Branching Networks

Complex Networks, Course 295A, Spring, 2008

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Outline

Introduction

River Networks

Definitions Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

References

Introduction

Branching networks are useful things:

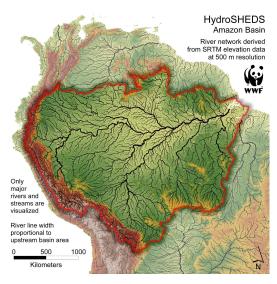
- Fundamental to material supply and collection
- ▶ Supply: From one source to many sinks in 2- or 3-d.
- ► Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- ► River networks (our focus)
- ▶ Cardiovascular networks
- Plants
- Evolutionary trees
- Organizations (only in theory...)

Branching Networks Introduction River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models References

Branching networks are everywhere...



http://hydrosheds.cr.usgs.gov/ (⊞)

Branching networks are everywhere...

 $http://en.wikipedia.org/wiki/Image:Applebox.JPG \ (\boxplus) \\$

ntroduction River Networks

References

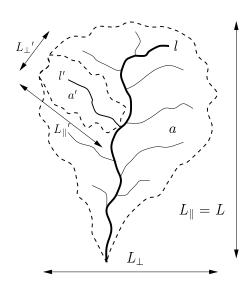
Frame 8/121

Geomorphological networks

Definitions

- ▶ Drainage basin for a point *p* is the complete region of land from which overland flow drains through *p*.
- ▶ Definition most sensible for a point in a stream.
- ► Recursive structure: Basins contain basins and so on.
- ► In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- ► We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

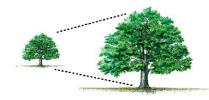
Basic basin quantities: a, I, L_{\parallel} , L_{\perp} :

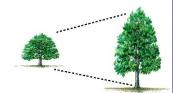


- a = drainage basin area
- ▶ ℓ = length of longest (main) stream (which may be fractal)
- L = L_{||} = longitudinal length of basin
- $L = L_{\perp}$ = width of basin

Allometry Isometry: d

Isometry: dimensions scale linearly with each other.



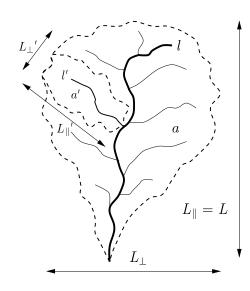


Allometry: dimensions scale nonlinearly.

References

Frame 10/121

Basin allometry



Allometric relationships:

 $\ell \propto \pmb{a}^{\pmb{h}}$

 $\ell \propto L^d$

► Combine above:

$$a \propto L^{d/h} \equiv L^D$$

'Laws'

► Hack's law (1957) [6]:

$$\ell \propto a^h$$

reportedly 0.5 < h < 0.7

Scaling of main stream length with basin size:

$$\ell \propto L_{\parallel}^{d}$$

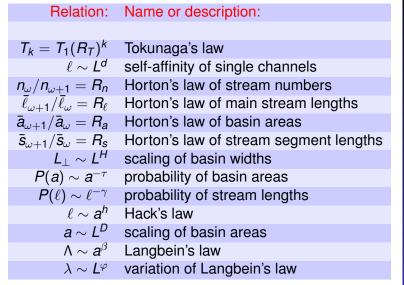
reportedly 1.0 < *d* < 1.1

Basin allometry:

$$L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$$

 $D < 2 \rightarrow$ basins elongate.

There are a few more 'laws': [2]



Branching Networks

Frame 11/121

雪 り へ (や

Branching

Networks

ntroduction

River Networks

Introduction
River Networks

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton
Tokunaga's

Frame 14/121

Reported parameter values: [2]

Parameter:	Real networks:
R_n	3.0-5.0
R_a	3.0-6.0
$R_\ell = R_T$	1.5–3.0
T_1	1.0-1.5
d	1.1 ± 0.01
D	1.8 ± 0.1
h	0.50-0.70
au	$\boldsymbol{1.43 \pm 0.05}$
γ	1.8 ± 0.1
Н	0.75-0.80
β	0.50-0.70
φ	$\textbf{1.05} \pm \textbf{0.05}$

Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga;
Reducing Horton
Scaling relations
Fluctuations

References

Frame 15/121

Kind of a mess...

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...

Branching Networks Introduction River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models References

回 り00

Stream Ordering:

Method for describing network architecture:

- ▶ Introduced by Horton (1945) [7]
- ► Modified by Strahler (1957) [16]
- ► Term: Horton-Strahler Stream Ordering [11]
- ► Can be seen as iterative trimming of a network.

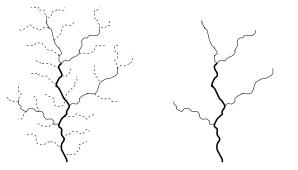
Stream Ordering:

Some definitions:

- ► A channel head is a point in landscape where flow becomes focused enough to form a stream.
- ► A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- ▶ Use symbol $\omega = 1, 2, 3, ...$ for stream order.

