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Random network generator for𝑁 = 3:

� Get your own exciting generator here�.
� As𝑁 ↗, polyhedral die rapidly becomes a ball...

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse/docs/2011-02-26random-network-generator.png
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Random networks

Pure, abstract random networks:

� Consider set of all networks with𝑁 labelled nodes and𝑚
edges.

� Standard random network =
one randomly chosen network from this set.

� To be clear: each network is equally probable.
� Sometimes equiprobability is a good assumption, but it is

always an assumption.
� Known as Erdős-Rényi random networks or ER graphs.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Random networks—basic features:
� Number of possible edges:

0 ≤ 𝑚 ≤ (𝑁
2

) = 𝑁(𝑁 − 1)
2

� Limit of𝑚 = 0: empty graph.
� Limit of𝑚 = (𝑁

2): complete or fully-connected graph.
� Number of possible networks with𝑁 labelled nodes:

2(𝑁
2) ∼ 𝑒 ln2

2 𝑁(𝑁−1).

� Given𝑚 edges, there are ((𝑁
2)
𝑚 ) different possible networks.

� Crazy factorial explosion for 1 ≪ 𝑚 ≪ (𝑁
2).

� Real world: links are usually costly so real networks are almost
always sparse.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Random networks

How to build standard random networks:
� Given𝑁 and𝑚.

� Two probablistic methods

(we’ll see a third later on)

1. Connect each of the (𝑁
2) pairs with appropriate probability 𝑝.

� Useful for theoretical work.

2. Take𝑁 nodes and add exactly𝑚 links by selecting edges
without replacement.

� Algorithm: Randomly choose a pair of nodes 𝑖 and 𝑗, 𝑖 ≠ 𝑗,
and connect if unconnected; repeat until all𝑚 edges are
allocated.

� Best for adding relatively small numbers of links (most cases).
� 1 and 2 are effectively equivalent for large𝑁.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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A fewmore things:
� For method 1, # links is probablistic:

⟨𝑚⟩ = 𝑝(𝑁
2

)

= 𝑝1
2

𝑁(𝑁 − 1)

� So the expected or average degree is

⟨𝑘⟩ = 2 ⟨𝑚⟩
𝑁

= 2
𝑁

𝑝1
2

𝑁(𝑁 − 1) = �2
��𝑁

𝑝1
�2�
�𝑁(𝑁 − 1) = 𝑝(𝑁 − 1).

� Which is what it should be...
� If we keep ⟨𝑘⟩ constant then 𝑝 ∝ 1/𝑁 → 0 as𝑁 → ∞.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Random networks: examples

Next slides:
Example realizations of random networks

� 𝑁 = 500
� Vary𝑚, the number of edges from 100 to 1000.
� Average degree ⟨𝑘⟩ runs from 0.4 to 4.
� Look at full network plus the largest component.
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Random networks: examples for𝑁=500

𝑚 = 100
⟨𝑘⟩ = 0.4

𝑚 = 260
⟨𝑘⟩ = 1.04

𝑚 = 200
⟨𝑘⟩ = 0.8

𝑚 = 280
⟨𝑘⟩ = 1.12

𝑚 = 230
⟨𝑘⟩ = 0.92

𝑚 = 300
⟨𝑘⟩ = 1.2

𝑚 = 240
⟨𝑘⟩ = 0.96

𝑚 = 500
⟨𝑘⟩ = 2

𝑚 = 250
⟨𝑘⟩ = 1

𝑚 = 1000
⟨𝑘⟩ = 4
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Random networks: largest components

𝑚 = 100
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Random networks: examples for𝑁=500

𝑚 = 250
⟨𝑘⟩ = 1
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⟨𝑘⟩ = 1
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⟨𝑘⟩ = 1

𝑚 = 250
⟨𝑘⟩ = 1
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⟨𝑘⟩ = 1
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Random networks: largest components
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Clustering in random networks:
� For construction method 1, what is the clustering coefficient

for a finite network?

� Consider triangle/triple clustering coefficient: [6]

𝐶2 = 3 × #triangles
#triples
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Clustering in random networks:
� For construction method 1, what is the clustering coefficient

for a finite network?
� Consider triangle/triple clustering coefficient: [6]

𝐶2 = 3 × #triangles
#triples

� Recall: 𝐶2 = probability that two
friends of a node are also friends.

� Or: 𝐶2 = probability that a triple is
part of a triangle.

� For standard random networks, we
have simply that

𝐶2 = 𝑝.
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Clustering in random networks:

� So for large random networks
(𝑁 → ∞), clustering drops to
zero.

� Key structural feature of random
networks is that they locally look
like
pure branching networks

� No small loops.
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Degree distribution:
� Recall 𝑃𝑘 = probability that a randomly selected node has

degree 𝑘.

� Consider method 1 for constructing random networks: each
possible link is realized with probability 𝑝.

� Now consider one node: there are ‘𝑁 − 1 choose 𝑘’ ways the
node can be connected to 𝑘 of the other𝑁 − 1 nodes.

� Each connection occurs with probability 𝑝, each
non-connection with probability (1 − 𝑝).

� Therefore have a binomial distribution�:

𝑃(𝑘; 𝑝, 𝑁) = (𝑁 − 1
𝑘

)𝑝𝑘(1 − 𝑝)𝑁−1−𝑘.
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� Each connection occurs with probability 𝑝, each
non-connection with probability (1 − 𝑝).

� Therefore have a binomial distribution�:

𝑃(𝑘; 𝑝, 𝑁) = (𝑁 − 1
𝑘

)𝑝𝑘(1 − 𝑝)𝑁−1−𝑘.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Limiting form of 𝑃(𝑘; 𝑝, 𝑁):

� Our degree distribution:
𝑃(𝑘; 𝑝, 𝑁) = (𝑁−1

𝑘 )𝑝𝑘(1 − 𝑝)𝑁−1−𝑘.
� What happens as𝑁 → ∞?
� Wemust end up with the normal distribution right?
� If 𝑝 is fixed, then we would end up with a Gaussian with

average degree ⟨𝑘⟩ ≃ 𝑝𝑁 → ∞.
� But we want to keep ⟨𝑘⟩ fixed...
� So examine limit of 𝑃(𝑘; 𝑝, 𝑁)when 𝑝 → 0 and𝑁 → ∞

with ⟨𝑘⟩ = 𝑝(𝑁 − 1) = constant.

𝑃(𝑘; 𝑝, 𝑁) ≃ ⟨𝑘⟩𝑘

𝑘!
(1 − ⟨𝑘⟩

𝑁 − 1
)

𝑁−1−𝑘

→ ⟨𝑘⟩𝑘

𝑘!
𝑒−⟨𝑘⟩

� This is a Poisson distribution�with mean ⟨𝑘⟩.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Poisson_distribution
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� But we want to keep ⟨𝑘⟩ fixed...
� So examine limit of 𝑃(𝑘; 𝑝, 𝑁)when 𝑝 → 0 and𝑁 → ∞
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𝑘 )𝑝𝑘(1 − 𝑝)𝑁−1−𝑘.

� What happens as𝑁 → ∞?
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� If 𝑝 is fixed, then we would end up with a Gaussian with
average degree ⟨𝑘⟩ ≃ 𝑝𝑁 → ∞.

� But we want to keep ⟨𝑘⟩ fixed...
� So examine limit of 𝑃(𝑘; 𝑝, 𝑁)when 𝑝 → 0 and𝑁 → ∞

with ⟨𝑘⟩ = 𝑝(𝑁 − 1) = constant.
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𝑘 )𝑝𝑘(1 − 𝑝)𝑁−1−𝑘.

� What happens as𝑁 → ∞?
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� If 𝑝 is fixed, then we would end up with a Gaussian with

average degree ⟨𝑘⟩ ≃ 𝑝𝑁 → ∞.

� But we want to keep ⟨𝑘⟩ fixed...
� So examine limit of 𝑃(𝑘; 𝑝, 𝑁)when 𝑝 → 0 and𝑁 → ∞
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𝑘 )𝑝𝑘(1 − 𝑝)𝑁−1−𝑘.
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� Wemust end up with the normal distribution right?
� If 𝑝 is fixed, then we would end up with a Gaussian with

average degree ⟨𝑘⟩ ≃ 𝑝𝑁 → ∞.
� But we want to keep ⟨𝑘⟩ fixed...

