Branching Networks Complex Networks, Course 295A, Spring, 2008

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton (*) Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Outline

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga **Reducing Horton** Scaling relations Fluctuations Models

References

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton (*) Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 2/121

Introduction

Branching networks are useful things:

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- River networks (our focus)
- Cardiovascular networks
- Plants
- Evolutionary trees
- Organizations (only in theory...)

Branching Networks

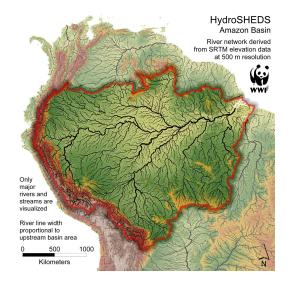
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton \tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 3/121 日 のへで

Branching networks are everywhere...



http://hydrosheds.cr.usgs.gov/ (III)

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton & Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Branching networks are everywhere...

http://en.wikipedia.org/wiki/Image:Applebox.JPG (III)

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton 5 Laws Tokunagas Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Geomorphological networks

Definitions

- Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

Branching Networks

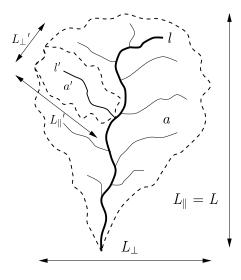
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 7/121 日 のへで

Basic basin quantities: *a*, *I*, L_{\parallel} , L_{\perp} :



- a = drainage basin area
- length of longest (main) stream (which may be fractal)
- ► L = L_{||} = longitudinal length of basin
- $L = L_{\perp}$ = width of basin

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton \Leftrightarrow Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 8/121

Allometry

Isometry: dimensions scale linearly with each other.

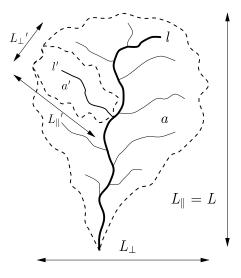
Allometry: dimensions scale nonlinearly.

Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton 'S Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models

References

Basin allometry



Allometric relationships:

- $\ell \propto a^h$
 - $\ell \propto L^d$
- Combine above:

$$a \propto L^{d/h} \equiv L^D$$

Branching Networks

Introduction
River Networks
Definitions
Allomety
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton \⇔ Tokunaga
Reducing Horton
Scaling relations
Hotoels
Models

References

Frame 11/121 日 のへへ 'Laws'

▶ Hack's law (1957)^[6]:

reportedly 0.5 < h < 0.7

 $\ell \propto a^h$

Scaling of main stream length with basin size:

reportedly 1.0 < d < 1.1

 $\ell \propto L_{\parallel}^d$

Basin allometry:

$$L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$$

 $D < 2 \rightarrow$ basins elongate.

Introduction River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton \\$ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 12/121 日 のへで

There are a few more 'laws':^[2]

Relation:	Name or description:	Introduction
		River Networks
		Definitions
$T_k = T_1(R_T)^k$	Tokunaga's law	Allometry Laws
$\ell \sim L^d$	self-affinity of single channels	Stream Ordering Horton's Laws
$n_{\omega}/n_{\omega+1}=R_n$	Horton's law of stream numbers	Tokunaga's Law Horton ⇔ Tokunaga
$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}=m{R}_\ell$	Horton's law of main stream lengths	Reducing Horton Scaling relations
$ar{a}_{\omega+1}/ar{a}_{\omega}=R_a$	Horton's law of basin areas	Fluctuations Models
$ar{s}_{\omega+1}/ar{s}_{\omega}=R_s$	Horton's law of stream segment lengths	References
$L_{\perp} \sim L^H$	scaling of basin widths	
$P(a) \sim a^{- au}$	probability of basin areas	
${\it P}(\ell) \sim \ell^{-\gamma}$	probability of stream lengths	
$\ell \sim a^h$	Hack's law	
$a\sim L^D$	scaling of basin areas	
$\Lambda \sim \pmb{a}^eta$	Langbein's law	
$\lambda \sim L^{arphi}$	variation of Langbein's law	
		Examp 14/101

Branching Networks

Frame 14/121 日 のへで

Reported parameter values: [2]

Parameter:	Real networks:
R _n	3.0–5.0
R _a	3.0-6.0
$R_\ell = R_T$	1.5–3.0
T_1	1.0–1.5
d	1.1 ± 0.01
D	1.8 ± 0.1
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
Н	0.75–0.80
β	0.50-0.70
φ	1.05 ± 0.05

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton (\$ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 15/121

Kind of a mess...

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...

Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton \Cokunaga
Reducing Horton
Scaling relations
Fluctuations
Models

References

Method for describing network architecture:

- Introduced by Horton (1945)^[7]
- Modified by Strahler (1957)^[16]
- Term: Horton-Strahler Stream Ordering^[11]
- Can be seen as iterative trimming of a network.

Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Steean Ordering
Horton's Laws
Tokunaga's Law
Horton 'S Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models

References

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- Use symbol $\omega = 1, 2, 3, \dots$ for stream order.

Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton \Leftrightarrow Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models

References

Frame 19/121 日 のへへ

1. Label all source streams as order $\omega = 1$ and remove.

- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

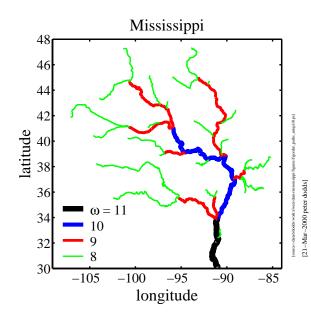
Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton '\to Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models

References

Frame 20/121 日 りへで

Stream Ordering—A large example:



Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Steam Ordering
Hoton's Laws
Tokunaga's Law
Hoton \Leftrightarrow Tokunaga's Law
Hotol \Leftrightarrow Tokunaga's Law
Hotol \Leftrightarrow Tokunaga's Law

References

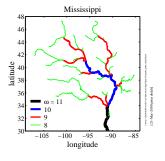
Frame 21/121 日 のへへ

Another way to define ordering:

- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 (ω + 1).
- Simple rule:

$$\omega_{3} = \max(\omega_{1}, \omega_{2}) + \delta_{\omega_{1}, \omega_{2}}$$

where δ is the Kronecker delta.



Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 'd' Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 22/121

SQC~

One problem:

- Resolution of data messes with ordering
- Micro-description changes (e.g., order of a basin may increase)
- ... but relationships based on ordering appear to be robust to resolution changes.

Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Steam Ordering
Horton's Laws
Tokunaga's Law
Horton 'S Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models

References

Utility:

- Stream ordering helpfully discretizes a network.
- Goal: understand network architecture

Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Steam Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Horton
Scaling relations
Fluctuations
Nodels

References

Frame 24/121

Resultant definitions:

- A basin of order Ω has n_ω streams (or sub-basins) of order ω.
 - $n_{\omega} > n_{\omega+1}$
- An order ω basin has area a_{ω} .
- An order ω basin has a main stream length ℓ_{ω} .
- An order ω basin has a stream segment length s_{ω}
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega 1$ streams

Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga% Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Models

References

Frame 25/121 日 のへへ

Self-similarity of river networks

 First quantified by Horton (1945)^[7], expanded by Schumm (1956)^[14]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1}=R_n>1$$

Horton's law of stream lengths:

$$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}=m{R}_{\ell}>1$$

Horton's law of basin areas:

$$ar{a}_{\omega+1}/ar{a}_{\omega}=R_a>1$$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton \tokunaga Reducing Horton Scaling Horton

References

Frame 27/121 日 りへへ

Horton's Ratios:

So... Horton's laws are defined by three ratios:

r

 R_n , R_ℓ , and R_a .

Horton's laws describe exponential decay or growth:

$$n_{\omega} = n_{\omega-1}/R_n$$

= $n_{\omega-2}/R_n^2$
:
= $n_1/R_n^{\omega-1}$
= $n_1 e^{-(\omega-1) \ln R_n}$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Law Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Similar story for area and length:

$$ar{a}_\omega = ar{a}_1 e^{(\omega-1) \ln R_a}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega-1)\ln R_{\ell}}$$

As stream order increases, number drops and area and length increase.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton (+> Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

A few more things:

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network...
- But we need one other piece of information...

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\tokunaga's Law Horton '\tokunaga Reducing Horton Scaling relations Fluctuations Models

References

A bonus law:

Horton's law of stream segment lengths:

$$ar{s}_{\omega+1}/ar{s}_{\omega}=R_s>1$$

• Can show that $R_s = R_\ell$.

Branching Networks

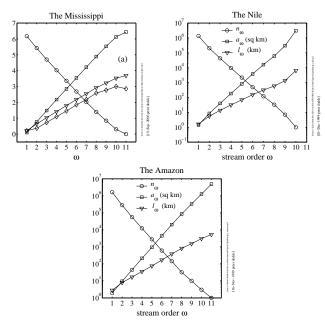
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton (+> Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 31/121 日 のへで

Horton's laws in the real world:



Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 32/121 日 のへへ

Horton's laws-at-large

Blood networks:

- Horton's laws hold for sections of cardiovascular networks
- Measuring such networks is tricky and messy...
- Vessel diameters obey an analogous Horton's law.