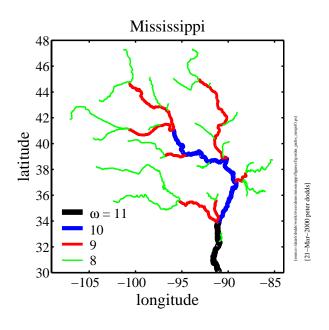
Branching Networks Introduction River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models References

Stream Ordering:



- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

Stream Ordering—A large example:



Branching Networks Introduction River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models References

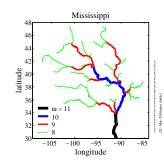
Stream Ordering:

Another way to define ordering:

- ▶ As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 $(\omega+1)$.
- If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.
- ► Simple rule:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.



Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law

Scaling relations

References

Frame 22/121

Stream Ordering:

One problem:

- ▶ Resolution of data messes with ordering
- ► Micro-description changes (e.g., order of a basin may increase)
- ... but relationships based on ordering appear to be robust to resolution changes.

Branching Networks

Frame 21/121

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton

Tokunaga's Law
Horton

Tokunaga Reducing Horton
Scaling relations
Fluctuations
Models

Reference

Frame 23/121 雪 りへで

Stream Ordering:

Utility:

- Stream ordering helpfully discretizes a network.
- ► Goal: understand network architecture

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law

Models References

Frame 24/121

Stream Ordering:

Resultant definitions:

- A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - ho $n_{\omega} > n_{\omega+1}$
- ▶ An order ω basin has area a_{ω} .
- ▶ An order ω basin has a main stream length ℓ_{ω} .
- An order ω basin has a stream segment length s_{ω}
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations

Poforonce

Horton's laws

Self-similarity of river networks

► First quantified by Horton (1945) [7], expanded by Schumm (1956) [14]

Three laws:

► Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1}=R_n>1$$

► Horton's law of stream lengths:

$$ar{\ell_{\omega+1}/\ell_{\omega}}=R_{\ell}>1$$

Horton's law of basin areas:

$$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a>1$$

Frame 27/121

Networks

ntroduction

Horton's Laws

River Networks

Horton's laws

Horton's Ratios:

▶ So... Horton's laws are defined by three ratios:

$$R_n$$
, R_ℓ , and R_a .

► Horton's laws describe exponential decay or growth:

$$n_{\omega} = n_{\omega-1}/R_n$$

$$= n_{\omega-2}/R_n^2$$

$$\vdots$$

$$= n_1/R_n^{\omega-1}$$

$$= n_1 e^{-(\omega-1)\ln R_n}$$

Branching Networks

Introduction River Networks

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations
Models

Frame 28/121

母 りゅつ

S

Horton's laws

Similar story for area and length:

$$ar{a}_{\omega}=ar{a}_{1}e^{(\omega-1)\ln R_{a}}$$

$$ar{\ell}_{\omega} = ar{\ell}_1 e^{(\omega-1) \ln R_\ell}$$

► As stream order increases, number drops and area and length increase.

Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations

References

Frame 29/121

Horton's laws

A few more things:

- ► Horton's laws are laws of averages.
- ► Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- ► Horton's ratios go a long way to defining a branching network...
- ▶ But we need one other piece of information...

Branching Horton's laws Networks

ntroduction

River Networks Horton's Laws

A bonus law:

► Horton's law of stream segment lengths:

$$ar{s}_{\omega+1}/ar{s}_{\omega}=R_s>1$$

▶ Can show that $R_s = R_\ell$.

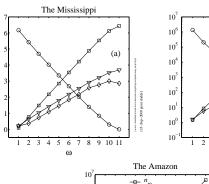
Networks

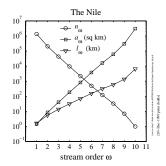
ntroduction

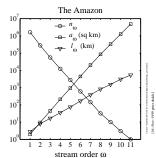
Horton's Laws

Frame 31/121

Horton's laws in the real world:







Branching Networks

Frame 30/121

母 りへで

ntroduction River Networks

Horton's Laws

Frame 32/121 母 りゅつ

Horton's laws-at-large

Blood networks:

- Horton's laws hold for sections of cardiovascular networks
- ▶ Measuring such networks is tricky and messy...
- Vessel diameters obey an analogous Horton's law.

Branching Networks

ntroduction

Frame 33/121

Horton's laws

Observations:

► Horton's ratios vary:

 R_n 3.0–5.0 R_a 3.0–6.0 R_ℓ 1.5–3.0

- ▶ No accepted explanation for these values.
- ► Horton's laws tell us how quantities vary from level to level ...
- ... but they don't explain how networks are structured.

Branching Networks

Introductio

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations

Reference

Frame 34/121

Tokunaga's law

Delving deeper into network architecture:

- ► Tokunaga (1968) identified a clearer picture of network structure [21, 22, 23]
- ► As per Horton-Strahler, use stream ordering.
- ► Focus: describe how streams of different orders connect to each other.
- ► Tokunaga's law is also a law of averages.

Frame 36/121

Network Architecture

Definition:

- ► $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ
- μ , ν = 1, 2, 3, ...
- $\mu \geq \nu + 1$
- ▶ Recall each stream segment of order μ is 'generated' by two streams of order μ 1
- ► These generating streams are not considered side streams.