� So examine limit of 𝑃(𝑘; 𝑝, 𝑁)when 𝑝 → 0 and𝑁 → ∞
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𝑘 )𝑝𝑘(1 − 𝑝)𝑁−1−𝑘.

� What happens as𝑁 → ∞?
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� If 𝑝 is fixed, then we would end up with a Gaussian with

average degree ⟨𝑘⟩ ≃ 𝑝𝑁 → ∞.
� But we want to keep ⟨𝑘⟩ fixed...
� So examine limit of 𝑃(𝑘; 𝑝, 𝑁)when 𝑝 → 0 and𝑁 → ∞

with ⟨𝑘⟩ = 𝑝(𝑁 − 1) = constant.
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Limiting form of 𝑃(𝑘; 𝑝, 𝑁):
� Our degree distribution:

𝑃(𝑘; 𝑝, 𝑁) = (𝑁−1
𝑘 )𝑝𝑘(1 − 𝑝)𝑁−1−𝑘.

� What happens as𝑁 → ∞?
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� If 𝑝 is fixed, then we would end up with a Gaussian with

average degree ⟨𝑘⟩ ≃ 𝑝𝑁 → ∞.
� But we want to keep ⟨𝑘⟩ fixed...
� So examine limit of 𝑃(𝑘; 𝑝, 𝑁)when 𝑝 → 0 and𝑁 → ∞

with ⟨𝑘⟩ = 𝑝(𝑁 − 1) = constant.
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𝑁 − 1
)

𝑁−1−𝑘
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𝑘!
𝑒−⟨𝑘⟩

� This is a Poisson distribution�with mean ⟨𝑘⟩.
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Poisson basics:

𝑃(𝑘; 𝜆) = 𝜆𝑘

𝑘!
𝑒−𝜆

� 𝜆 > 0
� 𝑘 = 0, 1, 2, 3, …
� Classic use: probability that

an event occurs 𝑘 times in a
given time period, given an
average rate of occurrence.

� e.g.:
phone calls/minute,
horse-kick deaths.

� ‘Law of small numbers’

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Poisson basics:

� The variance of degree distributions for random networks
turns out to be very important.

� Using calculation similar to one for finding ⟨𝑘⟩we find the
second moment to be:

⟨𝑘2⟩ = ⟨𝑘⟩2 + ⟨𝑘⟩.

� Variance is then

𝜎2 = ⟨𝑘2⟩ − ⟨𝑘⟩2

= ⟨𝑘⟩2 + ⟨𝑘⟩ − ⟨𝑘⟩2 = ⟨𝑘⟩.

� So standard deviation 𝜎 is equal to√⟨𝑘⟩.
� Note: This is a special property of Poisson distribution and

can trip us up...

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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turns out to be very important.

� Using calculation similar to one for finding ⟨𝑘⟩we find the
second moment to be:
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turns out to be very important.

� Using calculation similar to one for finding ⟨𝑘⟩we find the
second moment to be:
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Poisson basics:

� The variance of degree distributions for random networks
turns out to be very important.

� Using calculation similar to one for finding ⟨𝑘⟩we find the
second moment to be:

⟨𝑘2⟩ = ⟨𝑘⟩2 + ⟨𝑘⟩.

� Variance is then

𝜎2 = ⟨𝑘2⟩ − ⟨𝑘⟩2 = ⟨𝑘⟩2 + ⟨𝑘⟩ − ⟨𝑘⟩2 = ⟨𝑘⟩.

� So standard deviation 𝜎 is equal to√⟨𝑘⟩.
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General random networks

� So... standard random networks have a Poisson degree
distribution

� Generalize to arbitrary degree distribution 𝑃𝑘.
� Also known as the configuration model. [6]

� Can generalize construction method from ER random
networks.

� Assign each node a weight𝑤 from some distribution 𝑃𝑤 and
form links with probability

𝑃(link between 𝑖 and 𝑗) ∝ 𝑤𝑖𝑤𝑗.

� But we’ll be more interested in

1. Randomly wiring up (and rewiring) already existing nodes
with fixed degrees.

2. Examining mechanisms that lead to networks with certain
degree distributions.
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� Generalize to arbitrary degree distribution 𝑃𝑘.
� Also known as the configuration model. [6]
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� Assign each node a weight𝑤 from some distribution 𝑃𝑤 and
form links with probability

𝑃(link between 𝑖 and 𝑗) ∝ 𝑤𝑖𝑤𝑗.
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� So... standard random networks have a Poisson degree
distribution

� Generalize to arbitrary degree distribution 𝑃𝑘.
� Also known as the configuration model. [6]

� Can generalize construction method from ER random
networks.

� Assign each node a weight𝑤 from some distribution 𝑃𝑤 and
form links with probability

𝑃(link between 𝑖 and 𝑗) ∝ 𝑤𝑖𝑤𝑗.

� But we’ll be more interested in
1. Randomly wiring up (and rewiring) already existing nodes

with fixed degrees.

2. Examining mechanisms that lead to networks with certain
degree distributions.
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General random networks

� So... standard random networks have a Poisson degree
distribution

� Generalize to arbitrary degree distribution 𝑃𝑘.
� Also known as the configuration model. [6]

� Can generalize construction method from ER random
networks.

� Assign each node a weight𝑤 from some distribution 𝑃𝑤 and
form links with probability

𝑃(link between 𝑖 and 𝑗) ∝ 𝑤𝑖𝑤𝑗.

� But we’ll be more interested in
1. Randomly wiring up (and rewiring) already existing nodes

with fixed degrees.
2. Examining mechanisms that lead to networks with certain

degree distributions.
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Random networks: examples

Coming up:
Example realizations of random networks with power law degree
distributions:

� 𝑁 = 1000.
� 𝑃𝑘 ∝ 𝑘−𝛾 for 𝑘 ≥ 1.
� Set 𝑃0 = 0 (no isolated nodes).
� Vary exponent 𝛾 between 2.10 and 2.91.
� Again, look at full network plus the largest component.
� Apart from degree distribution, wiring is random.
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� Apart from degree distribution, wiring is random.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse


The PoCSverse
RandomNetworks
Nutshell
30 of 74
Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized Random
Networks
Configuration model

How to build in practice

Motifs

Strange friends

Largest component

References

Random networks: examples

Coming up:
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distributions:
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� Set 𝑃0 = 0 (no isolated nodes).
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� Apart from degree distribution, wiring is random.
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Example realizations of random networks with power law degree
distributions:
� 𝑁 = 1000.
� 𝑃𝑘 ∝ 𝑘−𝛾 for 𝑘 ≥ 1.
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Coming up:
Example realizations of random networks with power law degree
distributions:
� 𝑁 = 1000.
� 𝑃𝑘 ∝ 𝑘−𝛾 for 𝑘 ≥ 1.
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Coming up:
Example realizations of random networks with power law degree
distributions:
� 𝑁 = 1000.
� 𝑃𝑘 ∝ 𝑘−𝛾 for 𝑘 ≥ 1.
� Set 𝑃0 = 0 (no isolated nodes).
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� Apart from degree distribution, wiring is random.
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Coming up:
Example realizations of random networks with power law degree
distributions:
� 𝑁 = 1000.
� 𝑃𝑘 ∝ 𝑘−𝛾 for 𝑘 ≥ 1.
� Set 𝑃0 = 0 (no isolated nodes).
� Vary exponent 𝛾 between 2.10 and 2.91.
� Again, look at full network plus the largest component.
� Apart from degree distribution, wiring is random.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse


The PoCSverse
RandomNetworks
Nutshell
31 of 74
Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized Random
Networks
Configuration model

How to build in practice

Motifs

Strange friends

Largest component

References

Random networks: examples for𝑁=1000

𝛾 = 2.1
⟨𝑘⟩ = 3.448

𝛾 = 2.55
⟨𝑘⟩ = 1.712

𝛾 = 2.19
⟨𝑘⟩ = 2.986

𝛾 = 2.64
⟨𝑘⟩ = 1.6

𝛾 = 2.28
⟨𝑘⟩ = 2.306 .pdf

𝛾 = 2.73
⟨𝑘⟩ = 1.862 .pdf

𝛾 = 2.37
⟨𝑘⟩ = 2.504

𝛾 = 2.82
⟨𝑘⟩ = 1.386

𝛾 = 2.46
⟨𝑘⟩ = 1.856

𝛾 = 2.91
⟨𝑘⟩ = 1.49
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Random networks: largest components

