# Random Networks Complex Networks, Course 295A, Spring, 2008

## Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont



Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

## Random networks

## Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdös-Rényi random networks or ER graphs.

# Outline

Random Networks

Basics

Structure

Frame 1/83

B 990

Random Networks

Basics

Definitions

## Basics

Definitions How to build Some visual examples

## Structure

Clustering Degree distributions Configuration model Largest component

## Generating Functions Definitions

Properties

References

#### Basics Definitions How to build Some visual examples Structure Clustering

Random Network

Configuration mod Largest componer

> Definitions Properties

References

Random Network

Basics

Definitions

Structure

Generating

# Random networks

## Some features:

networks.

Number of possible edges:

$$0 \le m \le \binom{N}{2} = \frac{N(N-1)}{2}$$

- Given *m* edges, there are  $\binom{\binom{N}{2}}{m}$  different possible
- Crazy factorial explosion for  $1 \ll m \ll \binom{N}{2}$ .
- Limit of m = 0: empty graph.
- Limit of  $m = \binom{N}{2}$ : complete or fully-connected graph.
- Real world: links are usually costly so real networks are almost always sparse.

## Random networks

## How to build standard random networks:

- ▶ Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the  $\binom{N}{2}$  pairs with appropriate probability *p*.
  - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
  - ► Algorithm: Randomly choose a pair of nodes *i* and *j*, *i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.
  - Best for adding small numbers of links (most cases).
  - ▶ 1 and 2 are effectively equivalent for large *N*.



# Random networks

# A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

► So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$
$$= \frac{2}{N} \rho \frac{1}{2} N(N-1) = \frac{2}{N} \rho \frac{1}{2} N(N-1) = \rho(N-1)$$

- Which is what it should be...
- If we keep  $\langle k \rangle$  constant then  $p \propto 1/N \to 0$  as  $N \to \infty$ .

How to build Some Visual example Structure Clustering Degree distributions Configuration model Largest component Generating Functions Properties

Random Networks

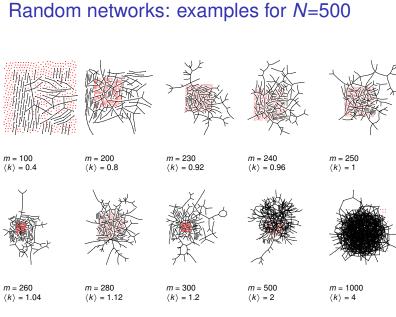
Basics

Random Networks

Some visual example:

Generating

Basics

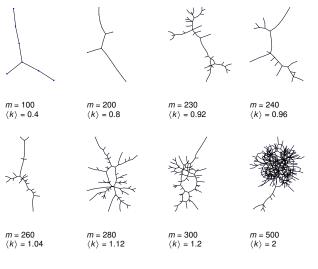


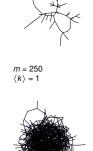


Frame 7/83

B 990

# Random networks: largest components



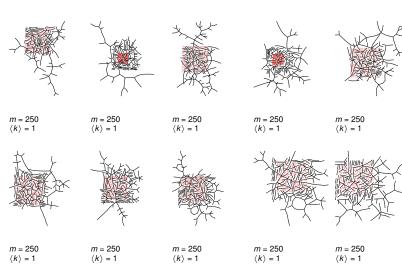


m = 1000

 $\langle k \rangle = 4$ 

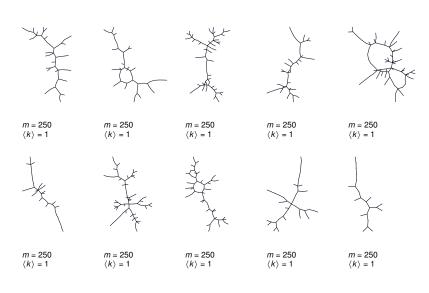
Frame 22/83

## Random networks: examples for N=500





# Random networks: largest components



Frame 24/83

**日** りへで

Random Networks

Some visual example:

Generating

Basics

# Random networks

## Clustering:

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient (Newman<sup>[1]</sup>):

$$C_2 = \frac{3 \times \# triangles}{\# triples}$$

- Recall: C<sub>2</sub> = probability that two nodes are connected given they have a friend in common.
- > For standard random networks, we have simply that

## $C_2 = p.$

| Random Networks      |
|----------------------|
|                      |
| Basics               |
| Definitions          |
|                      |
| Some visual examples |
| Structure            |
| Clustering           |
|                      |
|                      |
|                      |
| Generating           |
| Functions            |
|                      |
|                      |
| References           |
|                      |

Frame 26/83

P

## Random networks

**Clustering:** 

- So for large random networks (N → ∞), clustering drops to zero.
- Key structural feature of random networks is that they locally look like branching networks (no loops).