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton
Tokunaga Reducing Horton
Scaling relations
Fluctuations
Models
Models

Reference

Network Architecture

Tokunaga's law

► Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,
u} = T_{\mu-
u}$$

Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu} = T_1 (R_T)^{\mu-\nu-1}$$

▶ We usually write Tokunaga's law as:

$$T_k = T_1(R_T)^{k-1}$$
 where $R_T \simeq 2$

Branching Networks

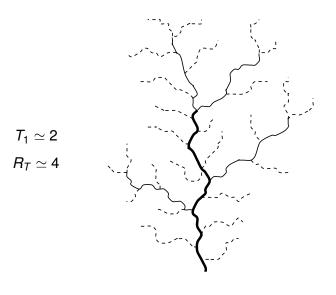
Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations

References

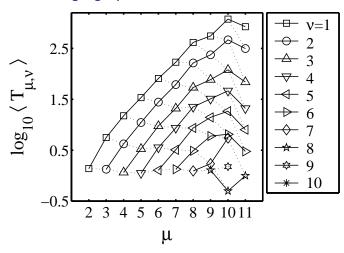
Frame 38/121

Tokunaga's law—an example:



The Mississippi

A Tokunaga graph:



Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law

Horton's Laws

Tokunaga's Law

Horton ⇔ Tokunag

Reducing Horton

Scaling relations

Fluctuations

References

Frame 40/121

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's law has three parameters and Tokunaga has two parameters.
- ▶ R_n , R_ℓ , and R_s versus T_1 and R_T .
- ► To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga \rightarrow Horton [21, 22, 23, 10, 2]

Branching Networks

Frame 39/121

Branching

Networks

ntroduction

River Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton
Tokunaga's Law
Horton
Tokunaga's Law
Horton
Scaling relations
Fluctuations
Models

References

Let us make them happy

We need one more ingredient:

Space-fillingness

- ► A network is space-filling if the average distance between adjacent streams is roughly constant.
- ▶ Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- ► In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} = rac{\sum_{\omega=1}^\Omega n_\omega s_\omega}{a_\Omega}$$

Branching Networks

Introduction

River Network
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations

References

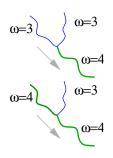
Frame 43/121

Frame 42/121

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ▶ Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$
 - $ightharpoonup n'_{\omega} T_{\omega'-\omega}$ streams of order ω do this

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations

Reference

More with the happy-making thing

Putting things together:

•

$$n_{\omega} = 2n_{\omega+1} + \sum_{\omega'=\omega+1}^{\Omega} \frac{T_{\omega'-\omega}n_{\omega'}}{\text{absorption}}$$

▶ Substitute in $T_{\omega'-\omega} = T_1(R_T)^{\omega'-\omega-1}$:

$$n_{\omega} = 2n_{\omega+1} + \sum_{\omega'=\omega+1}^{\Omega} T_1(R_T)^{\omega'-\omega-1} n_{\omega'}$$

▶ Shift index to $k = \omega' - \omega$:

$$n_{\omega} = 2n_{\omega+1} + \sum_{k=1}^{\Omega-\omega} T_1(R_T)^{k-1} n_{\omega+k}$$

Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga'

References

Frame 45/121

雪 かくで

More with the happy-making thing

Create Horton ratios:

▶ Divide through by $n_{\omega+1}$:

$$\frac{n_{\omega}}{n_{\omega+1}} = \frac{2n_{\omega+1}}{n_{\omega+1}} + \sum_{k=1}^{\Omega-\omega} T_1(R_T)^{k-1} \frac{n_{\omega+k}}{n_{\omega+1}}$$

- ▶ Left hand side looks good but we have $n_{\omega+k}/n_{\omega+1}$'s hanging around on the right.
- ▶ Recall, we want to show $R_n = n_{\omega}/n_{\omega+1}$ is a constant, independent of ω ...

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations

References

Models

More with the happy-making thing

Finding Horton ratios:

▶ Letting $\Omega \to \infty$, we have

$$\frac{n_{\omega}}{n_{\omega+1}} = 2 + \sum_{k=1}^{\infty} T_1(R_T)^{k-1} \frac{n_{\omega+k}}{n_{\omega+1}}$$
 (1)

- The ratio $n_{\omega+k}/n_{\omega+1}$ can only be a function of k due to self-similarity (which is implicit in Tokunaga's law).
- ▶ The ratio $n_{\omega}/n_{\omega+1}$ is independent of ω and depends only on T_1 and R_T .
- ▶ Can now call $n_{\omega}/n_{\omega+1} = R_n$.
- ▶ Immediately have $n_{\omega+k}/n_{\omega+1} = R_n^{-(k-1)}$.
- ▶ Plug into Eq. (1)...

Branching Networks

Introduction

River Networks

Definitions

Allometry

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton Tokunaga
Reducing Horton
Scaling relations

References

Frame 47/121

Frame 46/121

More with the happy-making thing

Finding Horton ratios:

Now have:

$$R_n = 2 + \sum_{k=1}^{\infty} T_1 (R_T)^{k-1} R_n^{-(k-1)}$$

$$= 2 + T_1 \sum_{k=1}^{\infty} (R_T / R_n)^{k-1}$$

$$= 2 + T_1 \frac{1}{1 - R_T / R_n}$$

► Rearrange to find:

$$(R_n-2)(1-R_T/R_n)=T_1$$

Networks

ntroduction

River Networks Horton ⇔ Tokunaga

Frame 48/121 **回 り**00

More with the happy-making thing

Finding R_n in terms of T_1 and R_T :