𝛾 = 2.1
⟨𝑘⟩ = 3.448

𝛾 = 2.55
⟨𝑘⟩ = 1.712

𝛾 = 2.19
⟨𝑘⟩ = 2.986

𝛾 = 2.64
⟨𝑘⟩ = 1.6

𝛾 = 2.28
⟨𝑘⟩ = 2.306

𝛾 = 2.73
⟨𝑘⟩ = 1.862

𝛾 = 2.37
⟨𝑘⟩ = 2.504

𝛾 = 2.82
⟨𝑘⟩ = 1.386

𝛾 = 2.46
⟨𝑘⟩ = 1.856

𝛾 = 2.91
⟨𝑘⟩ = 1.49
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Models

Generalized random networks:

� Arbitrary degree distribution 𝑃𝑘.
� Create (unconnected) nodes with degrees sampled from 𝑃𝑘.
� Wire nodes together randomly.
� Create ensemble to test deviations from randomness.
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Generalized random networks:
� Arbitrary degree distribution 𝑃𝑘.
� Create (unconnected) nodes with degrees sampled from 𝑃𝑘.
� Wire nodes together randomly.
� Create ensemble to test deviations from randomness.
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Building random networks: Stubs

Phase 1:
� Idea: start with a soup of unconnected nodes with stubs

(half-edges):

� Randomly select stubs (not
nodes!) and connect them.

� Must have an even number
of stubs.

� Initially allow self- and
repeat connections.
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repeat connections.
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� Idea: start with a soup of unconnected nodes with stubs

(half-edges):
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� Must have an even number
of stubs.

� Initially allow self- and
repeat connections.
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Building random networks: Stubs

Phase 1:
� Idea: start with a soup of unconnected nodes with stubs

(half-edges):

� Randomly select stubs (not
nodes!) and connect them.

� Must have an even number
of stubs.

� Initially allow self- and
repeat connections.
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Building random networks: First rewiring

Phase 2:
� Now find any (A) self-loops and (B) repeat edges and

randomly rewire them.

(A) (B)

� Being careful: we can’t change the degree of any node, so we
can’t simply move links around.

� Simplest solution: randomly rewire two edges at a time.
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Building random networks: First rewiring

Phase 2:
� Now find any (A) self-loops and (B) repeat edges and

randomly rewire them.

(A) (B)
� Being careful: we can’t change the degree of any node, so we

can’t simply move links around.

� Simplest solution: randomly rewire two edges at a time.
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Building random networks: First rewiring

Phase 2:
� Now find any (A) self-loops and (B) repeat edges and

randomly rewire them.

(A) (B)
� Being careful: we can’t change the degree of any node, so we

can’t simply move links around.
� Simplest solution: randomly rewire two edges at a time.
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General random rewiring algorithm
1

1

i3
i4

i2

e2

ei

� Randomly choose two edges.
(Or choose problem edge and a
random edge)

� Check to make sure edges are disjoint.

� Rewire one end of each edge.

� Node degrees do not change.

� Works if 𝑒1 is a self-loop or repeated
edge.

� Same as finding on/off/on/off 4-cycles.
and rotating them.
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� Randomly choose two edges.
(Or choose problem edge and a
random edge)

� Check to make sure edges are disjoint.

� Rewire one end of each edge.

� Node degrees do not change.

� Works if 𝑒1 is a self-loop or repeated
edge.

� Same as finding on/off/on/off 4-cycles.
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Sampling random networks

Phase 2:
� Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

� Randomize network wiring by applying rewiring algorithm
liberally.

� Rule of thumb: # Rewirings≃ 10× # edges [4].
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Random sampling

� Problem with only joining up stubs is failure to randomly
sample from all possible networks.

� Example fromMilo et al. (2003) [4]:
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FIG. 2: Uniformity tests of the three algorithms on a toy net-
work. Panels (a) and (b) depict the two types of topologies of
the 91 random networks studied, one of them like (a) and 90
like (b). Panel (c) shows the frequency with which each con-
figuration is sampled by our three algorithms. 100 000 graphs
were generated with each algorithm, and the figure shows the
fraction of graphs of each type generated. If sampling were
uniform, each should appear with probability 1

91
, which is

indicated by the dotted lines. The go-with-the-winners and
switching algorithms sample uniformly within sampling er-
ror, passing both the Kolmogorov–Smirnoff and Lillie Gaus-
sian tests. The matching algorithm under-samples the unique
configuration (a).

network. The network consists of an out-hub with ten
outgoing edges, an in-hub with ten incoming edges, and
ten nodes with one incoming edge and one outgoing edge
each. Given this degree sequence, there are just two dis-
tinct network topologies with no multiple edges, as shown
in Fig. 2a and 2b. There is only a single way to form the
network in 2a, but there are 90 different ways to form 2b.

We generated 100 000 random networks using each of
the 3 methods described here and the results are sum-
marized in Fig. 2c. As the figure shows, the matching
algorithm introduces a bias, undersampling the configu-
ration of Fig. 2a. This is a result of the dynamics of the
algorithm, which favors the creation of edges between
hubs. The switching and go-with-the-winners algorithms
on the other hand sample the configurations uniformly,
generating each graph an equal number of times within
the measurement error on our calculations. The go-with-
the-winners algorithm truly samples the ensemble uni-
formly but is far less efficient than the two other meth-
ods. The results given here indicate that the switching
algorithm produces essentially identical results while be-
ing a good deal faster. The matching algorithm is faster
still but samples in a measurably biased way.

Now consider the study of network motifs. We are in-
terested in knowing when particular subgraphs or motifs
appear significantly more or less often in a real-world net-
work than would be expected on the basis of chance, and
we can answer this question by comparing motif counts
to random graphs. Some results for the case of the “feed-
forward loop” motif [16, 17] are given in Table I. In this
case the densities of motifs in the real-world networks
are many standard deviations away from random, which
suggests that any of the present algorithms is adequate
for generating suitable random graphs to act as a null
model, although the go-with-the-winners and switching
algorithms, while slower, are clearly more satisfactory
theoretically. The matching algorithm was measurably
nonuniform for our toy example above, but seems to give
better results on the real-world problem.

Overall, our results appear to argue in favor of us-
ing the switching method, with the go-with-the-winners
method finding limited use as a check on the accuracy of
sampling. Accuracy checks are also supplied by analyti-
cal estimates for subgraph numbers [11].

IV. CONCLUSIONS

In this paper we have compared three algorithms for
generating random graphs with prescribed degree se-
quences and no multiple edges or self-edges. Two of the
three have been used previously, but suffer from nonuni-
formity in their sampling properties, while the third, a
method based on the “go with the winners” Monte Carlo
procedure, is new and provably samples uniformly but
is quite slow. Of the two older algorithms, we show
that one, which we call the “matching” algorithm, has
measurable deviations from uniformity when compared
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the 91 random networks studied, one of them like (a) and 90
like (b). Panel (c) shows the frequency with which each con-
figuration is sampled by our three algorithms. 100 000 graphs
were generated with each algorithm, and the figure shows the
fraction of graphs of each type generated. If sampling were
uniform, each should appear with probability 1
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, which is

indicated by the dotted lines. The go-with-the-winners and
switching algorithms sample uniformly within sampling er-
ror, passing both the Kolmogorov–Smirnoff and Lillie Gaus-
sian tests. The matching algorithm under-samples the unique
configuration (a).

network. The network consists of an out-hub with ten
outgoing edges, an in-hub with ten incoming edges, and
ten nodes with one incoming edge and one outgoing edge
each. Given this degree sequence, there are just two dis-
tinct network topologies with no multiple edges, as shown
in Fig. 2a and 2b. There is only a single way to form the
network in 2a, but there are 90 different ways to form 2b.