## Random Networks

Basics Definitions How to build Some visual examples Structure Clustering Degree distributions Configuration model

Generating Functions Definitions Properties

References

Frame 27/83

## Random networks

## Degree distribution:

- Recall p<sub>k</sub> = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N choose k' ways the node can be connected to k of the other N – 1 nodes.
- Each connection occurs with probability p, each non-connection with probability (1 – p).
- Therefore have a binomial distribution:

$$P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}$$

| Limiting | form | of | <b>P</b> ( | <i>k</i> : | D.               | N   | ): |
|----------|------|----|------------|------------|------------------|-----|----|
| Enning   |      |    | • \        |            | $\boldsymbol{P}$ | ••• | /• |

Substitute 
$$p = \frac{\langle k \rangle}{N-1}$$
 into  $P(k; p, N)$  and hold  $k$  fixed:  

$$P(k; p, N) = \binom{N-1}{k} \left( \frac{\langle k \rangle}{N-1} \right)^k \left( 1 - \frac{\langle k \rangle}{N-1} \right)^{N-1-k}$$

$$= \frac{(N-1)!}{k! (N-1-k)!} \frac{\langle k \rangle^k}{(N-1)^k} \left( 1 - \frac{\langle k \rangle}{N-1} \right)^{N-1-k}$$

$$= \frac{(N-1)(N-2)\cdots(N-k)}{k!} \frac{\langle k \rangle^k}{(N-1)^k} \left( 1 - \frac{\langle k \rangle}{N-1} \right)^{N-1-k}$$

Random Networks

Basics

Degree distributions

Frame 29/83

B 990

## Random networks

## Limiting form of P(k; p, N):

- Our degree distribution:  $P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}.$
- What happens as  $N \to \infty$ ?
- We must end up with the normal distribution right?
- If *p* is fixed, then we would end up with a Gaussian with average degree ⟨*k*⟩ ≃ *pN* → ∞.
- But we want to keep  $\langle k \rangle$  fixed...
- ► So examine limit of P(k; p, N) when  $p \to 0$  and  $N \to \infty$  with  $\langle k \rangle = p(N 1) = \text{constant}$ .



Random Network

Frame 30/83

Random Network

# Limiting form of P(k; p, N):

► We are now here:

$$P(k; p, N) \simeq rac{\langle k 
angle^k}{k!} \left(1 - rac{\langle k 
angle}{N-1}
ight)^{N-1-k}$$

Now use the excellent result:

$$\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$$

(Use l'Hôpital's rule to prove.)

• Identifying n = N - 1 and  $x = -\langle k \rangle$ :

$$\mathcal{P}(k;\langle k
angle)\simeqrac{\langle k
angle^k}{k!}m{e}^{-\langle k
angle}\left(1-rac{\langle k
angle}{N-1}
ight)^{-k}
ightarrowrac{\langle k
angle^k}{k!}m{e}^{-\langle k
angle}$$

▶ This is a Poisson distribution ( $\boxplus$ ) with mean  $\langle k \rangle$ .

Basics Definitions How to build Some visual exampl Structure Clustering Degree distributions Configuration model Largest component Generating

> Definitions Properties

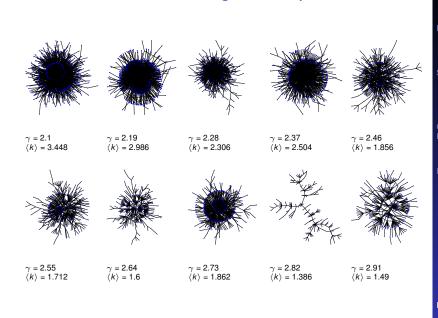
References

## General random networks

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution  $P_k$ .
- Also known as the configuration model<sup>[1]</sup>.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P<sub>w</sub> and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_j.$ 

- But we'll be more interested in
  - 1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
  - 2. Examining mechanisms that lead to networks with certain degree distributions.