- We are here: $(R_n 2)(1 R_T/R_n) = T_1$
- \triangleright $\times R_n$ to find quadratic in R_n :

$$(R_n-2)(R_n-R_T)=T_1R_n$$

$$R_n^2 - (2 + R_T + T_1)R_n + 2R_T = 0$$

Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

ntroduction

Branching

Networks

Frame 49/121

Finding other Horton ratios

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance $1/\rho_{\rm dd}$.
- \blacktriangleright For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq
ho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

▶ Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Networks

River Networks Horton ⇔ Tokunaga

Frame 50/121

ntroduction

Horton and Tokunaga are happy

Altogether then:

$$ightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

▶ Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_T$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Branching Networks

References

Frame 51/121

Horton and Tokunaga are happy

Some observations:

- $ightharpoonup R_n$ and R_ℓ depend on T_1 and R_T .
- ▶ Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- ▶ We'll in fact see that $R_a = R_n$.
- ► Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between statistical distributions. [3, 4]

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton
Tokunaga's Law
Horton
Scaling relations

Reference

Horton and Tokunaga are happy

The other way round

- Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.
- •

$$R_T = R_\ell$$

$$T_1 = R_n - R_\ell - 2 + 2R_\ell/R_n$$
.

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)... Branching Networks

Introduction

River Networks

Definitions

Allometry

Laws

Stream Ordering

tream Ordering

lorton's Laws

bkunaga's Law

lorton ⇔ Tokunaga

leducing Horton

caling relations

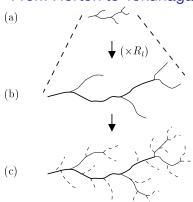
luctuations

References

Frame 53/121

Horton and Tokunaga are friends

From Horton to Tokunaga [2]



- Assume Horton's laws hold for number and length
- Start with an order ω stream
- ► Scale up by a factor of R_ℓ, orders increment
- Maintain drainage density by adding new order 1 streams

Branching Networks

Frame 52/121

回 り00

Introduction River Networks

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations

Reference

Horton and Tokunaga are friends

... and in detail:

- ▶ Must retain same drainage density.
- ▶ Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right).$$

▶ For large ω , Tokunaga's law is the solution—let's check...

Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws

River Networks

lorton's Laws
okunaga's Law
lorton ⇔ Tokunaga
teducing Horton
icaling relations
Juctuations

References

Frame 55/121

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

▶

$$egin{aligned} T_{k+1} &= (R_\ell - 1) \left(\sum_{i=1}^k T_1 R_\ell^{i-1} + 1
ight) \ &= (R_\ell - 1) T_1 \left(rac{R_\ell^{k} - 1}{R_\ell - 1} + 1
ight) \ &\simeq (R_\ell - 1) T_1 rac{R_\ell^{k}}{R_\ell - 1} &= T_1 R_\ell^{k} \quad ... \; ext{yep.} \end{aligned}$$

Branching Networks

Introduction

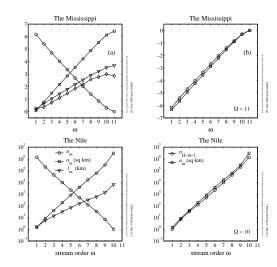
River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations

Reference

Frame 56/121

歩 かへで

Horton's laws of area and number:



- ► In right plots, stream number graph has been flipped vertically.
- ▶ Highly suggestive that $R_n \equiv R_a$...

Branching Networks Introduction River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton Scaling relations Fluctuations Models References

Measuring Horton ratios is tricky:

- How robust are our estimates of ratios?
- ► Rule of thumb: discard data for two smallest and two largest orders.

Branching Networks

Introduction River Networks

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations

Reference

Mississippi:

ω range	R_n	R_a	R_ℓ	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations

References

Frame 60/121

Amazon:

ω range	R_n	R_a	R_ℓ	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws

Horton
Tokul
Reducing Horton
Scaling relations
Fluctuations
Models

Referenc

Frame 61/121

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

- $ightharpoonup a_{\Omega} \propto$ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)
- ► So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega ar{s}_\omega/
ho_{
m dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot 1}_{n_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_{\omega}}$$

$$=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{\omega=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

Branching Networks

Introduction

River Network

Definitions

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations

References

Frame 62/121

Reducing Horton's laws:

Continued ...

$$egin{aligned} & oldsymbol{a}_{\Omega} \propto rac{R_{n}^{\Omega}}{R_{s}} ar{s}_{1} \sum_{\omega=1}^{\Omega} \left(rac{R_{s}}{R_{n}}
ight)^{\omega} \ & = rac{R_{n}^{\Omega}}{R_{s}} ar{s}_{1} rac{R_{s}}{R_{n}} rac{1 - (R_{s}/R_{n})^{\Omega}}{1 - (R_{s}/R_{n})} \ & \sim R_{n}^{\Omega-1} ar{s}_{1} rac{1}{1 - (R_{s}/R_{n})} ext{ as } \Omega
ight.$$

▶ So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton
Tokunaga's Law
Horton
Tokunaga's Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models

Reference

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- ▶ Need to account for sidebranching.
- ▶ Problem set 1 question....