We generated 100 000 random networks using each of
the 3 methods described here and the results are sum-
marized in Fig. 2c. As the figure shows, the matching
algorithm introduces a bias, undersampling the configu-
ration of Fig. 2a. This is a result of the dynamics of the
algorithm, which favors the creation of edges between
hubs. The switching and go-with-the-winners algorithms
on the other hand sample the configurations uniformly,
generating each graph an equal number of times within
the measurement error on our calculations. The go-with-
the-winners algorithm truly samples the ensemble uni-
formly but is far less efficient than the two other meth-
ods. The results given here indicate that the switching
algorithm produces essentially identical results while be-
ing a good deal faster. The matching algorithm is faster
still but samples in a measurably biased way.

Now consider the study of network motifs. We are in-
terested in knowing when particular subgraphs or motifs
appear significantly more or less often in a real-world net-
work than would be expected on the basis of chance, and
we can answer this question by comparing motif counts
to random graphs. Some results for the case of the “feed-
forward loop” motif [16, 17] are given in Table I. In this
case the densities of motifs in the real-world networks
are many standard deviations away from random, which
suggests that any of the present algorithms is adequate
for generating suitable random graphs to act as a null
model, although the go-with-the-winners and switching
algorithms, while slower, are clearly more satisfactory
theoretically. The matching algorithm was measurably
nonuniform for our toy example above, but seems to give
better results on the real-world problem.

Overall, our results appear to argue in favor of us-
ing the switching method, with the go-with-the-winners
method finding limited use as a check on the accuracy of
sampling. Accuracy checks are also supplied by analyti-
cal estimates for subgraph numbers [11].

IV. CONCLUSIONS

In this paper we have compared three algorithms for
generating random graphs with prescribed degree se-
quences and no multiple edges or self-edges. Two of the
three have been used previously, but suffer from nonuni-
formity in their sampling properties, while the third, a
method based on the “go with the winners” Monte Carlo
procedure, is new and provably samples uniformly but
is quite slow. Of the two older algorithms, we show
that one, which we call the “matching” algorithm, has
measurable deviations from uniformity when compared
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Sampling random networks

� What if we have 𝑃𝑘 instead of𝑁𝑘?

� Must now create nodes before start of the construction
algorithm.

� Generate𝑁 nodes by sampling from degree distribution 𝑃𝑘.
� Easy to do exactly numerically since 𝑘 is discrete.
� Note: not all 𝑃𝑘 will always give nodes that can be wired

together.
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� Must now create nodes before start of the construction

algorithm.
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Network motifs

� Idea of motifs [7] introduced by Shen-Orr, Alon et al. in 2002.

� Looked at gene expression within full context of
transcriptional regulation networks.

� Specific example of Escherichia coli.
� Directed network with 577 interactions (edges) and 424

operons (nodes).
� Used network randomization to produce ensemble of

alternate networks with same degree frequency𝑁𝑘.
� Looked for certain subnetworks (motifs) that appeared more

or less often than expected
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Network motifs in the transcriptional regulation
network of Escherichia coli

Shai S. Shen-Orr1, Ron Milo2, Shmoolik Mangan1 & Uri Alon1,2

1Department of Molecular Cell Biology, 2Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel. Correspondence
should be addressed to U.A. (e-mail: urialon@wisemail.weizmann.ac.il).

Little is known about the design principles1–10 of transcrip-
tional regulation networks that control gene expression in
cells. Recent advances in data collection and analysis2,11,12,
however, are generating unprecedented amounts of informa-
tion about gene regulation networks. To understand these
complex wiring diagrams1–10,13, we sought to break down such
networks into basic building blocks2. We generalize the notion
of motifs, widely used for sequence analysis, to the level of
networks. We define ‘network motifs’ as patterns of intercon-
nections that recur in many different parts of a network at fre-
quencies much higher than those found in randomized
networks. We applied new algorithms for systematically
detecting network motifs to one of the best-characterized reg-
ulation networks, that of direct transcriptional interactions in
Escherichia coli3,6. We find that much of the network is com-
posed of repeated appearances of three highly significant
motifs. Each network motif has a specific function in determin-
ing gene expression, such as generating temporal expression
programs and governing the responses to fluctuating external
signals. The motif structure also allows an easily interpretable
view of the entire known transcriptional network of the organ-
ism. This approach may help define the basic computational
elements of other biological networks.
We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transcribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)3,14. We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive !-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed
graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed
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Fig. 1 Network motifs found in the E. coli transcriptional regulation network.
Symbols representing the motifs are also shown. a, Feedforward loop: a tran-
scription factor X regulates a second transcription factor Y, and both jointly
regulate one or more operons Z1...Zn. b, Example of a feedforward loop (L-ara-
binose utilization). c, SIM motif: a single transcription factor, X, regulates a set
of operons Z1...Zn. X is usually autoregulatory. All regulations are of the same
sign. No other transcription factor regulates the operons. d, Example of a SIM
system (arginine biosynthesis). e, DOR motif: a set of operons Z1...Zm are each
regulated by a combination of a set of input transcription factors, X1...Xn.
DORs are defined by an algorithm that detects dense regions of connections,
with a high ratio of connections to transcription factors. f, Example of a DOR
(stationary phase response).
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from X and a delayed one through Y. If the activation of X is tran-
sient, Y cannot reach the level needed to significantly activate Z,
and the input signal is not transduced through the circuit. Only
when X signals for a long enough time so that Y levels can build
up will Z be activated (Fig. 2a). Once X is deactivated, Z shuts
down rapidly. This kind of behavior can be useful for making
decisions based on fluctuating external signals.

The SIM motif is found in systems of genes that function sto-
chiometrically to form a protein assembly (such as flagella) or a
metabolic pathway (such as amino-acid biosynthesis). In these
cases, it is useful that the activities of the operons are determined
by a single transcription factor, so that their proportions at
steady state can be fixed. In addition, mathematical analysis sug-
gests that SIMs can show a detailed temporal program of expres-
sion resulting from differences in the activation thresholds of the
different genes (Fig. 2b). Built into this design is a pattern in
which the first gene activated is the last one to be deactivated.
Such temporal ordering can be useful in processes that require
several stages to complete. This type of mechanism may explain
the experimentally observed temporal program in the expression
of flagella biosynthesis genes18.

The motifs allow a representation of the E. coli transcriptional
network (Fig. 3) in a compact, modular form (for an image of the
full network, see Web Fig. A online). By using symbols to represent
the different motifs (Fig. 1), the network is broken down to its
basic building blocks. A single layer of DORs connects most of the
transcription factors to their effector operons. Feedforward loops
and SIMs often occur at the outputs of these DORs. The DORs are
interconnected by the global transcription factors, which typically
control many genes in one DOR and few genes in several DORs.
An important step in visualizing the network was to allow each
global transcription factor to appear multiple times, whenever it is
an input to a structure. This reduces the complexity of the inter-
connections while preserving all the information. There are few

long cascades3, usually involving !-factors, such as cas-
cades of depth 5 in the flagella and nitrogen systems. Over
70% of the operons are connected to the DORs; the rest of
the operons are in small disjoint systems. Most disjoint
systems have only 1 to 3 operons. The remaining disjoint
systems have up to 25 operons and show many SIMs and
feedforward loops. A notable feature of the overall organi-
zation is the large degree of overlap within DORs between
the short cascades that control most operons. The layer of
DORs may therefore represent the core of the computa-
tion carried out by the transcriptional network.

Cycles such as feedback loops are an important feature
of regulatory networks. Transcriptional feedback loops
occur in various organisms, such as the genetic switch in
"-phage5. In the E. coli data set, there are no examples of
feedback loops of direct transcriptional interactions,
except for auto-regulatory loops3. However, the absence

of feedback loops is not statistically significant, as over 80% of
the randomized networks also have no feedback loops (Table 1).
The many regulatory feedbacks loops in the organism are carried
out at the post-transcriptional level.

