribution

I We thus have a very specific prediction of
Pr(k) ∼ k−γ with γ = 3.

I Typical for real networks: 2 < γ < 3.
I Range true more generally for events with size

distributions that have power-law tails.
I 2 < γ < 3: finite mean and ‘infinite’ variance (wild)
I In practice, γ < 3 means variance is governed by

upper cutoff.
I γ > 3: finite mean and variance (mild)
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Examples

WWW γ ' 2.1 for in-degree
WWW γ ' 2.45 for out-degree

Movie actors γ ' 2.3
Words (synonyms) γ ' 2.8

The Internets is a different business...
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Real data

From Barabási and Albert’s original paper [2]:

ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4 ), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6 ). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7 ),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ! k"#. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ! k"#actor, where #actor $
2.3 % 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6 ), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with #www $ 2.1 % 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
#power ! 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent #cite $ 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent # between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7 ) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) $
e"&&k/k!, where

& ! N"N " 1

k
#pk'1 " p(N"1"k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p $ 0, the probability distri-
bution of the connectivities is P(k) $ )(k "
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.
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Things to do and questions

I Vary attachment kernel.
I Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

I Deal with directed versus undirected networks.
I Important Q.: Are there distinct universality classes

for these networks?
I Q.: How does changing the model affect γ?
I Q.: Do we need preferential attachment and growth?
I Q.: Do model details matter?
I The answer is (surprisingly) yes.
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Preferential attachment

I Let’s look at preferential attachment (PA) a little more
closely.

I PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

I For example: If Pattach(k) ∝ k , we need to determine
the constant of proportionality.

I We need to know what everyone’s degree is...
I PA is ∴ an outrageous assumption of node capability.
I But a very simple mechanism saves the day. . .
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Preferential attachment through randomness

I Instead of attaching preferentially, allow new nodes
to attach randomly.

I Now add an extra step: new nodes then connect to
some of their friends’ friends.

I Can also do this at random.
I We know that friends are weird...
I Assuming the existing network is random, we know

probability of a random friend having degree k is

Qk ∝ kPk

I So rich-gets-richer scheme can now be seen to work
in a natural way.
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Robustness

I We’ve looked at some aspects of contagion on
scale-free networks:

1. Facilitate disease-like spreading.
2. Inhibit threshold-like spreading.

I Another simple story concerns system robustness.
I Albert et al., Nature, 2000:

“Error and attack tolerance of complex networks” [1]
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Robustness

I Standard random networks (Erdös-Rényi)
versus
Scale-free networks
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

from Albert et al., 2000
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Robustness
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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I Plots of network
diameter as a function
of fraction of nodes
removed

I Erdös-Rényi versus
scale-free networks

I blue symbols =
random removal

I red symbols =
targeted removal
(most connected first)
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Robustness

I Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

I All very reasonable: Hubs are a big deal.
I But: next issue is whether hubs are vulnerable or not.
I Representing all webpages as the same size node is

obviously a stretch (e.g., google vs. a random
person’s webpage)

I Most connected nodes are either:
1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

I Need to explore cost of various targeting schemes.
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Generalized model

Fooling with the mechanism:

I 2001: Redner & Krapivsky (RK) [3] explored the
general attachment kernel:

Pr(attach to node i) ∝ Ak = kν
i

where Ak is the attachment kernel and ν > 0.
I RK also looked at changing the details of the

attachment kernel.
I We’ll follow RK’s approach using rate equations (�).
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Generalized model

I Here’s the set up:

dNk

dt
=

1
A

[Ak−1Nk−1 − AkNk ] + δk1

where Nk is the number of nodes of degree k .
1. The first term corresponds to degree k − 1 nodes

becoming degree k nodes.
2. The second term corresponds to degree k nodes

becoming degree k − 1 nodes.
3. Detail: A0 = 0
4. One node is added per unit time.
5. Seed with some initial network

(e.g., a connected pair)
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Generalized model

I In general, probability of attaching to a specific node
of degree k at time t is

Pr(attach to node i) =
Ak

A(t)

where A(t) =
∑∞

k=1 AkNk (t).
I E.g., for BA model, Ak = k and A =

∑∞
k=1 AkNk (t).