Reducing Horton's laws:

Branching Networks

Introduction

River Network

Definitions

Allometry

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations

References

Frame 64/121

Equipartitioning:

Intriguing division of area:

- \blacktriangleright Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \text{const}}$$

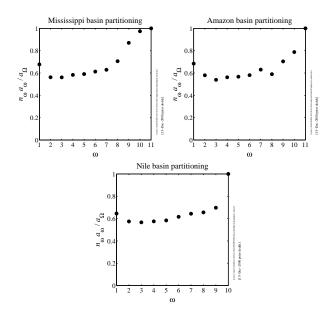
Reason:

$$n_{\omega} \propto (R_n)^{-\omega}$$

$$ar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1}$$

Branching Equipartitioning: Networks

Some examples:



Branching Networks

ntroduction

Frame 66/121

Scaling laws

The story so far:

- ▶ Natural branching networks are hierarchical, self-similar structures
- ▶ Hierarchy is mixed
- ▶ Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}.$
- We have connected Tokunaga's and Horton's laws
- ightharpoonup Only two Horton laws are independent ($R_n = R_a$)
- ► Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks

Frame 65/121

回 り00

ntroduction

Reducing Horton

River Networks

ntroduction

River Networks Scaling relations

Scaling laws

A little further...

- Ignore stream ordering for the moment
- ▶ Pick a random location on a branching network p.
- ► Each point *p* is associated with a basin and a longest stream length
- ▶ Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- ▶ Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \gamma \lesssim 2.0$

Branching Networks

ntroduction

Scaling relations

Frame 69/121

Scaling laws

Probability distributions with power-law decays

- ▶ We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - ► Word frequency (Zipf's law) [24]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- ► A big part of the story of complex systems
- ► Arise from mechanisms: growth, randomness, optimization, ...
- ▶ Our task is always to illuminate the mechanism...

Branching Networks

ntroduction

River Networks

Scaling relations

Frame 70/121

回 り00

Scaling laws

Connecting exponents

- ▶ We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [20, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω .
- \blacktriangleright (We know they deviate from strict laws for low ω and high ω but not too much.)
- ▶ Next: place stick between teeth. Bite stick. Proceed.

Networks

ntroduction

Frame 71/121

Scaling laws

Finding γ :

- Often useful to work with cumulative distributions. especially when dealing with power-law distributions.
- ▶ The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathsf{max}}} P(\ell) \mathrm{d}\ell$$

$$P_{>}(\ell_{*}) = 1 - P(\ell < \ell_{*})$$

Also known as the exceedance probability.

Branching Networks

ntroduction

River Networks Scaling relations

Frame 72/121

母 りゅつ

Scaling laws

Finding γ :

- ▶ The connection between P(x) and $P_{>}(x)$ when P(x)has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} {\color{red}\ell^{-\gamma}} \mathrm{d}\ell$$

$$= \left. rac{\ell^{-\gamma+1}}{-\gamma+1}
ight|_{\ell=\ell_*}^{\ell_{\mathsf{max}}}$$

 $\propto \ell_{**}^{-\gamma+1}$ for $\ell_{\rm max} \gg \ell_{*}$

Branching Networks

ntroduction

Scaling relations

References

Frame 73/121

Scaling laws

Finding γ :

- ▶ Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- ▶ Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate $P_{>}(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

▶ Use Horton's law of stream segments: $s_{\omega}/s_{\omega-1} = R_{s}...$

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations

Referenc

Scaling laws

Finding γ :

- ▶ Set $\ell_* = \ell_\omega$ for some 1 $\ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = rac{ extstyle N_{>}(\ell_{\omega};\Delta)}{ extstyle N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- ► So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} rac{(1 \cdot R_n^{\Omega-\omega'})(ar{s}_1 \cdot R_s^{\omega'-1})}{}$$

Branching Networks

Introduction

River Network

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations

References

Frame 75/121

Scaling laws

Finding γ :

▶ We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{\mathbf{s}}_{1} \cdot R_{s}^{\omega'-1})$$

► Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations

Reference

Frame 76/121

Scaling laws

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n < R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(\frac{R_{n}}{R_{s}}\right)^{\Omega-\omega} \propto \left(\frac{R_{n}}{R_{s}}\right)^{-\omega}$$

again using $\sum_{i=0}^{n} a^{n} = (a^{i+1} - 1)/(a-1)$

Branching Networks

Introduction

Piver Network
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Horton c⇔ Tokunag
Horton Reducing Horton
Scaling relations

Reference

Frame 77/121

Scaling laws

Finding γ :

► Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

- ▶ Need to express right hand side in terms of ℓ_{ω} .
- ▶ Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\ell_\omega \propto R_\ell^\omega = R_s^\omega = e^{\omega \ln R_s}$$

Branching Networks Scaling laws

ntroduction

Scaling relations

Frame 78/121

母 りへで

Branching

Networks

ntroduction

Scaling relations

River Networks

Finding γ :

► Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_\omega^{} - \ln(R_n/R_s) / \ln R_s$$

•

$$= \ell_{\omega}^{-(\ln R_n - \ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Delinitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokun Horton ⇔ Tokun Scaling relations Models References

Branching

Networks

ntroduction

Scaling laws

Finding γ :

► And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Scaling laws

Hack's law: [6]