We considered only transcription interactions specifically
manifested by transcription factors that bind regulatory sites3,14.
This transcriptional network can be thought of as the ‘slow’ part
of the cellular regulation network (time scale of minutes). An
additional layer of faster interactions, which include interactions
between proteins (often subsecond timescale), contributes to the
full regulatory behavior and will probably introduce additional
network motifs. Characterization of additional transcriptional
interactions may change the present motif assignment for spe-
cific systems. However, our conclusions regarding the high fre-
quencies of feedforward loops, SIMs and overlapping regulation
compared with randomized networks are insensitive to the addi-
tion or removal of interactions from the data set. These features
are still highly significant, even when 25% of the connections in
the E. coli network are removed or rearranged at random.

The concept of homology between genes based on sequence
motifs has been crucial for understanding the function of
uncharacterized genes. Likewise, the notion of similarity
between connectivity patterns in networks, based on network
motifs, may be helpful in gaining insight into the dynamic
behavior of newly identified gene circuits. The present analysis
may serve as a guideline for experimental study of the functions
of the motifs. It would be useful to determine whether the net-
work motifs found in E. coli can characterize the transcriptional
networks of other cell types. In higher eukaryotes, for example,
there will be many more regulators affecting each gene, and addi-
tional types of circuits may be found. The findings presented
here also raise the possibility that motifs can be defined in other
biological networks7, such as signal transduction, metabolic19

and neuron connectivity networks.
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Fig. 2 Dynamic features of the coherent feedforward loop and SIM
motifs. a, Consider a coherent feedforward loop circuit with an ‘AND-
gate’–like control of the output operon Z. This circuit can reject rapid
variations in the activity of the input X, and respond only to persistent
activation profiles. This is because Y needs to integrate the input X
over time to pass the activation threshold for Z (thin line). A similar
rejection of rapid fluctuations can be achieved by a cascade, X#Y#Z;
however, the cascade has a slower shut-down than the feedforward
loop (thin red line in the Z dynamics panel). b, Dynamics of the SIM
motif. This motif can show a temporal program of expression accord-
ing to a hierarchy of activation thresholds of the genes. When the
activity of X, the master activator, rises and falls with time, the genes
with the lowest threshold are activated earliest and deactivated lat-
est. Time is in units of protein lifetimes, or of cell cycles in the case of
long-lived proteins.
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Little is known about the design principles1–10 of transcrip-
tional regulation networks that control gene expression in
cells. Recent advances in data collection and analysis2,11,12,
however, are generating unprecedented amounts of informa-
tion about gene regulation networks. To understand these
complex wiring diagrams1–10,13, we sought to break down such
networks into basic building blocks2. We generalize the notion
of motifs, widely used for sequence analysis, to the level of
networks. We define ‘network motifs’ as patterns of intercon-
nections that recur in many different parts of a network at fre-
quencies much higher than those found in randomized
networks. We applied new algorithms for systematically
detecting network motifs to one of the best-characterized reg-
ulation networks, that of direct transcriptional interactions in
Escherichia coli3,6. We find that much of the network is com-
posed of repeated appearances of three highly significant
motifs. Each network motif has a specific function in determin-
ing gene expression, such as generating temporal expression
programs and governing the responses to fluctuating external
signals. The motif structure also allows an easily interpretable
view of the entire known transcriptional network of the organ-
ism. This approach may help define the basic computational
elements of other biological networks.
We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transcribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)3,14. We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive !-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed
graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed

Published online: 22 April 2002, DOI: 10.1038/ng881

single input module (SIM)

X

n

feedforward loop

Z

X

Y

dense overlapping regulons (DOR)

Z1 Z2 ... ZmZ3 Z4

X1 X2 ...     XnX3

X

Z1 Z2 ...  Zn

n
h
a
R

fi
s

a
lk
A

k
a
tG

d
p
s

o
s
m
C

n
h
a
A

p
ro
P

a
d
a

rp
o
S

o
x
y
R

ih
f

lr
p

h
n
s

rc
s
A

c
rp

ft
s
Q
A
Z

X1 X2 X3 Xn

X

n

Y

crp

araC

araBAD

argR

a
rg
C
B
H

a
rg
D

a
rg
E

a
rg
F

a
rg
I

Fig. 1 Network motifs found in the E. coli transcriptional regulation network.
Symbols representing the motifs are also shown. a, Feedforward loop: a tran-
scription factor X regulates a second transcription factor Y, and both jointly
regulate one or more operons Z1...Zn. b, Example of a feedforward loop (L-ara-
binose utilization). c, SIM motif: a single transcription factor, X, regulates a set
of operons Z1...Zn. X is usually autoregulatory. All regulations are of the same
sign. No other transcription factor regulates the operons. d, Example of a SIM
system (arginine biosynthesis). e, DOR motif: a set of operons Z1...Zm are each
regulated by a combination of a set of input transcription factors, X1...Xn.
DORs are defined by an algorithm that detects dense regions of connections,
with a high ratio of connections to transcription factors. f, Example of a DOR
(stationary phase response).

a

b

c

d

e

f

©
2

0
0

2
 N

a
tu

re
 P

u
b

li
s

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/g
e

n
e

ti
c

s
.n

a
tu

re
.c

o
m

from X and a delayed one through Y. If the activation of X is tran-
sient, Y cannot reach the level needed to significantly activate Z,
and the input signal is not transduced through the circuit. Only
when X signals for a long enough time so that Y levels can build
up will Z be activated (Fig. 2a). Once X is deactivated, Z shuts
down rapidly. This kind of behavior can be useful for making
decisions based on fluctuating external signals.

The SIM motif is found in systems of genes that function sto-
chiometrically to form a protein assembly (such as flagella) or a
metabolic pathway (such as amino-acid biosynthesis). In these
cases, it is useful that the activities of the operons are determined
by a single transcription factor, so that their proportions at
steady state can be fixed. In addition, mathematical analysis sug-
gests that SIMs can show a detailed temporal program of expres-
sion resulting from differences in the activation thresholds of the
different genes (Fig. 2b). Built into this design is a pattern in
which the first gene activated is the last one to be deactivated.
Such temporal ordering can be useful in processes that require
several stages to complete. This type of mechanism may explain
the experimentally observed temporal program in the expression
of flagella biosynthesis genes18.

The motifs allow a representation of the E. coli transcriptional
network (Fig. 3) in a compact, modular form (for an image of the
full network, see Web Fig. A online). By using symbols to represent
the different motifs (Fig. 1), the network is broken down to its
basic building blocks. A single layer of DORs connects most of the
transcription factors to their effector operons. Feedforward loops
and SIMs often occur at the outputs of these DORs. The DORs are
interconnected by the global transcription factors, which typically
control many genes in one DOR and few genes in several DORs.
An important step in visualizing the network was to allow each
global transcription factor to appear multiple times, whenever it is
an input to a structure. This reduces the complexity of the inter-
connections while preserving all the information. There are few

long cascades3, usually involving !-factors, such as cas-
cades of depth 5 in the flagella and nitrogen systems. Over
70% of the operons are connected to the DORs; the rest of
the operons are in small disjoint systems. Most disjoint
systems have only 1 to 3 operons. The remaining disjoint
systems have up to 25 operons and show many SIMs and
feedforward loops. A notable feature of the overall organi-
zation is the large degree of overlap within DORs between
the short cascades that control most operons. The layer of
DORs may therefore represent the core of the computa-
tion carried out by the transcriptional network.

Cycles such as feedback loops are an important feature
of regulatory networks. Transcriptional feedback loops
occur in various organisms, such as the genetic switch in
"-phage5. In the E. coli data set, there are no examples of
feedback loops of direct transcriptional interactions,
except for auto-regulatory loops3. However, the absence

of feedback loops is not statistically significant, as over 80% of
the randomized networks also have no feedback loops (Table 1).
The many regulatory feedbacks loops in the organism are carried
out at the post-transcriptional level.

We considered only transcription interactions specifically
manifested by transcription factors that bind regulatory sites3,14.
This transcriptional network can be thought of as the ‘slow’ part
of the cellular regulation network (time scale of minutes). An
additional layer of faster interactions, which include interactions
between proteins (often subsecond timescale), contributes to the
full regulatory behavior and will probably introduce additional
network motifs. Characterization of additional transcriptional
interactions may change the present motif assignment for spe-
cific systems. However, our conclusions regarding the high fre-
quencies of feedforward loops, SIMs and overlapping regulation
compared with randomized networks are insensitive to the addi-
tion or removal of interactions from the data set. These features
are still highly significant, even when 25% of the connections in
the E. coli network are removed or rearranged at random.