Random networks: largest components



**Poisson basics:** 

Checking:

Normalization: we must have

Random Networks

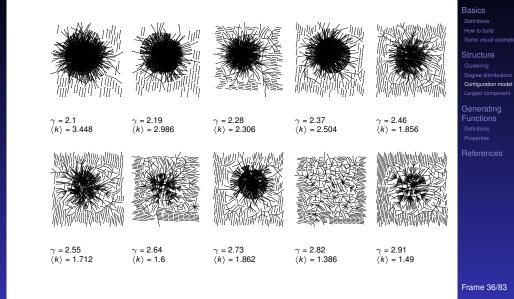
Basics

Configuration mode

Frame 34/83

B 9900

# Random networks: examples for N=1000



 $\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$ 

 $\sum_{k=0}^{\infty} P(k; \langle k \rangle) = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$ 

 $= e^{-\langle k 
angle} \sum_{k=0}^{\infty} rac{\langle k 
angle^k}{k!}$ 

 $= e^{-\langle k \rangle} e^{\langle k \rangle} = 1 \checkmark$ 

#### Basics Definitions How to build Some visual examples Structure Clustering Degree distributions Configuration model

**日** りへで

Random Network

Random Networks

Generating Functions Definitions Properties

Reference

Frame 38/83

ମ୍ବ ୬ବ୍ଦ

## Poisson basics:

Mean degree: we must have

$$\langle k 
angle = \sum_{k=0}^{\infty} k P(k; \langle k 
angle)$$

Checking:

$$\sum_{k=0}^{\infty} kP(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^{k}}{k!} e^{-\langle k \rangle}$$
$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^{k}}{(k-1)!}$$
$$= \langle k \rangle e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^{k-1}}{(k-1)!}$$
$$\langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^{i}}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

We'll get to a better way of doing this...

=

# The edge-degree distribution:

- The degree distribution P<sub>k</sub> is fundamental for our description of many complex networks
- ► Again: *P<sub>k</sub>* is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q<sub>k</sub> to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

 $Q_k \propto k P_k$ 

Normalized form:

$$Q_{k} = \frac{kP_{k}}{\sum_{k'=0}^{\infty} k'P_{k'}} = \frac{kP_{k}}{\langle k \rangle}.$$

Random Networks

Random Networks

Basics

Configuration mode

Generating

Frame 41/83

# Poisson basics:

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$

Variance is then

$$\sigma^{2} = \langle \mathbf{k}^{2} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle^{2} + \langle \mathbf{k} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle.$$

- So standard deviation  $\sigma$  is equal to  $\sqrt{\langle k \rangle}$ .
- Note: This is a special property of Poisson distribution and can trip us up...

Random Network

Basics

Configuration mode

Generating

Random Networks

Basics

Structure

Configuration mode

Generating

# The edge-degree distribution:

- For random networks, Q<sub>k</sub> is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on  $Q_k$ :

 $R_k$  = probability that a friend of a random node has *k* other friends.

$$\mathbf{R}_{k} = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- Equivalent to friend having degree k + 1.
- Natural question: what's the expected number of other friends that one friend has?

Frame 42/83

# The edge-degree distribution:

Given R<sub>k</sub> is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\begin{split} \langle k \rangle_{R} &= \sum_{k=0}^{\infty} k R_{k} = \sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k \rangle} \\ &= \frac{1}{\langle k \rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1} \\ &= \frac{1}{\langle k \rangle} \sum_{k=1}^{\infty} \left( (k+1)^{2} - (k+1) \right) P_{k+1} \end{split}$$

(where we have sneakily matched up indices)

$$= \frac{1}{\langle k \rangle} \sum_{j=0}^{\infty} (j^2 - j) P_j \quad \text{(using j = k+1)}$$
$$= \frac{1}{\langle k \rangle} \left( \langle k^2 \rangle - \langle k \rangle \right)$$

## Two reasons why this matters

## Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left( \langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P<sub>k</sub> and not just the 1st moment.
- Three peculiarities:
  - 1. We might guess  $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$  but it's actually  $\langle k(k-1) \rangle$ .
  - 2. If  $P_k$  has a large second moment,
    - then  $\langle k_2 \rangle$  will be big.
    - (e.g., in the case of a power-law distribution)
  - 3. Your friends are different to you...