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect *h* to Horton ratios:

$$\ell_\omega \propto R_s^\omega$$
 and $a_\omega \propto R_n^\omega$

▶ Observe:

$$\ell_\omega \propto oldsymbol{e}^{\omega \ln R_{
m s}} \propto \left(oldsymbol{e}^{\omega \ln R_{
m n}}
ight)^{\ln R_{
m s}/\ln R_{
m n}}$$

$$\propto (R_n^{\omega})^{\ln R_s/\ln R_n} = a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Frame 80/121

Branching Networks

Frame 79/121

母 りへで

Introduction

River Network
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations

References

Frame 81/121

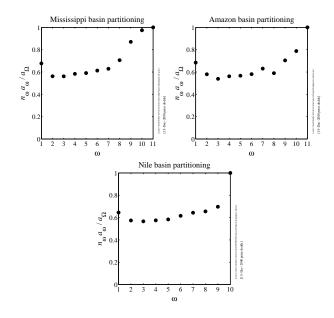
Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: [2]
$\ell \sim L^d$	d
$T_k = T_1 (R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = \frac{R_s}{R_s}$
$n_{\omega}/n_{\omega+1}=R_n$	R_n
$ar{a}_{\omega+1}/ar{a}_{\omega}=R_a$	$R_a = R_n$
$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}= extbf{ extit{R}}_{\ell}$	$R_\ell = {\color{red}R_{\scriptscriptstyle S}}$
$\ell \sim \pmb{a^h}$	$h = \log \frac{R_s}{\log R_n}$
$a\sim L^D$	D = d/h
${\it L}_{\perp} \sim {\it L}^{\it H}$	H = d/h - 1
$P(a) \sim a^{- au}$	au = 2 - h
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^eta$	$\beta = 1 + h$
$\lambda \sim \mathcal{L}^{arphi}$	$arphi= extsf{d}$

Equipartitioning reexamined:

Recall this story:



Equipartitioning

▶ What about

$$P(a) \sim a^{-τ}$$
 ?

▶ Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

- ▶ *P*(*a*) overcounts basins within basins...
- while stream ordering separates basins...

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models

References

母 りへで

Fluctuations

Moving beyond the mean:

▶ Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_{s}$$

- ► Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- ▶ See into the heart of randomness...

Branching Networks

Introduction

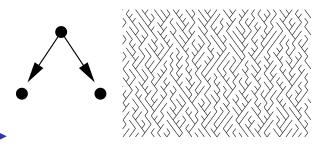
River Network
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling reations

References

Frame 86/121

A toy model—Scheidegger's model

Directed random networks [12, 13]



$$P(\searrow) = P(\swarrow) = 1/2$$

- ► Flow is directed downwards
- ▶ Useful and interesting test case—more later...

Generalizing Horton's laws

Branching

Networks

ntroduction

Fluctuations

Frame 87/121

Branching

Networks

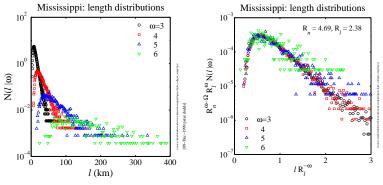
ntroduction

Frame 89/121

River Networks

$$\blacktriangleright \ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow \textit{N}(\ell|\omega) = (R_{\textit{n}}R_{\ell})^{-\omega}F_{\ell}(\ell/R_{\ell}^{\omega})$$

$$ightharpoonup ar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$$

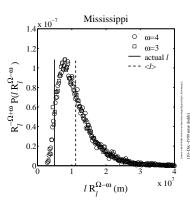


- ► Scaling collapse works well for intermediate orders
- ► All moments grow exponentially with order

Branching Networks Introduction River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Models References

Generalizing Horton's laws

► How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- ► Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %
- Okay.

Generalizing Horton's laws

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10³ km):

basin:	ℓ_{Ω}	$ar{\ell}_{\Omega}$	σ_ℓ	$\ell/ar{\ell}_{\Omega}$	$\sigma_\ell/ar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	а	$ar{a}_{\Omega}$	σ_{a}	$a/ar{a}_\Omega$	$\sigma_{a}/ar{a}_{\Omega}$
Mississippi	а 2.74	\bar{a}_{Ω} 7.55	σ _a 5.58	a/\bar{a}_{Ω} 0.36	σ_a/\bar{a}_Ω 0.74
Mississippi Amazon				,	•
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36	0.74 0.89

Branching Networks

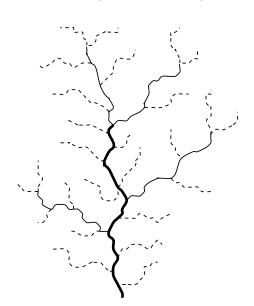
Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations

Reference

Frame 90/121

Combining stream segments distributions:



 Stream segments sum to give main stream lengths

 $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} oldsymbol{s}_{\mu}$

• $P(\ell_{\omega})$ is a convolution of distributions for the s_{ω}

Branching Networks

Introduction

River Networks

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Horton ⇔ Tokunaga

Models

Frame 91/121

歩 かへで

Branching

Networks

ntroduction

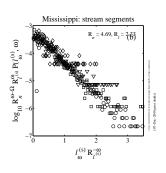
Frame 93/121

990

Generalizing Horton's laws

▶ Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



$$N(s|\omega) = rac{1}{R_n^\omega R_\ell^\omega} F\left(s/R_\ell^\omega
ight)$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq$ 900 m.