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton (+> Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Observations:

Horton's ratios vary:

R _n	3.0–5.0
Ra	3.0–6.0
R_ℓ	1.5–3.0

- No accepted explanation for these values.
- Horton's laws tell us how quantities vary from level to level ...
- ... but they don't explain how networks are structured.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton (+> Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Delving deeper into network architecture:

- Tokunaga (1968) identified a clearer picture of network structure ^[21, 22, 23]
- As per Horton-Strahler, use stream ordering.
- Focus: describe how streams of different orders connect to each other.
- Tokunaga's law is also a law of averages.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws **Tokunaga's Law** Horton \therefore Tokunaga Reducing Horton Scaling Horton Scaling Horton Scaling Horton Scaling Horton Scaling Horton Scaling Horton

References

Frame 36/121 日 のへで

Network Architecture

Definition:

*T*_{μ,ν} = the average number of side streams of order
 ν that enter as tributaries to streams of order μ

- µ ≥ ν + 1
- Recall each stream segment of order μ is 'generated' by two streams of order μ – 1
- These generating streams are not considered side streams.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws **Tokunaga's Law** Horton \therefore Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Network Architecture

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,
u} = T_{\mu-
u}$$

Property 2: Number of side streams grows exponentially with difference in orders:

 $T_{\mu,\nu} = T_1 (R_T)^{\mu-\nu-1}$

We usually write Tokunaga's law as:

 $T_k = T_1 (R_T)^{k-1}$ where $R_T \simeq 2$

Branching Networks

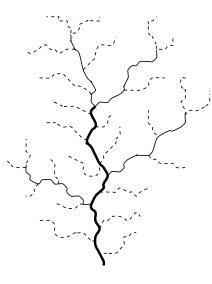
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 38/121 日 りへへ

Tokunaga's law—an example:



Branching Networks

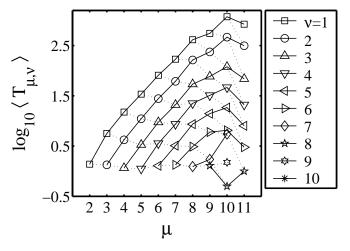
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

The Mississippi

A Tokunaga graph:



Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\$ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's law has three parameters and Tokunaga has two parameters.
- R_n , R_ℓ , and R_s versus T_1 and R_T .
- To make a connection, clearest approach is to start with Tokunaga's law...
- ▶ Known result: Tokunaga → Horton^[21, 22, 23, 10, 2]

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '+ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Let us make them happy

We need one more ingredient: Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.

In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream segment lengths}}{{
m basin area}} = rac{\sum_{\omega=1}^{\Omega} n_{\omega} s_{\omega}}{a_{\Omega}}$$

Branching Networks

Introduction

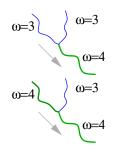
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 43/121 日 のへで

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_ω, the number of streams of order ω in terms of other n_{ω'}, ω' > ω.
- Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega + 1...$
 - $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n'_{\omega} T_{\omega'-\omega}$ streams of order ω do this

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 'd' Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Putting things together:

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

Substitute in $T_{\omega'-\omega} = T_1(R_T)^{\omega'-\omega-1}$:

$$n_{\omega} = 2n_{\omega+1} + \sum_{\omega'=\omega+1}^{\Omega} T_1(R_T)^{\omega'-\omega-1}n_{\omega'}$$

Shift index to $k = \omega' - \omega$:

$$n_{\omega} = 2n_{\omega+1} + \sum_{k=1}^{\Omega-\omega} T_1(R_T)^{k-1} n_{\omega+k}$$

 $\omega' = \omega + 1$

Branching Networks

Introduction

River Networks Horton ⇔ Tokunaga

References

Frame 45/121 a sa c

Create Horton ratios:

• Divide through by $n_{\omega+1}$:

$$\frac{n_{\omega}}{n_{\omega+1}} = \frac{2\underline{n}_{\omega+1}}{\underline{n}_{\omega+1}} + \sum_{k=1}^{\Omega-\omega} T_1(R_T)^{k-1} \frac{n_{\omega+k}}{\underline{n}_{\omega+1}}$$

- ► Left hand side looks good but we have n_{ω+k}/n_{ω+1}'s hanging around on the right.
- Recall, we want to show R_n = n_ω/n_{ω+1} is a constant, independent of ω...

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton & Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Finding Horton ratios:

• Letting $\Omega \to \infty$, we have

$$\frac{n_{\omega}}{n_{\omega+1}} = 2 + \sum_{k=1}^{\infty} T_1(R_T)^{k-1} \frac{n_{\omega+k}}{n_{\omega+1}}$$
(1)

- ► The ratio n_{w+k}/n_{w+1} can only be a function of k due to self-similarity (which is implicit in Tokunaga's law).
- The ratio n_ω/n_{ω+1} is independent of ω and depends only on T₁ and R_T.
- Can now call $n_{\omega}/n_{\omega+1} = R_n$.
- Immediately have $n_{\omega+k}/n_{\omega+1} = R_n^{-(k-1)}$.
- Plug into Eq. (1)...

