Optimal Supply Networks III: Redistribution

Last updated: 2024/10/15, 18:11:50 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024-2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Outline

Distributed Sources

Size-density law Cartograms

A reasonable derivation

Global redistribution

Public versus Private

References

Many sources, many sinks

How do we distribute sources?

- Rocus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- & Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
- We'll follow work by Stephan (1977, 1984) [4, 5], Gastner and Newman (2006) [2], Um et al. (2009) [6], and work cited by them.

Optimal Supply Networks III

Optimal Supply Networks III

Distributed Source

Optimal Supply

Distributed Sources

Networks III

Solidifying the basic problem

- \mathcal{L} Given a region with some population distribution ρ , most

Optimal source allocation: Size-density law

- average distance between an individual's residence and the

- likely uneven.
- Given resources to build and maintain N facilities.
- Q: How do we locate these N facilities so as to minimize the nearest facility?

"Optimal design of spatial distribution networks" Gastner and Newman. Phys. Rev. E, 74, 016117, 2006. [2]

- Approximately optimal location of 5000 facilities.
- Based on 2000 Census data.
- Simulated annealing + Voronoi tessellation.

Distributed Sources

Optimal Supply Networks III

Distributed Sources

Optimal Supply Networks III

Optimal source allocation

- & Optimal facility density $\rho_{\rm fac}$ vs. population density $\rho_{\rm pop}$.
- $\ \ \, \mbox{$ \mathcal{R} $} \ \, \mbox{Fit is} \, \rho_{\rm fac} \propto \rho_{\rm pop}^{0.66} \, \mbox{with} \, r^2 = 0.94.$
- & Looking good for a 2/3 power ...

Optimal source allocation

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region.

Optimal source allocation

Distributed Sources

Optimal Supply Networks III

References

"Territorial division: The least-time constraint behind the formation of subnational boundaries" G. Edward Stephan,

Science, **196**, 523–524, 1977. [4]

- We first examine Stephan's treatment (1977) [4,5]
- Zipf-like approach: invokes principle of minimal effort.
- Also known as the Homer Simpson principle.

Optimal Supply Networks III 7 of 47

Optimal Supply Networks III

Distributed Source

Optimal Supply Networks III

Distributed Source

Optimal source allocation

- & Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- & Build up a general cost function based on time expended to access and maintain center.
- \clubsuit Write average travel distance to center as $\langle d \rangle$ and assume average speed of travel is $\langle v \rangle$.
- $\mbox{\&}$ Assume isometry: average travel distance $\langle d \rangle$ will be on the length scale of the region which is $\sim A^{1/2}$
- Average time expended per person in accessing facility is therefore

$$\langle d \rangle / \langle v \rangle = cA^{1/2} / \langle v \rangle$$

where c is an unimportant shape factor.

Optimal source allocation

- Next assume facility requires regular maintenance (person-hours per day).
- & Call this quantity τ .
- & If burden of mainenance is shared then average cost per person is τ/P where P = population.
- \Re Replace P by $\rho_{pop}A$ where ρ_{pop} is density.
- Important assumption: uniform density.
- Total average time cost per person:

$$T = \left< d \right> / \left< v \right> + \tau / (\rho_{\rm pop} A) = c A^{1/2} / \left< v \right> + \tau / (\rho_{\rm pop} A).$$

Now Minimize with respect to $A \dots$

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \left< v \right> + \tau / (\rho_{\rm pop} A) \right) \\ &= \frac{c}{2 \left< v \right> A^{1/2}} - \frac{\tau}{\rho_{\rm pop} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(\frac{2 \left\langle v \right\rangle \tau}{c \rho_{\mathsf{pop}}}\right)^{2/3} \propto \rho_{\mathsf{pop}}^{-2/3}$$

 \clubsuit # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m po}^{2/2}$$

Groovy ...

The PoCSverse Optimal Supply Networks III Optimal source allocation

An issue:

- \mathbb{A} Maintenance (τ) is assumed to be independent of population and area (P and A)
- Stephan's online book "The Division of Territory in Society" is here .
- \mathfrak{S} (It used to be here \mathbb{Z} .)
- The Readme
 is well worth reading (1995).

Cartograms

Standard world map:

Optimal Supply Networks III

Optimal Supply Networks III 14 of 47

Cartograms

Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- & Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\rm pop} - \frac{\partial \rho_{\rm pop}}{\partial t} = 0. \label{eq:rhoppop}$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- Diffusion is constrained by boundary condition of surrounding area having density $\langle \rho \rangle_{\rm non}$.