Branching Networks

Introduction

River Network

Definitions

Allometry

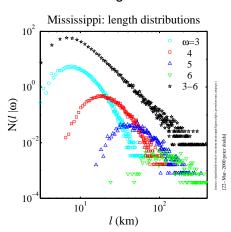
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations

References

Frame 92/121

Generalizing Horton's laws

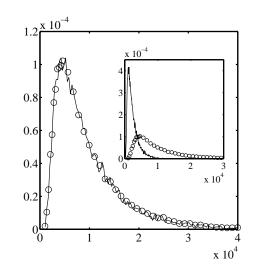
► Next level up: Main stream length distributions must combine to give overall distribution for stream length



- ▶ $P(\ell) \sim \ell^{-\gamma}$
- ► Another round of convolutions [3]
- ► Interesting...

Generalizing Horton's laws

Number and area distributions for the Scheidegger model $P(n_{1,6})$ versus $P(a_6)$.



Branching Networks

Introduction

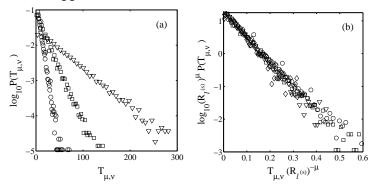
River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga's Reducing Horton
Scaling relations

References

Frame 94/121

Generalizing Tokunaga's law

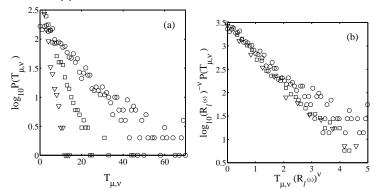
Scheidegger:



- ▶ Observe exponential distributions for $T_{\mu,\nu}$
- Scaling collapse works using R_s

Generalizing Tokunaga's law

Mississippi:



Same data collapse for Mississippi...

Branching Networks

Introduction

River Network

Definitions

Allometry

Laws

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations

References

Frame 96/121

Generalizing Tokunaga's law

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- ► Exponentials arise from randomness.
- ▶ Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

Branching Networks

Frame 95/121

雪 り へ (や

Branching

Networks

ntroduction

Fluctuations

Introduction
River Networks

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations
Models

References

Frame 97/121

回 りゅつ

Generalizing Tokunaga's law

Network architecture:

- Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments

Branching Networks

Introduction

River Networks

Definitions

Allometry

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations

References

Frame 98/121

Generalizing Tokunaga's law

- Follow streams segments down stream from their beginning
- ▶ Probability (or rate) of an order μ stream segment terminating is constant:

$$ilde{p}_{\mu}\simeq 1/(R_{s})^{\mu-1}\xi_{s}$$

- Probability decays exponentially with stream order
- ▶ Inter-tributary lengths exponentially distributed
- ➤ ⇒ random spatial distribution of stream segments

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law

Reducing Horto Scaling relations Fluctuations Models

Referenc

Generalizing Tokunaga's law

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu},\,T_{\mu,
u}) = ilde{p}_{\mu}igg(rac{s_{\mu}-1}{T_{\mu,
u}}igg) p_{
u}^{T_{\mu,
u}} (1-p_{
u}- ilde{p}_{\mu})^{s_{\mu}-T_{\mu,
u}-1}$$

where

- $p_{\nu} =$ probability of absorbing an order ν side stream
- $\tilde{p}_{\mu}=$ probability of an order μ stream terminating
- ▶ Approximation: depends on distance units of s_{μ}
- ► In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Branching Networks

Introduction

River Network

Definitions

Allometry

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations

References

Frame 100/121

Generalizing Tokunaga's law

▶ Now deal with thing:

$$P(s_{\mu},\,T_{\mu,
u}) = ilde{
ho}_{\mu}inom{s_{\mu}-1}{T_{\mu,
u}}
ho_{
u}^{T_{\mu,
u}}(1-
ho_{
u}- ilde{
ho}_{\mu})^{s_{\mu}-T_{\mu,
u}-1}$$

- ▶ Set $(x, y) = (s_{\mu}, T_{\mu,\nu})$ and $q = 1 p_{\nu} \tilde{p}_{\mu}$, approximate liberally.
- Obtain

$$P(x, y) = Nx^{-1/2} [F(y/x)]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

Branching Networks

Introduction

River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reduing Horton
Seduing Horton
Fluctuations

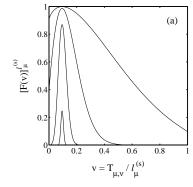
Reference

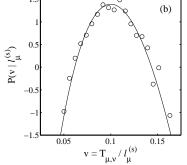
Frame 101/121

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:





Branching Networks

Introduction

River Networks

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations

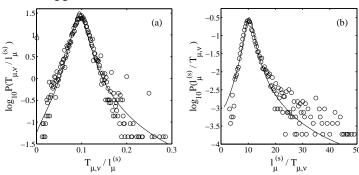
References

Frame 102/121

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:

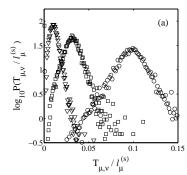


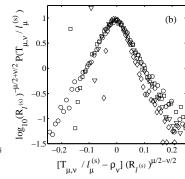
Fluctuations

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:





Branching Networks

Introduction

River Network

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations

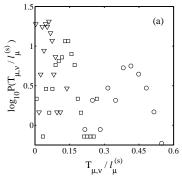
References

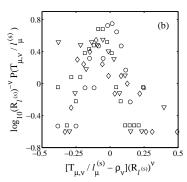
Frame 104/121

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Mississippi:





Branching Networks

Frame 103/121

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations
Models

References

Frame 105/121

990

Models

Random subnetworks on a Bethe lattice [15]

- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [8]
- But Bethe lattices unconnected with surfaces.
- ▶ In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- ► So let's move on...