- Note: our result, ⟨k⟩<sub>R</sub> = 1/⟨k⟩ (⟨k²⟩ ⟨k⟩), is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$

► Therefore:

Random Networks

Basics

Structure

Configuration mode

Generating

Frame 43/83

B 990

Random Networks

Basics

Structure

Configuration mode

Generating Functions

Frame 4<u>5/83</u>

P

$$\langle k \rangle_{R} = \frac{1}{\langle k \rangle} \left( \langle k \rangle^{2} + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neatness of results is a special property of the Poisson distribution.
- So friends on average have  $\langle k \rangle$  other friends, and  $\langle k \rangle + 1$  total friends...

Frame 44/83 日 のへへ

Random Network

Basics

# Two reasons why this matters

## More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends:  $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left( 1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \ge \langle k \rangle$$

- So only if everyone has the same degree (variance= σ<sup>2</sup> = 0) can a node be the same as its friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

Some visual examples Structure Clustering Degree distributions Configuration model Largest component Generating Functions Definitions Properties

Basics

Structure

Configuration mode

Generating

## Two reasons why this matters

## (Big) Reason #2:

- \$\langle k \rangle\_R\$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node out side of the subnetwork is connected to it.
- Defn: Giant component = component that comprises a non-zero fraction of a network as N → ∞.
- Note: Component = Cluster

# Giant component

## Standard random networks:

- Recall  $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$ .
- Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- Therefore when (k) > 1, standard random networks have a giant component.
- When  $\langle k \rangle < 1$ , all components are finite.
- Fine example of a continuous phase transition  $(\boxplus)$ .
- We say  $\langle k \rangle = 1$  marks the critical point of the system.

# Structure of random networks

## Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring  $\langle k \rangle_R > 1$ .
- Giant component condition (or percolation condition):

$$\langle k 
angle_R = rac{\langle k^2 
angle - \langle k 
angle}{\langle k 
angle} > 1$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement:  $\langle k^2 \rangle > 2 \langle k \rangle$

Random Network

## Giant component

Random networks with skewed  $P_k$ :

• e.g, if  $P_k = ck^{-\gamma}$  with 2 <  $\gamma$  < 3 then

$$\langle k^2 
angle = c \sum_{k=0}^{\infty} k^2 k^{-\gamma}$$
  
 $\sim \int_{x=0}^{\infty} x^{2-\gamma} dx$   
 $\propto x^{3-\gamma} \Big|_{x=0}^{\infty} = \infty \quad (> \langle k \rangle).$ 

- So giant component always exists for these kinds of networks.
- Cutoff scaling is k<sup>-3</sup>: if γ > 3 then we have to look harder at ⟨k⟩<sub>R</sub>.

Basics Definitions How to build Some visual exampl Structure Clustering Degree distributions Configuration model Largest component Generating

> Functions Definitions Properties

References

### Basics Definitions How to build Some visual examples Structure Clustering Degree distributions Configuration model Largest component Generating Functions Primitions Properties References

Frame 50/83

Frame 47/83

B 990

Random Networks



Basics

Structure

Largest componen

Generating

unctions

# Giant component

## And how big is the largest component?

- Define  $S_1$  as the size of the largest component.
- Consider an infinite ER random network with average degree (k).
- Let's find  $S_1$  with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection:  $\delta = 1 S_1$ .
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- So

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Substitute in Poisson distribution...

# Giant component

We can figure out some limits and details for

$$S_1 = 1 - e^{-\langle k \rangle S_1}.$$

- ▶ As  $\langle k \rangle \rightarrow 0$ ,  $S_1 \rightarrow 0$ .
- ▶ As  $\langle k \rangle \rightarrow \infty$ ,  $S_1 \rightarrow 1$ .
- Notice that at  $\langle k \rangle = 1$ , the critical point,  $S_1 = 0$ .
- Only solvable for S > 0 when  $\langle k \rangle > 1$ .
- Really a transcritical bifurcation<sup>[2]</sup>.