The concept of homology between genes based on sequence
motifs has been crucial for understanding the function of
uncharacterized genes. Likewise, the notion of similarity
between connectivity patterns in networks, based on network
motifs, may be helpful in gaining insight into the dynamic
behavior of newly identified gene circuits. The present analysis
may serve as a guideline for experimental study of the functions
of the motifs. It would be useful to determine whether the net-
work motifs found in E. coli can characterize the transcriptional
networks of other cell types. In higher eukaryotes, for example,
there will be many more regulators affecting each gene, and addi-
tional types of circuits may be found. The findings presented
here also raise the possibility that motifs can be defined in other
biological networks7, such as signal transduction, metabolic19

and neuron connectivity networks.
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Fig. 2 Dynamic features of the coherent feedforward loop and SIM
motifs. a, Consider a coherent feedforward loop circuit with an ‘AND-
gate’–like control of the output operon Z. This circuit can reject rapid
variations in the activity of the input X, and respond only to persistent
activation profiles. This is because Y needs to integrate the input X
over time to pass the activation threshold for Z (thin line). A similar
rejection of rapid fluctuations can be achieved by a cascade, X#Y#Z;
however, the cascade has a slower shut-down than the feedforward
loop (thin red line in the Z dynamics panel). b, Dynamics of the SIM
motif. This motif can show a temporal program of expression accord-
ing to a hierarchy of activation thresholds of the genes. When the
activity of X, the master activator, rises and falls with time, the genes
with the lowest threshold are activated earliest and deactivated lat-
est. Time is in units of protein lifetimes, or of cell cycles in the case of
long-lived proteins.
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Little is known about the design principles1–10 of transcrip-
tional regulation networks that control gene expression in
cells. Recent advances in data collection and analysis2,11,12,
however, are generating unprecedented amounts of informa-
tion about gene regulation networks. To understand these
complex wiring diagrams1–10,13, we sought to break down such
networks into basic building blocks2. We generalize the notion
of motifs, widely used for sequence analysis, to the level of
networks. We define ‘network motifs’ as patterns of intercon-
nections that recur in many different parts of a network at fre-
quencies much higher than those found in randomized
networks. We applied new algorithms for systematically
detecting network motifs to one of the best-characterized reg-
ulation networks, that of direct transcriptional interactions in
Escherichia coli3,6. We find that much of the network is com-
posed of repeated appearances of three highly significant
motifs. Each network motif has a specific function in determin-
ing gene expression, such as generating temporal expression
programs and governing the responses to fluctuating external
signals. The motif structure also allows an easily interpretable
view of the entire known transcriptional network of the organ-
ism. This approach may help define the basic computational
elements of other biological networks.
We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transcribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)3,14. We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive !-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed
graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed
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Fig. 1 Network motifs found in the E. coli transcriptional regulation network.
Symbols representing the motifs are also shown. a, Feedforward loop: a tran-
scription factor X regulates a second transcription factor Y, and both jointly
regulate one or more operons Z1...Zn. b, Example of a feedforward loop (L-ara-
binose utilization). c, SIM motif: a single transcription factor, X, regulates a set
of operons Z1...Zn. X is usually autoregulatory. All regulations are of the same
sign. No other transcription factor regulates the operons. d, Example of a SIM
system (arginine biosynthesis). e, DOR motif: a set of operons Z1...Zm are each
regulated by a combination of a set of input transcription factors, X1...Xn.
DORs are defined by an algorithm that detects dense regions of connections,
with a high ratio of connections to transcription factors. f, Example of a DOR
(stationary phase response).
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from X and a delayed one through Y. If the activation of X is tran-
sient, Y cannot reach the level needed to significantly activate Z,
and the input signal is not transduced through the circuit. Only
when X signals for a long enough time so that Y levels can build
up will Z be activated (Fig. 2a). Once X is deactivated, Z shuts
down rapidly. This kind of behavior can be useful for making
decisions based on fluctuating external signals.

The SIM motif is found in systems of genes that function sto-
chiometrically to form a protein assembly (such as flagella) or a
metabolic pathway (such as amino-acid biosynthesis). In these
cases, it is useful that the activities of the operons are determined
by a single transcription factor, so that their proportions at
steady state can be fixed. In addition, mathematical analysis sug-
gests that SIMs can show a detailed temporal program of expres-
sion resulting from differences in the activation thresholds of the
different genes (Fig. 2b). Built into this design is a pattern in
which the first gene activated is the last one to be deactivated.
Such temporal ordering can be useful in processes that require
several stages to complete. This type of mechanism may explain
the experimentally observed temporal program in the expression
of flagella biosynthesis genes18.

The motifs allow a representation of the E. coli transcriptional
network (Fig. 3) in a compact, modular form (for an image of the
full network, see Web Fig. A online). By using symbols to represent
the different motifs (Fig. 1), the network is broken down to its
basic building blocks. A single layer of DORs connects most of the
transcription factors to their effector operons. Feedforward loops
and SIMs often occur at the outputs of these DORs. The DORs are
interconnected by the global transcription factors, which typically
control many genes in one DOR and few genes in several DORs.
An important step in visualizing the network was to allow each
global transcription factor to appear multiple times, whenever it is
an input to a structure. This reduces the complexity of the inter-
connections while preserving all the information. There are few

long cascades3, usually involving !-factors, such as cas-
cades of depth 5 in the flagella and nitrogen systems. Over
70% of the operons are connected to the DORs; the rest of
the operons are in small disjoint systems. Most disjoint
systems have only 1 to 3 operons. The remaining disjoint
systems have up to 25 operons and show many SIMs and
feedforward loops. A notable feature of the overall organi-
zation is the large degree of overlap within DORs between
the short cascades that control most operons. The layer of
DORs may therefore represent the core of the computa-
tion carried out by the transcriptional network.

Cycles such as feedback loops are an important feature
of regulatory networks. Transcriptional feedback loops
occur in various organisms, such as the genetic switch in
"-phage5. In the E. coli data set, there are no examples of
feedback loops of direct transcriptional interactions,
except for auto-regulatory loops3. However, the absence

of feedback loops is not statistically significant, as over 80% of
the randomized networks also have no feedback loops (Table 1).
The many regulatory feedbacks loops in the organism are carried
out at the post-transcriptional level.

We considered only transcription interactions specifically
manifested by transcription factors that bind regulatory sites3,14.
This transcriptional network can be thought of as the ‘slow’ part
of the cellular regulation network (time scale of minutes). An
additional layer of faster interactions, which include interactions
between proteins (often subsecond timescale), contributes to the
full regulatory behavior and will probably introduce additional
network motifs. Characterization of additional transcriptional
interactions may change the present motif assignment for spe-
cific systems. However, our conclusions regarding the high fre-
quencies of feedforward loops, SIMs and overlapping regulation
compared with randomized networks are insensitive to the addi-
tion or removal of interactions from the data set. These features
are still highly significant, even when 25% of the connections in
the E. coli network are removed or rearranged at random.