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 'S Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 47/121 日 のへへ

Finding Horton ratios:

► Now have:

$$R_n = 2 + \sum_{k=1}^{\infty} T_1(R_T)^{k-1} R_n^{-(k-1)}$$
$$= 2 + T_1 \sum_{k=1}^{\infty} (R_T/R_n)^{k-1}$$
$$= 2 + T_1 \frac{1}{1 - R_T/R_n}$$

Rearrange to find:

$$(R_n - 2)(1 - R_T/R_n) = T_1$$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 48/121 日 のへへ

Finding R_n in terms of T_1 and R_T :

- We are here: $(R_n 2)(1 R_T/R_n) = T_1$
- $\times R_n$ to find quadratic in R_n :

$$(R_n-2)(R_n-R_T)=T_1R_n$$

$$R_n^2 - (2 + R_T + T_1)R_n + 2R_T = 0$$

Solution:

$$R_n = \frac{(2+R_T+T_1) \pm \sqrt{(2+R_T+T_1)^2 - 8R_T}}{2}$$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Hortotalions Fluctuations Models

References

Frame 49/121

Finding other Horton ratios

Connect Tokunaga to R_s

- Now use uniform drainage density ρ_{dd}.
- Assume side streams are roughly separated by distance 1/p_{dd}.
- For an order ω stream segment, expected length is

$$\bar{\boldsymbol{s}}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton - Stokunaga Reducing Horton Scaling relations Fluctuations Models

References

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

• Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_T$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Huctuations Models

References

Horton and Tokunaga are happy

Some observations:

- R_n and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between statistical distributions.^[3, 4]

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Horton and Tokunaga are happy

The other way round

► Note: We can invert the expressions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell,$$

$$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)... Branching Networks

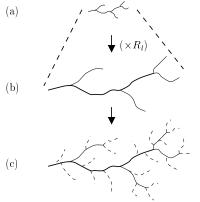
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Horton and Tokunaga are friends

From Horton to Tokunaga^[2]



- Assume Horton's laws hold for number and length
- Start with an order ω stream
- Scale up by a factor of *Rℓ*, orders increment
- Maintain drainage density by adding new order 1 streams

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law **Horton 's Tokunaga** Reducing Horton Scaling relations Fluctuations Models

References

Frame 54/121 日 のへへ

Horton and Tokunaga are friends

... and in detail:

- Must retain same drainage density.
- ► Add an extra (*R*_ℓ 1) first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1}=(R_{\ell}-1)\left(\sum_{i=1}^{k}T_{i}+1\right).$$

For large ω, Tokunaga's law is the solution—let's check...

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law **Horton & Tokunaga** Reducing Horton Scaling relations Fluctuations Models

References

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$
$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

$$\simeq (R_{\ell}-1)T_1rac{R_{\ell}^{k}}{R_{\ell}-1} = T_1R_{\ell}^{k}$$
 ... yep.

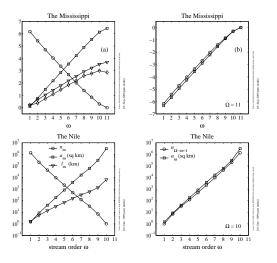
Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton & Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Horton's laws of area and number:



Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Stream Ordening
Horton <> Tokunaga Law
Lations
Fluctuations
Fluctuations
Fluctuations

References

- In right plots, stream number graph has been flipped vertically.
- Highly suggestive that $R_n \equiv R_a$...

Frame 58/121 日 うくへ

Measuring Horton ratios is tricky:

- How robust are our estimates of ratios?
- Rule of thumb: discard data for two smallest and two largest orders.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\to Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 59/121

Mississippi:

ω range	R _n	R _a	R_ℓ	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2,5]	4.86	4.96	2.42	2.31	1.02
[2,7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3 , 6]	4.70	4.83	2.40	2.35	1.03
[3 , 8]	4.60	4.79	2.38	2.34	1.04
[4 , 6]	4.69	4.81	2.40	2.36	1.02
[4 , 8]	4.57	4.77	2.38	2.34	1.05
[5 , 7]	4.68	4.83	2.36	2.29	1.03
[6 , 7]	4.63	4.76	2.30	2.16	1.03
[7,8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Hoddels

References

Frame 60/121 団 のへへ

Amazon:

ω range	R _n	R _a	R_ℓ	R_s	R_a/R_n
[2,3]	4.78	4.71	2.47	2.08	0.99
[2,5]	4.55	4.58	2.32	2.12	1.01
[2,7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3 , 7]	4.35	4.49	2.20	2.10	1.03
[4,6]	4.38	4.54	2.22	2.18	1.03
[5,6]	4.38	4.62	2.22	2.21	1.06
[6,7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Hoddels

References

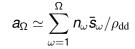
Frame 61/121

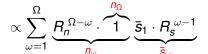
Reducing Horton's laws:

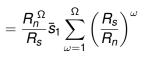
Rough first effort to show $R_n \equiv R_a$:

 a_Ω ∝ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)

So:







Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordoring Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 62/121 日 のへで

Reducing Horton's laws:

Continued ...

$$\begin{aligned} \mathbf{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ &= \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \\ &\sim \frac{R_n^{\Omega-1} \bar{s}_1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow \end{aligned}$$

So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 63/121 日 のへへ

Reducing Horton's laws:

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- Problem set 1 question....