Random Networks

Basics

Structure

Largest component

Frame 52/83

5 A C

Random Networks

Basics

Structure

Largest component

Frame 54/83

**日** りへで

Carrying on:

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k$$
$$= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle \delta)^k}{k!}$$
$$= e^{-\langle k \rangle} e^{\langle k \rangle \delta} = e^{-\langle k \rangle (1-\delta)}.$$

Now substitute in δ = 1 − S₁ and rearrange to obtain a transcendental equation for S₁:

$$S_1 = 1 - e^{-\langle k \rangle S_1}.$$

# Frame 53/83

Random Networks

Basics

Structure

Largest component

Generating

# Giant component

#### Random Network

Basics Definitions How to build Some visual example Structure

Degree distributions Configuration model Largest component

Generating Functions Definitions Properties

References

Frame 55/83

# Giant component

## Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because  $\langle k \rangle = \langle k \rangle_R$ .
- We need a separate probability δ' for the chance that a node at the end of a random edge is part of the largest component.
- We can do this but we need to enhance our toolkit with Generatingfunctionology...<sup>[3]</sup>

Random Networks
Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Punctions
Properties
References

Frame 56/83

B 990

Random Networks

# Generating functions

- Idea: Given a sequence a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>,..., associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

## Definition:

• The generating function (g.f.) for a sequence  $\{a_n\}$  is

$$F(x)=\sum_{n=0}^{\infty}a_nx^n.$$

- ► Roughly: transforms a vector in R<sup>∞</sup> into a function defined on R<sup>1</sup>.
- ▶ Related to Fourier, Laplace, Mellin, ...

Random Network

Random Networks

Basics

Structure

Generating

Definitions

## Example

Take a degree distribution with exponential decay:

 $P_k = ce^{-\lambda k}$ 

where  $c = 1 - e^{-\lambda}$ .

• The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda k}}$$

- Notice that  $F(1) = c/(1 e^{-\lambda}) = 1$ .
- For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1$$

Basics Definitions How to build Some visual examples Structure Clustering Degree distributions Configuration model Largest component Generating Functions Properties References

# Properties of generating functions

► Average degree:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \bigg|_{x=1}$$
$$= \left. \frac{\mathrm{d}}{\mathrm{d}x} F(x) \right|_{x=1} = F'(1)$$

- In general, many calculations become simple, if a little astract.
- ► For our exponential example:

$$F'(x)=rac{(1-e^{-\lambda})e^{-\lambda}}{(1-xe^{-\lambda})^2}.$$

So:

$$\langle k \rangle = F'(1) = rac{e^{-\lambda}}{(1-e^{-\lambda})}.$$

Basics Definitions How to build Some visual examples Structure Clustering Degree distributions Configuration model Largest component Generating

Properties

Frame 61/83

**日** りへで

# Properties of generating functions

Useful pieces for probability distributions:

Normalization:

F(1) = 1

First moment:

$$\langle k \rangle = F'(1)$$

Higher moments:

$$\langle k^n \rangle = \left( x \frac{\mathrm{d}}{\mathrm{d}x} \right)^n F(x) \Big|_{x=1}$$

kth element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} F(x) \bigg|_{x=0}$$

# Edge-degree distribution

We have

$$F_{R}(x) = \sum_{k=0}^{\infty} \frac{R_{k}x^{k}}{k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^{k}$$

Shift index to j = k + 1 and pull out  $\frac{1}{\langle k \rangle}$ :

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=0}^{\infty} P_j j x^{j-1}$$

$$= \frac{1}{\langle k \rangle} \sum_{j=0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}x} P_j x^j = \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \sum_{j=0}^{\infty} P_j x^j = \frac{1}{\langle k \rangle} F_P'(x)$$

Finally, since  $\langle k \rangle = F'_P(1)$ ,

 $F_R(x) = \frac{F'_P(x)}{F'_P(1)}$ 

# Random Networks

Random Networks

Basics

Structure

Properties

Frame 64/83

P

## Edge-degree distribution

Recall our condition for a giant component:

$$\langle k \rangle_{R} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

- We first need the g.f. for  $R_k$ .
- We'll now use this notation:  $F_P(x)$  is the g.f. for  $P_k$ .  $F_R(x)$  is the g.f. for  $R_k$ .
- Condition in terms of g.f. is:

$$\langle k \rangle_R = F'_R(1) > 1$$

• Now find how  $F_R$  is related to  $F_P$ ...

Frame 63/83 日 のへへ

Random Networks

Basics

Structure

Properties

# Edge-degree distribution

- Recall giant component condition is  $\langle k \rangle_R = F'_R(1) > 1.$
- Since we have  $F_R(x) = F'_P(x)/F'_P(1)$ ,

$$F_R'(x) = \frac{F_P''(x)}{F_P'(1)}$$

• Setting x = 1, our condition becomes



## Basics Definitions

Random Networks

Some visual example
Structure
Clustering

Configuration mode Largest component Generating

> -UNCTIONS Definitions Properties

References

Frame 65/83

ମ୍ବ ୬ବ୍ଦ

## Size distributions

To figure out the size of the largest component  $(S_1)$ , we need more resolution on component sizes.