I For Ak = k , we have

A(t) =
∞∑

k ′=1

k ′Nk ′(t) = 2t

since one edge is being added per unit time.
I Detail: we are ignoring initial seed network’s edges.

http://en.wikipedia.org/wiki/Rate_equation
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Generalized model

I So now

dNk

dt
=

1
A

[Ak−1Nk−1 − AkNk ] + δk1

becomes

dNk

dt
=

1
2t

[(k − 1)Nk−1 − kNk ] + δk1

I As for BA method, look for steady-state growing
solution: Nk = nk t .

I We replace dNk/dt with dnk t/dt = nk .
I We arrive at a difference equation:

nk =
1
2�t

[(k − 1)nk−1�t − knk�t ] + δk1
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Generalized model

I Rearrange and simply:

nk =
1
2
(k − 1)nk−1 −

1
2

knk + δk1

⇒ (k + 2)nk = (k − 1)nk−1 + 2δk1

I Two cases:

k = 1 : n1 = 2/3 since n0 = 0

k > 1 : nk =
(k − 1)

k + 2
nk−1
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Generalized model
I Now find nk :

k > 1 : nk =
(k − 1)

k + 2
nk−1 =

(k − 1)

k + 2
(k − 2)

k + 1
nk−2

=
(k − 1)

k + 2
(k − 2)

k + 1
(k − 3)

k
nk−3

=
(k − 1)

k + 2
(k − 2)

k + 1
(k − 3)

k
(k − 4)

k − 1
nk−4

=
����(k − 1)

k + 2
����(k − 2)

k + 1
����(k − 3)

k
����(k − 4)

����(k − 1)
����(k − 5)

����(k − 2)

· · ·
· · ·

�5
��8

�4
�7

3
��6

2
�5

1
�4

n1

⇒ nk =
6

k(k + 1)(k + 2)
n1 =

4
k(k + 1)(k + 2)

∼ k−3
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Universality?

I As expected, we have the same result as for the BA
model:

Nk (t) = nk (t)t ∝ k−3 for large k .

I Now: what happens if we start playing around with
the attachment kernel Ak?

I Again, is the result γ = 3 universal (�)?
I Natural modification: Ak = kν with ν 6= 1.
I But we’ll first explore a more subtle modification of

Ak made by Redner/Krapivsky [3]

I Keep Ak linear in k but tweak details.
I Idea: Relax from Ak = k to Ak ∼ k as k →∞.

http://en.wikipedia.org/w/index.php?title=Universality_%28dynamical_systems%29&oldid=204738455
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Universality?

I Recall we used the normalization:

A(t) =
∞∑

k ′=1

k ′Nk ′(t) ' 2t for large t .

I We now have

A(t) =
∞∑

k ′=1

Ak ′Nk ′(t)

where we only know the asymptotic behavior of Ak .
I We assume that A = µt
I We’ll find µ later and make sure that our assumption

is consistent.
I As before, also assume Nk (t) = nk t .
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Universality?
I For Ak = k we had

nk =
1
2

[(k − 1)nk−1 − nnk ] + δk1

I This now becomes

nk =
1
µ

[Ak−1nk−1 − Aknk ] + δk1

⇒ (Ak + µ)nk = Ak−1nk−1 + µδk1

I Again two cases:

k = 1 : n1 =
µ

µ + A1
.

k > 1 : nk = nk−1
Ak−1

µ + Ak
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Universality?
I Dealing with the k > 1 case:

nk = nk−1
Ak−1

µ + Ak
= nk−1

Ak−1

Ak

1
1 + µ

Ak

= nk−2
Ak−2

�
�Ak1

1
1 + µ

Ak−1

���Ak−1

Ak

1
1 + µ

Ak

= n1
A1

Ak

k∏
j=2

1
1 + µ

Aj

= n1
A1

Ak

(
1 +

µ

A1

) k∏
j=1

1
1 + µ

Aj

=
µ

Ak

k∏
j=1

1
1 + µ

Aj

since n1 = µ/(µ + A1)
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Universality?

I Time for pure excitement: Find asymptotic behavior
of nk given Ak → k as k →∞.