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton (*) Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 64/121

Equipartitioning:

Intriguing division of area:

- Observe: Combined area of basins of order ω independent of ω.
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \mathrm{const}}$$

Reason:

$$egin{aligned} n_\omega \propto (R_n)^{-\omega} \ ar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1} \end{aligned}$$

Branching Networks

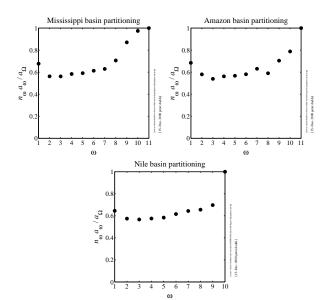
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\$ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Equipartitioning:

Some examples:



Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 66/121

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent $(R_n = R_a)$
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton
tokunaga Reducing Horton Scaling relations Fluctuations Models

References

A little further...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the *p*'s drainage basin has area *a*? *P*(*a*) ∝ *a*^{-τ} for large *a*
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∝ ℓ^{-γ} for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Huctuations Models

References

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[24]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '+ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 70/121 日 のへへ

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Plan: Derive P(a) ∝ a^{-τ} and P(ℓ) ∝ ℓ^{-γ} starting with Tokunaga/Horton story ^[20, 1, 2]
- ▶ Let's work on *P*(ℓ)...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$\mathcal{P}_{>}(\ell_{*})=\mathcal{P}(\ell>\ell_{*})=\int_{\ell=\ell_{*}}^{\ell_{\mathsf{max}}}\mathcal{P}(\ell)\mathrm{d}\ell$$

$$P_>(\ell_*) = 1 - P(\ell < \ell_*)$$

Also known as the exceedance probability.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Huctuations Models

References

Frame 72/121 日 のへで

Finding γ :

- The connection between P(x) and P_>(x) when P(x) has a power law tail is simple:
- Given P(ℓ) ∼ ℓ^{−γ} large ℓ then for large enough ℓ_{*}

$$\mathcal{P}_{>}(\ell_{*})=\int_{\ell=\ell_{*}}^{\ell_{\max}}\mathcal{P}(\ell)\,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\max}} \ell^{-\gamma} \mathrm{d}\ell$$
 $\ell^{-\gamma+1} \mid^{\ell_{\max}}$

$$= \frac{1}{-\gamma + 1}\Big|_{\ell = \ell_*}$$

$$\propto \ell_*^{-\gamma+1}$$
 for $\ell_{\mathsf{max}} \gg \ell_*$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 73/121 日 のへへ

Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length > l_{*}
- Assume some spatial sampling resolution Δ
- Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate P_>(ℓ_{*}) as

$$P_{>}(\ell_{*}) = \frac{N_{>}(\ell_{*};\Delta)}{N_{>}(0;\Delta)}$$

where $N_>(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

► Use Horton's law of stream segments: $s_{\omega}/s_{\omega-1} = R_s...$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Huctuations Models

References

Finding γ :

• Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = \frac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- A's cancel
- Denominator is $a_{\Omega}\rho_{dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordoring Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Finding γ :

► We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'})(ar{s}_1 \cdot R_s^{\omega'-1}) \, .$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(rac{R_s}{R_n}
ight)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from ω" = 0 to ω" = Ω − ω − 1 (equivalent to ω' = Ω down to ω' = ω + 1)

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 76/121 日 のへで

Finding γ :

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}
ight)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}
ight)^{\omega''}$$

• Since $R_n < R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using $\sum_{i=0}^{n} a^{n} = (a^{i+1} - 1)/(a - 1)$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 77/121 日 のへで

Finding γ :

Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

- Need to express right hand side in terms of *ℓ*_ω.
- Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\ell_\omega \propto {\it R}_\ell^\omega = {\it R}_{\it s}^\omega = {\it e}^{\omega \ln {\it R}_{\it s}}$$

Branching Networks

Introduction

River Networks

Definitions

Allometry
Laws
Stream Ordering
Horton's Laws
Fokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Hotdels

References

Frame 78/121 日 のへで

Finding γ :

► Therefore:

$$P_>(\ell_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto {m \ell}_{\omega} - \ln({\it R}_{\it n}/{\it R}_{\it s})/\ln{\it R}_{\it s}$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Huctuations Models

References

Frame 79/121 日 のへへ

Finding γ :

And so we have:

 $\gamma = \ln \textit{R}_\textit{n} / \ln \textit{R}_\textit{s}$

Proceeding in a similar fashion, we can show

 $\tau = 2 - \ln R_s / \ln R_n = 2 - 1 / \gamma$

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Hack's law: [6]

• Typically observed that $0.5 \lesssim h \lesssim 0.7$.