## Definitions:

- $\blacktriangleright \pi_n$  = probability that a random node belongs to a finite component of size  $n < \infty$ .
- $\rho_n$  = probability a random link leads to a finite subcomponent of size  $n < \infty$ .

## Local-global connection:

 $P_k, R_k \Leftrightarrow \pi_n, \rho_n$ neighbors  $\Leftrightarrow$  components

# Useful results we'll need for g.f.'s

## Sneaky Result 1:

- Consider two random variables U and V whose values may be 0, 1, 2, ...
- Write probability distributions as  $U_k$  and  $V_k$  and g.f.'s as  $F_U$  and  $F_V$ .
- SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{V} U^{(i)}$$
 with each  $U^{(i)} \stackrel{d}{=} U$ 

then

$$F_W(x) = F_V(F_U(x))$$

| Random Network                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Basics<br>Definitions<br>How to build<br>Some visual examples<br>Structure<br>Clustering<br>Degree distributions<br>Configuration model |
| Largest component<br>Generating<br>Functions<br>Definitions<br>Properties<br>References                                                 |
|                                                                                                                                         |
| Frame 68/83                                                                                                                             |
| - <b>ମ</b> ୍ଚ ୬ ଏ.୧                                                                                                                     |

Random Networks

Basics

Properties

Frame 66/83

B 990

# Size distributions G.f.'s for component size distributions:

 $F_{\pi}(x) = \sum_{k=0}^{\infty} \pi_n x^n$  and  $F_{\rho}(x) = \sum_{k=0}^{\infty} \rho_n x^n$ 

## The largest component:

- Subtle key:  $F_{\pi}(1)$  is the probability that a node belongs to a finite component.
- Therefore:  $S_1 = 1 F_{\pi}(1)$ .

## Our mission, which we accept:

Find the four generating functions

 $F_P, F_B, F_{\pi}$ , and  $F_o$ .

## Proof of SN1:

Write probability that variable W has value k as  $W_k$ .

 $W_k = \sum_{i=0}^{\infty} V_j \times \Pr(\text{sum of } j \text{ draws of variable } U = k)$ 

$$= \sum_{j=0}^{\infty} V_j \sum_{\substack{\{i_1, i_2, \dots, i_k\} \mid \\ i_1+i_2+\dots+i_k=j}} U_{i_1} U_{i_2} \cdots U_{i_j}$$

$$\therefore F_{W}(x) = \sum_{k=0}^{\infty} W_{k} x^{k} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} V_{j} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{k}\} \mid \\ i_{1}+i_{2}+\dots+i_{k}=j}}^{\sum} U_{i_{1}} U_{i_{2}} x^{i_{2}} \cdots U_{i_{j}} x^{i_{j}}}$$
$$= \sum_{j=0}^{\infty} V_{j} \sum_{k=0}^{\infty} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{k}\} \mid \\ \{i_{1}, i_{2}, \dots, i_{k}\} \mid }}^{\sum} U_{i_{1}} x^{i_{1}} U_{i_{2}} x^{i_{2}} \cdots U_{i_{j}} x^{i_{j}}}$$

$$\sum_{i_1,i_2,\dots,i_k\}|\atop{i_1+i_2+\dots+i_k=j}} O_{I_1} \times O_{I_2} \times O_{I_2}$$

Basics Generating Properties

Random Network

Frame 67/83 B 990

Basics

Random Network

unctions Properties

Frame 69/83 ð

# Proof of SN1:

With some concentration, observe:

$$F_{W}(x) = \sum_{j=0}^{\infty} V_{j} \sum_{k=0}^{\infty} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{k}\} \mid \\ i_{1}+i_{2}+\dots+i_{k}=j}} U_{i_{1}} x^{i_{1}} U_{i_{2}} x^{i_{2}} \dots U_{i_{j}} x^{i_{j}}}{x^{k} \text{ piece of } \left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j}} \left(\sum_{i'=0}^{\infty} U_{i'} x^{i'}\right)^{j}} = (F_{U}(x))^{j}}$$
$$= \sum_{j=0}^{\infty} V_{j} (F_{U}(x))^{j}$$
$$= F_{V} (F_{U}(x)) \checkmark$$

Useful results we'll need for g.f.'s

Generalization of SN2:

• (1) If V = U + i then

$$F_V(x) = x^i F_U(x).$$

▶ (2) If V = U - i then

$$F_V(x) = x^{-i} \left( F_U(x) - U_0 - U_1 x - \ldots - U_{i-1} x^{i-1} \right)$$

$$= x^{-i} \sum_{k=i}^{\infty} U_k x^k$$

Random Networks

Random Networks

Basics

Structure

Properties

Frame 72/83

B 990

# Useful results we'll need for g.f.'s

## Sneaky Result 2:

- Start with a random variable U with distribution  $U_k$ (k = 0, 1, 2, ...)
- SNR2: If a second random variable is defined as

V = U + 1 then  $F_V(x) = xF_U(x)$ 

• Reason: 
$$V_k = U_{k-1}$$
 for  $k \ge 1$  and  $V_0 = 0$ 

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$
$$= x \sum_{j=0}^{\infty} U_j x^j = x F_U(x) \cdot \checkmark$$

Basics Definitions How to build Some visual exampler Structure Clustering Degree distributions Configuration model Largest component Generating Functions Definitions Properties

Random Networks

Frame 71/83 日 のへへ

Random Network

Basics

Generating

Properties

# Connecting generating functions

- Goal: figure out forms of the component generating functions, *F<sub>π</sub>* and *F<sub>ρ</sub>*.
- π<sub>n</sub> = probability that a random node belongs to a finite component of size n

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Therefore:  $F_{\pi}(x) = \underbrace{x}_{SN2} \underbrace{F_{P}(F_{\rho}(x))}_{SN1}$ 

Extra factor of x accounts for random node itself.

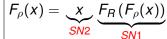
Frame 73/83

## Connecting generating functions

- *ρ<sub>n</sub>* = probability that a random link leads to a finite subcomponent of size *n*.
- Invoke one step of recursion: ρ<sub>n</sub> = probability that a random node arrived along a random edge is part of a finite subcomponent of size n.

$$= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Therefore:



 Again, extra factor of x accounts for random node itself.

# **Component sizes**

Remembering vaguely what we are doing:

Finding  $F_P$  to obtain the size of the largest component  $S_1 = 1 - F_{\pi}(1)$ .

• Set x = 1 in our two equations:

 $F_{\pi}(1) = F_{P}(F_{\rho}(1))$  and  $F_{\rho}(1) = F_{R}(F_{\rho}(1))$ 

- Solve second equation numerically for  $F_{\rho}(1)$ .
- Plug  $F_{\rho}(1)$  into first equation to obtain  $F_{\pi}(1)$ .

Degree distributions Configuration model Largest component Generating Functions Definitions Proporties References

Frame 74/83

**日** りへで

Random Networks

Basics

Definitions

Structure

Generating

Frame 76/83

P

unctions

Properties

Random Networks

Basics

Structure

Connecting generating functions

We now have two functional equations connecting our generating functions:

 $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$  and  $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$ 

- Taking stock: We know  $F_P(x)$  and  $F_R(x) = F'_P(x)/F'_P(1)$ .
- We first untangle the second equation to find  $F_{\rho}$
- We can do this because it only involves  $F_{\rho}$  and  $F_{R}$ .
- The first equation then immediately gives us F<sub>π</sub> in terms of F<sub>ρ</sub> and F<sub>R</sub>.

Random Network

Basics

unctions

Properties

# Component sizes

## Example: Standard random graphs.

• We can show  $F_P(x) = e^{-\langle k \rangle (1-x)}$ 

$$\therefore F_R(x) = F'_P(x)/F'_P(1) = e^{-\langle k \rangle (1-x)}/e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$= e^{-\langle k \rangle (1-x)} = F_P(x)$$
 ...aha!

RHS's of our two equations are the same.

• So 
$$F_{\pi}(x) = F_{\rho}(x) = xF_R(F_{\rho}(x)) = xF_R(F_{\pi}(x))$$

Why our dirty (but wrong) trick worked earlier...

Random Networks

Basics

Structure

Generating

Properties

Frame 77/83

## **Component sizes**

• We are down to  $F_{\pi}(x) = xF_R(F_{\pi}(x))$  and  $F_R(x) = xe^{-\langle k \rangle(1-x)}$ .

$$\therefore$$
  $F_{\pi}(x) = x e^{-\langle k \rangle (1 - F_{\pi}(x))}$ 

We're first after S<sub>1</sub> = 1 − F<sub>π</sub>(1) so set x = 1 and replace F<sub>π</sub>(1) by 1 − S<sub>1</sub>:

$$1-S_1=e^{-\langle k \rangle S_1}$$

- Just as we found with our dirty trick...
- Again, have to resort to numerics at this point.