I For large k :

nk =
µ

Ak

k∏
j=1

1
1 + µ

Aj

=
µ

Ak

k∏
j=1

Aj

Aj + µ

µ

��Ak

A1

(A1 + µ)

A2

(A2 + µ)
· · · k − 1

(k − 1 + µ)

�k
(k + µ)

∝ Γ(k)

Γ(k + µ + 1)
∼

√
2πkk+1/2e−k

√
2π(k + µ + 1)k+µ+1+1/2e−(k+µ+1)

∼∝ k−µ−1

I Since µ depends on Ak , details matter...
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Universality?

I Now we need to find µ.
I Our assumption again: A = µt =

∑∞
k=1 Nk (t)Ak

I Since Nk = nk t , we have the simplification
µ =

∑∞
k=1 nkAk

I Now subsitute in our expression for nk :

1�µ =
∞∑

k=1

�µ

��Ak

k∏
j=1

1
1 + µ

Aj

��Ak

I Closed form expression for µ.
I We can solve for µ in some cases.
I Our assumption that A = µt is okay.
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Universality?

I Amazingly, we can adjust Ak and tune γ to be
anywhere in [2,∞).

I γ = 2 is the lower limit since

µ =
∞∑

k=1

Aknk ∼
∞∑

k=1

knk

must be finite.
I Let’s now look at a specific example of Ak to see this

range of γ is possible.
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Universality?

I Consider A1 = α and Ak = k for k ≥ 2.
I Find γ = µ + 1 by finding µ.
I Expression for µ:

1 =
∞∑

k=1

k∏
j=1

1
1 + µ

Aj

1 =
1

1 + µ
A1

+
∞∑

k=2

k∏
j=1

1
1 + µ

Aj

1− 1
1 + µ

A1

=
1

1 + µ
A1

∞∑
k=2

k∏
j=2

1
1 + µ

Aj

µ
α

1 + µ
α

=
1

1 + µ
α

∞∑
k=2

k∏
j=2

1
1 + µ

Aj

since A1 = α
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Universality?
I Carrying on:

µ
α

���1 + µ
α

=
1

���1 + µ
α

∞∑
k=2

k∏
j=2

1
1 + µ

Aj

µ

α
=

∞∑
k=2

Γ(k + 1)Γ(2 + µ)

Γ(k + µ + 1)

I Now use result that [3]

∞∑
k=2

Γ(a + k)

Γ(b + k)
=

Γ(a + 2)

(b − a− 1)Γ(b + 1)

with a = 1 and b = µ + 1.
I

µ = α
Γ(3)

(µ + 1− 1− 1)Γ(2 + µ)
Γ(2 + µ)

⇒ µ(µ− 1) = 2α



Scale-Free
Networks

Original model
Introduction

Model details

Analysis

A more plausible
mechanism

Robustness

Redner &
Krapivisky’s model
Generalized model

Analysis

Universality?

Sublinear attachment
kernels

Superlinear attachment
kernels

References

Frame 49/57

Universality?

I

µ(µ− 1) = 2α⇒ µ =
1 +

√
1 + 8α

2
.

I Since γ = µ + 1, we have

0 ≤ α <∞⇒ 2 ≤ ν <∞

I Craziness...
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Sublinear attachment kernels

I Rich-get-somewhat-richer:

Ak ∼ kν with 0 < ν < 1.

I General finding by Krapivsky and Redner: [3]

nk ∼ k−νe−c1k1−ν+correction terms.

I Stretched exponentials (truncated power laws).
I aka Weibull distributions.
I Universality: now details of kernel do not matter.
I Distribution of degree is universal providing ν < 1.
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Sublinear attachment kernels

Details:
I For 1/2 < ν < 1:

nk ∼ k−νe
−µ

„
k1−ν−21−ν

1−ν

«

I For 1/3 < ν < 1/2:

nk ∼ k−νe−µ k1−ν

1−ν
+µ2

2
k1−2ν

1−2ν

I And for 1/(r + 1) < ν < 1/r , we have r pieces in
exponential.
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Superlinear attachment kernels

I Rich-get-much-richer:

Ak ∼ kν with ν > 1.

I Now a winner-take-all mechanism.
I One single node ends up being connected to almost

all other nodes.
I For ν > 2, all but a finite # of nodes connect to one

node.
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