Use Horton laws to connect h to Horton ratios:

$$\ell_\omega \propto R_s^\omega$$
 and $a_\omega \propto R_n^\omega$

 $\ell \propto a^h$

Observe:

$$\ell_{\omega} \propto \boldsymbol{e}^{\omega \ln R_s} \propto \left(\boldsymbol{e}^{\omega \ln R_n}
ight)^{\ln R_s / \ln R_n}$$

$$\propto (R_n^{\omega})^{\ln R_s / \ln R_n} = a_{\omega}^{\ln R_s / \ln R_n} \Rightarrow \boxed{h = \ln R_s / \ln R_n}$$

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Holectuations

References

Frame 81/121 日 かへで

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: ^[2]
$\ell \sim L^d$	d
$T_k = T_1 (R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = R_s$
$n_{\omega}/n_{\omega+1}=R_n$	R _n
$ar{a}_{\omega+1}/ar{a}_{\omega}=R_a$	$R_a = R_n$
$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}=m{R}_\ell$	$R_\ell = R_s$
$\ell \sim a^h$	$h = \log \frac{R_s}{\log R_n}$
$a\sim L^D$	D = d/h
$L_\perp \sim L^H$	H = d/h - 1
$P(a) \sim a^{- au}$	$ au = 2 - \mathbf{h}$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim \pmb{a}^eta$	$\beta = 1 + h$
$\lambda \sim L^{arphi}$	$arphi = oldsymbol{d}$

Branching Networks

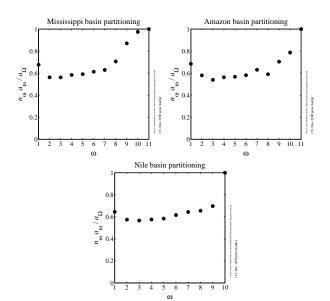
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 82/121 日 のへへ

Equipartitioning reexamined: Recall this story:



Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models References

Frame 83/121

Equipartitioning

What about

$$P(a) \sim a^{- au}$$
 ?

Since $\tau > 1$, suggests no equipartitioning:

$$a {\it P}(a) \sim a^{- au+1}
eq {
m const}$$

- P(a) overcounts basins within basins...
- while stream ordering separates basins...

Branching Networks

Introduction
River Networks
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Horton ⇔ Tokunaga
Reducing Horton
Scaling relations
Fluctuations
Fluctuations
Models

References

Fluctuations

Moving beyond the mean:

 Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_s$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Branching Networks

Introduction

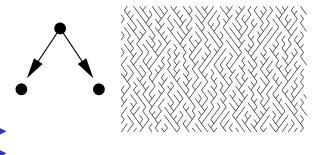
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\$ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 86/121 日 のへで

A toy model—Scheidegger's model

Directed random networks [12, 13]



$$P(\searrow) = P(\swarrow) = 1/2$$

- Flow is directed downwards
- Useful and interesting test case—more later...

Branching Networks

Introduction

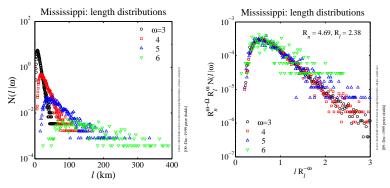
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 87/121 日 のへへ

•
$$\bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$

• $\bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$



- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Branching Networks

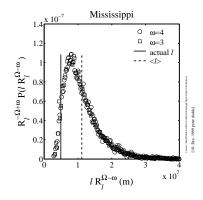
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations **Fluctuations** Models

References

Frame 88/121 日 のへで

How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- Predicted Mean length
 = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %
- Okay.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\> Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 89/121 日 のへへ

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10³ km):

basin:	ℓ_{Ω}	$ar{\ell}_{\Omega}$	σ_ℓ	$\ell/ar{\ell}_\Omega$	$\sigma_\ell/ar{\ell}_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	а	$ar{a}_{\Omega}$	σ_{a}	$a/ar{a}_\Omega$	$\sigma_{a}/\bar{a}_{\Omega}$
Mississippi	а 2.74	ā _Ω 7.55	σ _a 5.58	a/ā _Ω 0.36	$\sigma_a/\bar{a}_{\Omega}$ 0.74
Mississippi Amazon	~		~	,	
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36 0.60	0.74 0.89

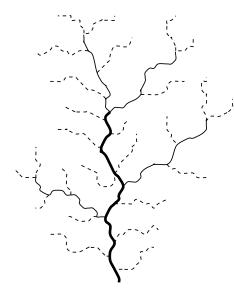
Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Combining stream segments distributions:



 Stream segments sum to give main stream lengths

$$\ell_\omega = \sum_{\mu=1}^{\mu=\omega} s_\mu$$

 P(ℓ_ω) is a convolution of distributions for the s_ω

Branching Networks

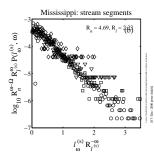
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton \tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Sum of variables ℓ_ω = Σ^{μ=ω}_{μ=1} s_μ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



$$egin{aligned} \mathcal{N}(s|\omega) &= rac{1}{R_n^\omega R_\ell^\omega} \mathcal{F}\left(s/R_\ell^\omega
ight) \ \mathcal{F}(x) &= e^{-x/\xi} \end{aligned}$$

Mississippi: $\xi \simeq$ 900 m.