The concept of homology between genes based on sequence
motifs has been crucial for understanding the function of
uncharacterized genes. Likewise, the notion of similarity
between connectivity patterns in networks, based on network
motifs, may be helpful in gaining insight into the dynamic
behavior of newly identified gene circuits. The present analysis
may serve as a guideline for experimental study of the functions
of the motifs. It would be useful to determine whether the net-
work motifs found in E. coli can characterize the transcriptional
networks of other cell types. In higher eukaryotes, for example,
there will be many more regulators affecting each gene, and addi-
tional types of circuits may be found. The findings presented
here also raise the possibility that motifs can be defined in other
biological networks7, such as signal transduction, metabolic19

and neuron connectivity networks.
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Fig. 2 Dynamic features of the coherent feedforward loop and SIM
motifs. a, Consider a coherent feedforward loop circuit with an ‘AND-
gate’–like control of the output operon Z. This circuit can reject rapid
variations in the activity of the input X, and respond only to persistent
activation profiles. This is because Y needs to integrate the input X
over time to pass the activation threshold for Z (thin line). A similar
rejection of rapid fluctuations can be achieved by a cascade, X#Y#Z;
however, the cascade has a slower shut-down than the feedforward
loop (thin red line in the Z dynamics panel). b, Dynamics of the SIM
motif. This motif can show a temporal program of expression accord-
ing to a hierarchy of activation thresholds of the genes. When the
activity of X, the master activator, rises and falls with time, the genes
with the lowest threshold are activated earliest and deactivated lat-
est. Time is in units of protein lifetimes, or of cell cycles in the case of
long-lived proteins.
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Little is known about the design principles1–10 of transcrip-
tional regulation networks that control gene expression in
cells. Recent advances in data collection and analysis2,11,12,
however, are generating unprecedented amounts of informa-
tion about gene regulation networks. To understand these
complex wiring diagrams1–10,13, we sought to break down such
networks into basic building blocks2. We generalize the notion
of motifs, widely used for sequence analysis, to the level of
networks. We define ‘network motifs’ as patterns of intercon-
nections that recur in many different parts of a network at fre-
quencies much higher than those found in randomized
networks. We applied new algorithms for systematically
detecting network motifs to one of the best-characterized reg-
ulation networks, that of direct transcriptional interactions in
Escherichia coli3,6. We find that much of the network is com-
posed of repeated appearances of three highly significant
motifs. Each network motif has a specific function in determin-
ing gene expression, such as generating temporal expression
programs and governing the responses to fluctuating external
signals. The motif structure also allows an easily interpretable
view of the entire known transcriptional network of the organ-
ism. This approach may help define the basic computational
elements of other biological networks.
We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transcribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)3,14. We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive !-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed
graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed
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Fig. 1 Network motifs found in the E. coli transcriptional regulation network.
Symbols representing the motifs are also shown. a, Feedforward loop: a tran-
scription factor X regulates a second transcription factor Y, and both jointly
regulate one or more operons Z1...Zn. b, Example of a feedforward loop (L-ara-
binose utilization). c, SIM motif: a single transcription factor, X, regulates a set
of operons Z1...Zn. X is usually autoregulatory. All regulations are of the same
sign. No other transcription factor regulates the operons. d, Example of a SIM
system (arginine biosynthesis). e, DOR motif: a set of operons Z1...Zm are each
regulated by a combination of a set of input transcription factors, X1...Xn.
DORs are defined by an algorithm that detects dense regions of connections,
with a high ratio of connections to transcription factors. f, Example of a DOR
(stationary phase response).
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Little is known about the design principles1–10 of transcrip-
tional regulation networks that control gene expression in
cells. Recent advances in data collection and analysis2,11,12,
however, are generating unprecedented amounts of informa-
tion about gene regulation networks. To understand these
complex wiring diagrams1–10,13, we sought to break down such
networks into basic building blocks2. We generalize the notion
of motifs, widely used for sequence analysis, to the level of
networks. We define ‘network motifs’ as patterns of intercon-
nections that recur in many different parts of a network at fre-
quencies much higher than those found in randomized
networks. We applied new algorithms for systematically
detecting network motifs to one of the best-characterized reg-
ulation networks, that of direct transcriptional interactions in
Escherichia coli3,6. We find that much of the network is com-
posed of repeated appearances of three highly significant
motifs. Each network motif has a specific function in determin-
ing gene expression, such as generating temporal expression
programs and governing the responses to fluctuating external
signals. The motif structure also allows an easily interpretable
view of the entire known transcriptional network of the organ-
ism. This approach may help define the basic computational
elements of other biological networks.
We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transcribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)3,14. We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive !-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed
graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed
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Fig. 1 Network motifs found in the E. coli transcriptional regulation network.
Symbols representing the motifs are also shown. a, Feedforward loop: a tran-
scription factor X regulates a second transcription factor Y, and both jointly
regulate one or more operons Z1...Zn. b, Example of a feedforward loop (L-ara-
binose utilization). c, SIM motif: a single transcription factor, X, regulates a set
of operons Z1...Zn. X is usually autoregulatory. All regulations are of the same
sign. No other transcription factor regulates the operons. d, Example of a SIM
system (arginine biosynthesis). e, DOR motif: a set of operons Z1...Zm are each
regulated by a combination of a set of input transcription factors, X1...Xn.
DORs are defined by an algorithm that detects dense regions of connections,
with a high ratio of connections to transcription factors. f, Example of a DOR
(stationary phase response).
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� Note: selection of motifs to test is reasonable but nevertheless
ad-hoc.

� For more, see work carried out byWiggins et al. at Columbia.
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The edge-degree distribution:
� The degree distribution 𝑃𝑘 is fundamental for our description of

many complex networks

� Again: 𝑃𝑘 is the degree of randomly chosen node.

� A second very important distribution arises from choosing
randomly on edges rather than on nodes.

� Define𝑄𝑘 to be the probability the node at a random end of a
randomly chosen edge has degree 𝑘.

� Now choosing nodes based on their degree (i.e., size):

𝑄𝑘 ∝ 𝑘𝑃𝑘

� Normalized form:

𝑄𝑘 = 𝑘𝑃𝑘
∑∞

𝑘′=0 𝑘′𝑃𝑘′

= 𝑘𝑃𝑘
⟨𝑘⟩

.

� Big deal: Rich-get-richer mechanism is built into this selection
process.
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� Again: 𝑃𝑘 is the degree of randomly chosen node.

� A second very important distribution arises from choosing
randomly on edges rather than on nodes.

� Define𝑄𝑘 to be the probability the node at a random end of a
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� Probability of randomly selecting a
node of degree 𝑘 by choosing from
nodes:
𝑃1 = 3/7, 𝑃2 = 2/7, 𝑃3 = 1/7,
𝑃6 = 1/7.

� Probability of landing on a node of
degree 𝑘 after randomly selecting an
edge and then randomly choosing
one direction to travel:
𝑄1 = 3/16,𝑄2 = 4/16,
𝑄3 = 3/16,𝑄6 = 6/16.

� Probability of finding # outgoing
edges = 𝑘 after randomly selecting an
edge and then randomly choosing
one direction to travel:
𝑅0 = 3/16 𝑅1 = 4/16,
𝑅2 = 3/16,𝑅5 = 6/16.
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The edge-degree distribution:

� For random networks,𝑄𝑘 is also the probability that a friend
(neighbor) of a random node has 𝑘 friends.

� Useful variant on𝑄𝑘:

𝑅𝑘 = probability that a friend of a random node has 𝑘 other
friends.

�

𝑅𝑘 =
(𝑘 + 1)𝑃𝑘+1

∑𝑘′=0(𝑘′ + 1)𝑃𝑘′+1

=
(𝑘 + 1)𝑃𝑘+1

⟨𝑘⟩

� Equivalent to friend having degree 𝑘 + 1.
� Natural question: what’s the expected number of other

friends that one friend has?
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The edge-degree distribution:
� Given𝑅𝑘 is the probability that a friend has 𝑘 other friends, then

the average number of friends’ other friends is

⟨𝑘⟩𝑅 =
∞

∑
𝑘=0
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=
∞

∑
𝑘=0

𝑘
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⟨𝑘⟩
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⟨𝑘⟩

∞
∑
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𝑘(𝑘 + 1)𝑃𝑘+1

= 1
⟨𝑘⟩

∞
∑
𝑘=1

((𝑘 + 1)2 − (𝑘 + 1)) 𝑃𝑘+1

(where we have sneakily matched up indices)

= 1
⟨𝑘⟩

∞
∑
𝑗=0

(𝑗2 − 𝑗)𝑃𝑗 (using j = k+1)

= 1
⟨𝑘⟩

(⟨𝑘2⟩ − ⟨𝑘⟩)
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The edge-degree distribution:

� Note: our result, ⟨𝑘⟩𝑅 = 1
⟨𝑘⟩ (⟨𝑘2⟩ − ⟨𝑘⟩), is true for all

random networks, independent of degree distribution.

� For standard random networks, recall

⟨𝑘2⟩ = ⟨𝑘⟩2 + ⟨𝑘⟩.