Cartograms

Child mortality:

The PoCSverse Optimal Supply Networks III

The PoCSverse Optimal Supply Networks III

18 of 47 Distributed Source

Optimal source allocation

$$\begin{split} \frac{\partial I}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \left\langle v \right\rangle + \tau / (\rho_{\text{pop}}) \right. \\ &= \frac{c}{2 \left\langle v \right\rangle A^{1/2}} - \frac{\tau}{\rho_{\text{pop}} A^2} = 0 \end{split}$$

$$A = \left(\frac{2\langle v \rangle \tau}{c\rho_{\text{pop}}}\right)^{2/3} \propto \rho_{\text{pop}}^{-2/3}$$

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

Cartograms

Optimal Supply Networks III

Cartogram of countries 'rescaled' by population:

Cartograms Optimal Supply Networks III

Energy consumption:

Distributed Source

Optimal Supply Networks III

Cartograms

Gross domestic product:

The PoCSverse Optimal Supply Networks III 21 of 47

People living with HIV:

Cartograms

Optimal Supply Networks III

24 of 47 Cartograms

Optimal Supply Networks III

normalized distribution p-median random populationproportional 0.05 0.025 interior angle of Voronoi cell (degrees)

From Gastner and Newman (2006) [2]

Cartogram's Voronoi cells are somewhat hexagonal.

The PoCSverse Optimal Supply Networks III

27 of 47 Distributed Source

The PoCSverse Optimal Supply Networks III

Distributed Source

Cartograms

Greenhouse gas emissions:

The PoCSverse Optimal Supply Networks III Distributed Source

Cartograms

- The preceding sampling of Gastner & Newman's cartograms
- A larger collection can be found at worldmapper.org .

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- $\ \, \& \ \,$ Assume given a fixed population density $\rho_{\rm pop}$ defined on a spatial region Ω .
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \textcolor{red}{\rho_{\mathsf{pop}}(\vec{x}) \min_i} ||\vec{x} - \vec{x}_i|| \mathrm{d}\vec{x} \,.$$

- Also known as the p-median problem, and connected to cluster analysis.
- Not easy ...in fact this one is an NP-hard problem. [2]
- Approximate solution originally due to Gusein-Zade [3].

Cartograms

Spending on healthcare:

Optimal Supply Networks III Distributed Source

"Optimal design of spatial distribution networks" Gastner and Newman,

Phys. Rev. E, 74, 016117, 2006. [2]

- & Left: population density-equalized cartogram.
- Right: (population density)^{2/3}-equalized cartogram.
- $\mbox{\&}$ Facility density is uniform for $\rho_{\rm pop}^{2/3}$ cartogram.

Size-density law

Distributed Sources

Optimal Supply Networks III

Approximations:

- For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}$, the region Ω is divided up into Voronoi cells \mathbb{Z} , one per source.
- & As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the *i*th Voronoi cell.

Approximate c_i as a constant c.

Optimal Supply Networks III

Distributed Sour

Size-density law

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- & We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- \mathbb{A} Within each cell, $A(\vec{x})$ is constant.
- & So ...integral over each of the n cells equals 1.

Now a Lagrange multiplier story:

 \Re By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathrm{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

- & Compute $\delta G/\delta A$, the functional derivative \Box of the functional G(A).
- This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathrm{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x})\right]^{-2}\right] \mathrm{d}\vec{x} \, = 0.$$

Setting the integrand to be zilch, we have:

$$\rho_{\text{pop}}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

Size-density law

Now a Lagrange multiplier story:

& Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\rm pop}^{-2/3}.$$

- \Leftrightarrow Finally, we indentify $1/A(\vec{x})$ as $\rho_{\text{fac}}(\vec{x})$, an approximation of the local source density.
- Substituting $\rho_{\text{fac}} = 1/A$, we have

$$ho_{
m fac}(ec{x}) = \left(rac{c}{2\lambda}
ho_{
m pop}
ight)^{2/3}.$$

 \aleph Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\rm O} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

Global redistribution networks

One more thing:

The PoCSverse Optimal Supply Networks III

The PoCSverse Optimal Supply Networks III

Optimal Supply

Networks III

- A How do we supply these facilities?
- How do we best redistribute mail? People?
- How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathrm{maint}} + \gamma C_{\mathrm{travel}}.$$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

$$(1 - \delta)\ell_{ij} + \delta(\#\text{hops}).$$

& When $\delta = 1$, only number of hops matters.

Global redistribution networks

From Gastner and Newman (2006) [2]

1

Public versus private facilities

Beyond minimizing distances:

Optimal Supply Networks III

Optimal Supply Networks III

Optimal Supply Networks III

Distributed Source

Distributed Source

35 of 47

- Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- Wind et al. find empirically and argue theoretically that the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- Wm et al. investigate facility locations in the United States and South Korea.

Public versus private facilities: evidence

- Left plot: ambulatory hospitals in the U.S.
- Right plot: public schools in the U.S.
- Note: break in scaling for public schools. Transition from $\alpha \simeq 2/3$ to $\alpha = 1$ around $\rho_{pop} \simeq 100$.