## Average component size

## Example: Standard random graphs.

- Use fact that  $F_P = F_R$  and  $F_{\pi} = F_{\rho}$ .
- Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_{\mathcal{P}}\left(F_{\pi}(x)
ight) + xF'_{\pi}(x)F'_{\mathcal{P}}\left(F_{\pi}(x)
ight)$$

Rearrange: 
$$F'_{\pi}(x) = \frac{F_P(F_{\pi}(x))}{1 - xF'_P(F_{\pi}(x))}$$

- Simplify denominator using  $F'_{\pi}(x) = \langle k \rangle F_{\pi}(x)$
- Replace  $F_P(F_\pi(x))$  using  $F_\pi(x) = xF_P(F_\pi(x))$ .
- Set x = 1 and replace  $F_{\pi}(1)$  with  $1 S_1$ .

End result: 
$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

| Random Network                                                                 |
|--------------------------------------------------------------------------------|
|                                                                                |
| Basics<br>Definitions<br>How to build                                          |
| Some visual examples Structure                                                 |
| Clustering<br>Degree distributions<br>Configuration model<br>Largest component |
| Generating<br>Functions<br>Definitions<br>Properties                           |
| References                                                                     |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
| Frame 78/83                                                                    |

**日** りへへ

Random Networks

Basics

Properties

Frame 80/83

## Average component size

- Next: find average size of finite components  $\langle n \rangle$ .
- Using standard G.F. result:  $\langle n \rangle = F'_{\pi}(1)$ .
- Try to avoid finding  $F_{\pi}(x)$ ...
- Starting from  $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$ , we differentiate:

 $F_{\pi}'(x)=F_{P}\left(F_{
ho}(x)
ight)+xF_{
ho}'(x)F_{P}'\left(F_{
ho}(x)
ight)$ 

• While  $F_{\rho}(x) = xF_R(F_{\rho}(x))$  gives

$$F_{
ho}'(x)=F_R(F_{
ho}(x))+xF_{
ho}'(x)F_R'(F_{
ho}(x))$$

- Now set x = 1 in both equations.
- We solve the second equation for F'<sub>ρ</sub>(1) (we must already have F<sub>ρ</sub>(1)).
- Plug  $F'_{\rho}(1)$  and  $F_{\rho}(1)$  into first equation to find  $F'_{\pi}(1)$ .

## Average component size

Our result for standard random networks:

$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

- Recall that (k) = 1 is the critical value of average degree for standard random networks.
- Look at what happens when we increase (k) to 1 from below.
- We have  $S_1 = 0$  for all  $\langle k \rangle < 1$  so

$$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$

- This blows up as  $\langle k \rangle \rightarrow 1$ .
- Reason: we have a power law distribution of component sizes at (k) = 1.
- Typical critical point behavior....

#### Frame 81/83

🗗 ୬୯୯

Some visual example Structure Clustering Degree distributions Configuration model Largest component Generating Functions Definitions Properties

Random Network

Basics

Random Network

Basics

Properties

## Average component size

• Limits of  $\langle k \rangle = 0$  and  $\infty$  make sense for

$$\langle n 
angle = F'_{\pi}(1) = rac{(1-S_1)}{1-\langle k 
angle(1-S_1)}$$

- As  $\langle k \rangle \rightarrow 0$ ,  $S_1 = 0$ , and  $\langle n \rangle \rightarrow 1$ .
- All nodes are isolated.
- As  $\langle k \rangle \to \infty$ ,  $S_1 \to 1$  and  $\langle n \rangle \to 0$ .
- ▶ No nodes are outside of the giant component.



## **References** I

# M. E. J. Newman.

The structure and function of complex networks. SIAM Review, 45(2):167–256, 2003. pdf ( $\boxplus$ )

## S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, Reading, Massachusetts, 1994.

## H. S. Wilf.

*Generatingfunctionology.* A K Peters, Natick, MA, 3rd edition, 2006. Basics Definitions How to build Some visual example Clustering Degree distributions Configuration model Largest component Generating Functions Definitions

Random Networks

References

Frame 83/83 日 のへへ