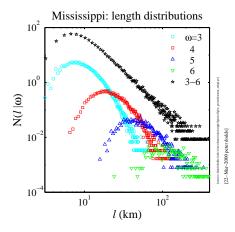
Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton + Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

 Next level up: Main stream length distributions must combine to give overall distribution for stream length



► $P(\ell) \sim \ell^{-\gamma}$

- Another round of convolutions^[3]
- Interesting...

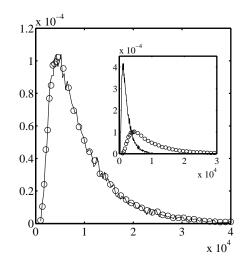
Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '+ Tokunaga Reducing Horton Scalling relations **Fluctuations** Models

References

Number and area distributions for the Scheidegger model $P(n_{1,6})$ versus $P(a_6)$.



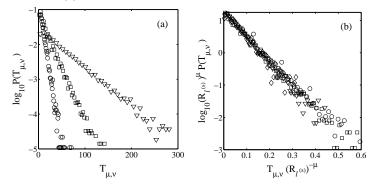
Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\tokunaga's Law Horton '\tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Scheidegger:



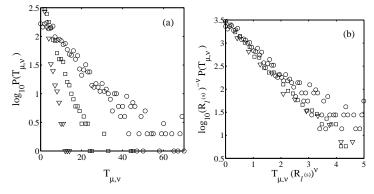
- Observe exponential distributions for T_{μ,ν}
- Scaling collapse works using R_s

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton & Tokunaga Reducing Horton Scaling relations **Fluctuations** Models

References



Same data collapse for Mississippi...

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- Exponentials arise from randomness.
- Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

Branching Networks

Introduction

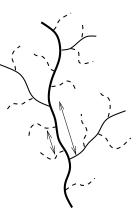
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton + Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 97/121 日 のへで

Network architecture:

- Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments



Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton (+> Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

 $\mu - 2$

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order µ stream segment terminating is constant:

$$ilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- \blacktriangleright \Rightarrow random spatial distribution of stream segments

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '+ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 99/121 日 のへへ

 Joint distribution for generalized version of Tokunaga's law:

$${\cal P}(s_{\mu}, T_{\mu,
u}) = ilde{
ho}_{\mu} inom{s_{\mu} - 1}{T_{\mu,
u}} p_{
u}^{T_{\mu,
u}} (1 -
ho_{
u} - ilde{
ho}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1} \, .$$

where

- p_{ν} = probability of absorbing an order ν side stream
- $\tilde{p}_{\mu} = \text{probability of an order } \mu \text{ stream terminating}$
- Approximation: depends on distance units of s_µ
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton \therefore Tokunaga Reducing Horton Scaling Horton Scaling Horton Scaling Horton Models

References

Now deal with thing:

$$P(s_{\mu}, T_{\mu, \nu}) = ilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu,
u}}
ho_{
u}^{T_{\mu,
u}} (1 -
ho_{
u} - ilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

Set (x, y) = (s_µ, T_{µ,ν}) and q = 1 − p_ν − p̃_µ, approximate liberally.

Obtain

$$P(x,y) = Nx^{-1/2} \left[F(y/x) \right]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}$$

Branching Networks

Introduction

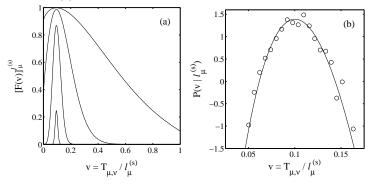
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 101/121 日 りへへ

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Branching Networks

Introduction

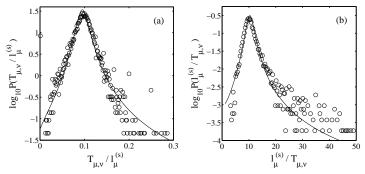
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 102/121 日 のへへ

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Branching Networks

Introduction

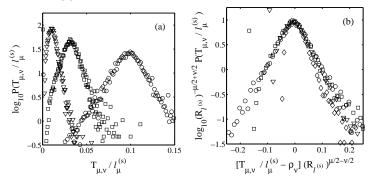
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton & Tokunaga Reducing Horton Scaling relations **Fluctuations** Models

References

Frame 103/121 日 のへへ

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Branching Networks

ntroduction

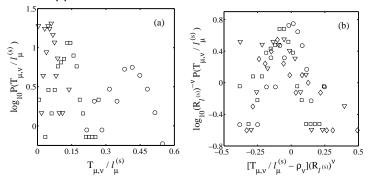
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '+ Tokunaga Reducing Horton Scalling relations **Fluctuations** Models

References

Frame 104/121 回 のへで

• Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Mississippi:



Branching Networks

Introduction

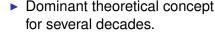
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Models

1 MAN

Random subnetworks on a Bethe lattice [15]



- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[8]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- So let's move on...