Public versus private facilities: evidence

1		
US facility	α (SE)	R ²
Ambulatory hospital	1.13(1)	0.93
Beauty care	1.08(1)	0.86
Laundry	1.05(1)	0.90
Automotive repair	0.99(1)	0.92
Private school	0.95(1)	0.82
Restaurant	0.93(1)	0.89
Accommodation	0.89(1)	0.70
Bank	0.88(1)	0.89
Gas station	0.86(1)	0.94
Death care	0.79(1)	0.80
* Fire station	0.78(3)	0.93
* Police station	0.71(6)	0.75
Public school	0.69(1)	0.87
SK facility	α (SE)	R ²
Bank	1.18(2)	0.96
Parking place	1.13(2)	0.9
* Primary clinic	1.09(2)	1.00
* Hospital	0.96(5)	0.9
* University/college	0.93(9)	0.89
Market place	0.87(2)	0.90
* Secondary school	0.77(3)	0.98
* Primary school	0.77(3)	0.97
Social welfare org.	0.75(2)	0.84
* Police station	0.71(5)	0.94
Government office	0.70(1)	0.93
* Fire station	0.60(4)	0.93
* Public health center	0.09(5)	0.19

Rough transition between public and private at $\alpha \simeq 0.8$.

Note: * indicates analysis is at state/province level; otherwise county level.

Optimal Supply Networks III 39 of 47

Distributed Source

Optimal Supply Networks III Distributed Source

Optimal Supply Networks III

Distributed Sou

Public versus private facilities: evidence

A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

Public versus private facilities: the story

So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- & Defins: For the *i*th facility and its Voronoi cell V_i , define
 - $n_i = \text{population of the } i \text{th cell};$
 - \vec{r} \vec{r} = the average travel distance to the *i*th facility.
 - A_i = area of ith cell (s_i in Um et al. [6])
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^\beta \text{ with } 0 \leq \beta \leq 1.$$

& Limits:

- $\beta = 0$: purely commercial.
- $\beta = 1$: purely social.

The PoCSverse Optimal Supply Networks III 42 of 47

Public versus Private

The PoCSverse Optimal Supply Networks III

Distributed Source

Public versus private facilities: the story

cell should be the same, we have: $\rho_{\mathrm{fac}}(\vec{x}) = n \frac{[\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\mathrm{pop}}(\vec{x})]^{2/(\beta+2)}.$

calculation or, as Um et al. do, observing that the cost for each

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{\gamma/\beta+\gamma}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}$$

Either proceeding as per the Gastner-Newman-Gusein-Zade

- \mathfrak{F} For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.
- \mathfrak{F} For $\beta = 1$, $\alpha = 2/3$: social scaling is sublinear.

System type:	Dominant cost/benefit scaling:	Dominant constraint scaling:	Scaling of number of events per partition:	Density scaling:	Quantity equalized across partitions:
General form	$\rho_{\text{event}}V^{\alpha}$ $0 < \alpha \leq 1$	$V^{-\beta}$ $1 - \alpha \le \beta \le 1$	$N \propto V^{1-\alpha-\beta}$	$ ho_{ m partition} \propto ho_{ m event}^{1/(lpha+eta)}$	$NV^{\alpha+\beta-1}$
I. Event rate equalizing with partition number constrained (for-profit)	$\sim \rho_{ m event} \ln V$	V^{-1}	$N \propto V^0$	$\rho_{\mathrm{partition}} \propto \rho_{\mathrm{event}}^{1}$	N
II. Minimizing average event access time with partition number constrained (p-median problem, pro-social)	$ ho_{\mathrm{event}} V^{1/d}$	V^{-1}	$N \propto V^{-1/d}$	$\rho_{\rm partition} \propto \rho_{\rm event}^{d/(d+1)}$	$NV^{1/d}$
HI. System under stochastic threat with partition boundary constrained (HOT model)	$ ho_{ m event} V^1$	$V^{-1/d}$	$N \propto V^{-1/d}$	$ ho_{ m partition} \propto ho_{ m event}^{d/(d+1)}$	$NV^{1/d}$
IV. System under stochastic threat with partition	$\rho_{\mathrm{event}}V^1$	V^{-1}	$N \propto V^{-1}$	$\rho_{\mathrm{partition}} \propto \rho_{\mathrm{event}}^{1/2}$	NV

References I

Optimal Supply Networks III 44 of 47 [1] M. T. Gastner and M. E. J. Newman. Diffusion-based method for producing density-equalizing

Public versus Private

Proc. Natl. Acad. Sci., 101:7499-7504, 2004. pdf [2] M. T. Gastner and M. E. J. Newman. Optimal design of spatial distribution networks.

Phys. Rev. E, 74:016117, 2006. pdf

- [3] S. M. Gusein-Zade. Bunge's problem in central place theory and its generalizations. Geogr. Anal., 14:246-252, 1982. pdf
- [4] G. E. Stephan. Territorial division: The least-time constraint behind the formation of subnational boundaries. Science, 196:523-524, 1977. pdf

Cartograms

Optimal Supply Networks III

Public versus Private

References II

[5] G. E. Stephan. Territorial subdivision. Social Forces, 63:145–159, 1984. pdf

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities. Proc. Natl. Acad. Sci., 106:14236-14240, 2009. pdf

The PoCSverse Optimal Supply Networks III

46 of 47 Distributed Source

References

Optimal Supply Networks III

Distributed Source

References