Branching Networks

Introduction

River Networks

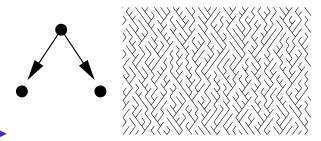
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations

Reference

Frame 107/121

Scheidegger's model

Directed random networks [12, 13]



•

$$P(\searrow) = P(\swarrow) = 1/2$$

► Functional form of all scaling laws exhibited but exponents differ from real world [18, 19, 17]

Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga's Law
Horton tokunag

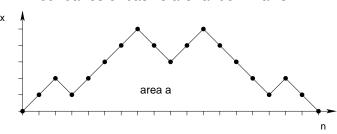
Reference

Frame 108/121

A toy model—Scheidegger's model

Random walk basins:

► Boundaries of basins are random walks



Branching Networks

Introduction

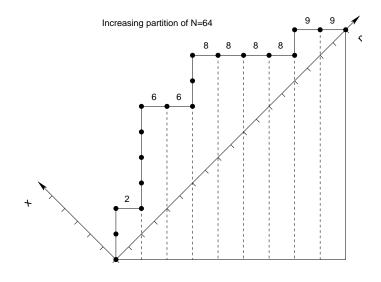
River Networ

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations

References

Frame 109/121

Scheidegger's model



Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations
Models

References

Frame 110/121

一 りへで

Scheidegger's model

Prob for first return of a random walk in (1+1) dimensions:

>

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- ▶ Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- ▶ Note $\tau = 2 h$ and $\gamma = 1/h$.
- ▶ R_n and R_ℓ have not been derived analytically.

Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag

References

Frame 111/121

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [11]

▶ Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d}ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- ► Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- ► And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [9]

Branching Networks ntroduction River Networks

Frame 112/121 **回 り**00

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5-0.7	1.0-1.2

 $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L_{\parallel}^{d}$ (stream self-affinity).

Branching Networks ntroduction References Frame 113/121 母 りへで

References I

- H. de Vries, T. Becker, and B. Eckhardt. Power law distribution of discharge in ideal networks. Water Resources Research, 30(12):3541-3543, December 1994.
- P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf (⊞)
- P. S. Dodds and D. H. Rothman. Geometry of river networks. II. Distributions of component size and number. Physical Review E, 63(1):016116, 2001. pdf (⊞)
- P. S. Dodds and D. H. Rothman. Geometry of river networks. III. Characterization of component connectivity. Physical Review E, 63(1):016117, 2001. pdf (⊞)

Branching Networks

ntroduction

River Networks

References

Frame 114/121

References II

N. Goldenfeld.

Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics.

Addison-Wesley, Reading, Massachusetts, 1992.

J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper. 294-B:45-97, 1957.

R. E. Horton.

Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.

Bulletin of the Geological Society of America, 56(3):275-370, 1945.

Branching Networks

ntroduction

References

Frame 115/121

References III

J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591-594, July 1993.

A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar. Universality classes of optimal channel networks. Science, 272:984-986, 1996. pdf (⊞)

S. D. Peckham.

New results for self-similar trees with applications to river networks.

Water Resources Research, 31(4):1023-1029, April 1995.

Branching Networks ntroduction River Networks

References

Frame 116/121

回 り00

Branching

Networks

ntroduction

References

River Networks

References IV

I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambridge, UK, 1997.

A. E. Scheidegger. A stochastic model for drainage patterns into an intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15-20, 1967.

A. E. Scheidegger. Theoretical Geomorphology. Springer-Verlag, New York, third edition, 1991.

Branching Networks ntroduction River Networks References Frame 117/121 母 りへで

References V

S. A. Schumm.

63:1117-1142, 1952.

Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America, 67:597-646, May 1956.

R. L. Shreve. Infinite topologically random channel networks. Journal of Geology, 75:178-186, 1967.

A. N. Strahler. Hypsometric (area altitude) analysis of erosional topography. Bulletin of the Geological Society of America,

Frame 118/121

References VI

H. Takayasu.

Steady-state distribution of generalized aggregation system with injection.

Physcial Review Letters, 63(23):2563-2565, December 1989.

H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection. Physical Review A, 37(8):3110-3117, April 1988.

M. Takayasu and H. Takayasu. Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345-4347, April 1989.

Branching Networks

ntroduction

River Networks

References

Frame 119/121

References VII

D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. *Water Resources Research*, 26(9):2243–4, September 1990.

E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. *Geophysical Bulletin of Hokkaido University*, 15:1–19, 1966.

E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:1–27, 1978.

Branching Networks

Introduction

Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations

River Networks

References

Frame 120/121

References VIII

E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Branching Networks

Introduction

River Networks

Definitions
Allometry

Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunag
Reducing Horton
Scaling relations
Fluctuations

References

Frame 121/121