Branching Networks

Introduction

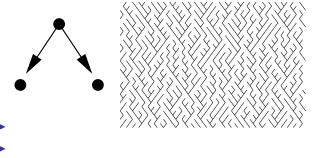
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton 's Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 107/121 日 りへへ

Scheidegger's model

Directed random networks [12, 13]



$$P(\searrow) = P(\swarrow) = 1/2$$

 Functional form of all scaling laws exhibited but exponents differ from real world^[18, 19, 17]

Branching Networks

Introduction

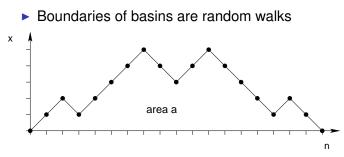
River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Horton's Laws Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Fluctuations Models

References

Frame 108/121 日 のへへ

A toy model—Scheidegger's model

Random walk basins:



Branching Networks

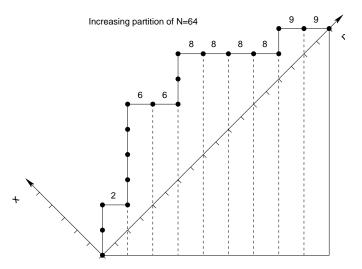
Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 109/121 日 のへへ

Scheidegger's model



Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Fluctuations Models

References

Frame 110/121 日 のへへ

Scheidegger's model

Prob for first return of a random walk in (1+1) dimensions:

$$P(n)\sim rac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

• Typical area for a walk of length *n* is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$

Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.

• Note
$$\tau = 2 - h$$
 and $\gamma = 1/h$.

• R_n and R_ℓ have not been derived analytically.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [11]

► Landscapes h(x) evolve such that energy dissipation *ċ* is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d}ec{r} \ (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[9]

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokuraga's Law Horton ⇔ Tokuraga Reducing Horton Scaling relations Fluctuations Models

References

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5–0.7	1.0–1.2

 $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity).

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Fluctuations Models

References

Frame 113/121 日 のへへ

References I

- H. de Vries, T. Becker, and B. Eckhardt.
 Power law distribution of discharge in ideal networks.
 Water Resources Research, 30(12):3541–3543,
 December 1994.
- P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf (⊞)
- P. S. Dodds and D. H. Rothman.

Geometry of river networks. II. Distributions of component size and number.

Physical Review E, 63(1):016116, 2001. pdf (⊞)

P. S. Dodds and D. H. Rothman.
 Geometry of river networks. III. Characterization of component connectivity.
 Physical Review E, 63(1):016117, 2001. pdf (⊞)

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton \therefore Tokunaga Reducing Horton Scaling Horton

References

Frame 114/121

同 う へ へ

References II

N. Goldenfeld.

Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics.

Addison-Wesley, Reading, Massachusetts, 1992.

J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

R. E. Horton.

Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.

Bulletin of the Geological Society of America, 56(3):275–370, 1945.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton \therefore Tokunaga Reducing Horton Scaling Horton Scaling Horton Scaling Horton Scaling Horton Scaling Horton Scaling Horton

References

Frame 115/121

同 う へ へ

References III

J. W. Kirchner.

Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. *Geology*, 21:591–594, July 1993.

 A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar.
 Universality classes of optimal channel networks. *Science*, 272:984–986, 1996. pdf (⊞)

S. D. Peckham.

New results for self-similar trees with applications to river networks.

Water Resources Research, 31(4):1023–1029, April 1995.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\tokunaga's Law Horton '\tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 116/121 日 りへで

References IV

I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997.

A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15–20, 1967.

A. E. Scheidegger.

Theoretical Geomorphology. Springer-Verlag, New York, third edition, 1991.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\> Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 117/121 日 のへへ

References V

S. A. Schumm.

Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America,

67:597–646, May 1956.

R. L. Shreve.

Infinite topologically random channel networks. *Journal of Geology*, 75:178–186, 1967.

A. N. Strahler.

Hypsometric (area altitude) analysis of erosional topography. Bulletin of the Geological Society of America,

63:1117-1142, 1952.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\> Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 118/121 日 りへで

References VI

H. Takayasu.

Steady-state distribution of generalized aggregation system with injection.

Physcial Review Letters, 63(23):2563–2565, December 1989.

H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection.

Physical Review A, 37(8):3110–3117, April 1988.

🔋 M. Takayasu and H. Takayasu.

Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345-4347, April 1989.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton \therefore Tokunaga Reducing Horton Scaling Horton

References

References VII

D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. *Water Resources Research*, 26(9):2243–4, September 1990.

E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. *Geophysical Bulletin of Hokkaido University*, 15:1–19, 1966.

E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:1–27, 1978.

Branching Networks

Introduction

River Networks Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Horton '\> Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

Frame 120/121 日 りへへ

References VIII

E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Branching Networks

Introduction

River Networks

References

Frame 121/121 P $\neg \land \land \land$