� Therefore:

⟨𝑘⟩𝑅 = 1
⟨𝑘⟩

(⟨𝑘⟩2 + ⟨𝑘⟩ − ⟨𝑘⟩)

= ⟨𝑘⟩

� Again, neatness of results is a special property of the Poisson
distribution.

� So friends on average have ⟨𝑘⟩ other friends, and ⟨𝑘⟩ + 1 total
friends...
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The edge-degree distribution:
� In fact,𝑅𝑘 is rather special for pure random networks …

� Substituting

𝑃𝑘 = ⟨𝑘⟩𝑘

𝑘!
𝑒−⟨𝑘⟩

into
𝑅𝑘 =

(𝑘 + 1)𝑃𝑘+1
⟨𝑘⟩

we have

𝑅𝑘 = (𝑘 + 1)
⟨𝑘⟩

⟨𝑘⟩(𝑘+1)

(𝑘 + 1)!
𝑒−⟨𝑘⟩

= ����(𝑘 + 1)
��⟨𝑘⟩

⟨𝑘⟩(𝑘+�1)

����(𝑘 + 1)𝑘!
𝑒−⟨𝑘⟩

= ⟨𝑘⟩𝑘

𝑘!
𝑒−⟨𝑘⟩

≡ 𝑃𝑘.

� #samesies.
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Two reasons why this matters

Reason #1:

� Average # friends of friends per node is

⟨𝑘2⟩ = ⟨𝑘⟩ × ⟨𝑘⟩𝑅

= ⟨𝑘⟩ 1
⟨𝑘⟩

(⟨𝑘2⟩ − ⟨𝑘⟩) = ⟨𝑘2⟩ − ⟨𝑘⟩.

� Key: Average depends on the 1st and 2nd moments of 𝑃𝑘 and not
just the 1st moment.

� Three peculiarities:

1. We might guess ⟨𝑘2⟩ = ⟨𝑘⟩(⟨𝑘⟩ − 1) but it’s actually
⟨𝑘(𝑘 − 1)⟩.

2. If 𝑃𝑘 has a large second moment,
then ⟨𝑘2⟩will be big.

(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... [3, 5]
4. See also: class size paradoxes (nod to: Gelman)
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Two reasons why this matters

More on peculiarity #3:
� A node’s average # of friends: ⟨𝑘⟩

� Friend’s average # of friends: ⟨𝑘2⟩
⟨𝑘⟩

� Comparison:

⟨𝑘2⟩
⟨𝑘⟩

= ⟨𝑘⟩⟨𝑘2⟩
⟨𝑘⟩2

= ⟨𝑘⟩𝜎2 + ⟨𝑘⟩2

⟨𝑘⟩2 = ⟨𝑘⟩ (1 + 𝜎2

⟨𝑘⟩2 ) ≥ ⟨𝑘⟩

� So only if everyone has the same degree (variance= 𝜎2 = 0)
can a node be the same as its friends.

� Intuition: for random networks, the more connected a node,
the more likely it is to be chosen as a friend.
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Figure 1 | The paradox holding probability h(k, x) as a function of degree k and node characteristic x. For the Physical Review (PR) coauthorship
network, we use (a) the number of coauthors, i.e., x 5 k, (b) the number of citations, (c) the number of publication, and (d) the average number of
citations per publication, while for the Google Scholar (GS) coauthorship network, we use (e) the number of coauthors, i.e., x 5 k, and (f) the number of
citations.

Table I | Empirical results for the generalized friendship paradox in two coauthorship networks from Physical Review (PR) journals and from

Google Scholar (GS) profiles. For each node characteristic x, we measure the Pearson correlation coefficient with degree rkx, the
characteristic assortativity rxx, the average paradox holding probability H, and average characteristics of nodes Æxæ and their neighbors
Æxænn

characteristic x rkx rxx H Æxæ Æxænn

The number of coauthors (PR) 1.00 0.47 0.934 58.3 , 771.7
The number of citations (PR) 0.69 0.21 0.921 110.1 , 1135.7
The number of publications (PR) 0.79 0.25 0.912 10.2 , 102.1
The average number of citations per
publication (PR)

0.07 0.34 0.720 7.8 , 12.4

The number of coauthors (GS) 1.00 20.02 0.863 6.9 , 16.1
The number of citations (GS) 0.44 0.14 0.792 3089.8 , 5401.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4603 | DOI: 10.1038/srep04603 3

“Generalized friendship paradox in complex
networks: The case of scientific collaboration”�
Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. [2]

Your friends really are monsters #winners:1

� Go on, hurt me: Friends have more coauthors, citations, and
publications.

� Other horrific studies: your connections on Twitter have
more followers than you, your sexual partners more partners
than you, …

� The hope: Maybe they have more enemies and diseases too.

1Some press here� [MIT Tech Review].

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
https://pdodds.w3.uvm.edu//research/papers/others/everything/eom2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/eom2014a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/eom2014a.pdf
https://www.washingtonpost.com/news/style-blog/wp/2014/01/14/study-your-friends-really-are-happier-more-popular-than-you/
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Figure 1 | The paradox holding probability h(k, x) as a function of degree k and node characteristic x. For the Physical Review (PR) coauthorship
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citations.
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Figure 1 | The paradox holding probability h(k, x) as a function of degree k and node characteristic x. For the Physical Review (PR) coauthorship
network, we use (a) the number of coauthors, i.e., x 5 k, (b) the number of citations, (c) the number of publication, and (d) the average number of
citations per publication, while for the Google Scholar (GS) coauthorship network, we use (e) the number of coauthors, i.e., x 5 k, and (f) the number of
citations.
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Two reasons why this matters

(Big) Reason #2:
� ⟨𝑘⟩𝑅 is key to understanding how well random networks are

connected together.

� e.g., we’d like to know what’s the size of the largest
component within a network.

� As𝑁 → ∞, does our network have a giant component?
� Defn: Component = connected subnetwork of nodes such

that ∃ path between each pair of nodes in the subnetwork,
and no node outside of the subnetwork is connected to it.

� Defn: Giant component = component that comprises a
non-zero fraction of a network as𝑁 → ∞.

� Note: Component = Cluster

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Structure of random networks

Giant component:
� A giant component exists if when we follow a random edge,

we are likely to hit a node with at least 1 other outgoing edge.

� Equivalently, expect exponential growth in node number as
we move out from a random node.

� All of this is the same as requiring ⟨𝑘⟩𝑅 > 1.
� Giant component condition (or percolation condition):

⟨𝑘⟩𝑅 = ⟨𝑘2⟩ − ⟨𝑘⟩
⟨𝑘⟩

> 1

� Again, see that the second moment is an essential part of the
story.

� Equivalent statement: ⟨𝑘2⟩ > 2⟨𝑘⟩

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Spreading on RandomNetworks

� For random networks, we know local structure is pure
branching.

� Successful spreading is ∴ contingent on single edges infecting
nodes.

� Focus on binary case with edges and nodes either infected or
not.

� First big question: for a given network and contagion process,
can global spreading from a single seed occur?
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Global spreading condition
� We need to find: [1]

R = the average # of infected edges that one random infected
edge brings about.

� CallR the gain ratio.

� Define𝐵𝑘1 as the probability that a node of degree 𝑘 is
infected by a single infected edge.

�

R =
∞

∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩⏟

prob. of
connecting to
a degree 𝑘 node

• (𝑘 − 1)⏟
# outgoing
infected
edges

• 𝐵𝑘1⏟
Prob. of
infection

+
∞

∑
𝑘=0

⏞𝑘𝑃𝑘
⟨𝑘⟩

• 0⏟
# outgoing
infected
edges

• (1 − 𝐵𝑘1)⏟⏟⏟⏟⏟
Prob. of
no infection
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Global spreading condition

� Our global spreading condition is then:

R =
∞

∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩

• (𝑘 − 1) • 𝐵𝑘1 > 1.

� Case 1–Rampant spreading:

If𝐵𝑘1 = 1 then

R =
∞

∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩

• (𝑘 − 1) = ⟨𝑘(𝑘 − 1)⟩
⟨𝑘⟩

> 1.

� Good: This is just our giant component condition again.
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Global spreading condition

� Case 2—Simple disease-like:

If𝐵𝑘1 = 𝛽 < 1 then

R =
∞

∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩

• (𝑘 − 1) • 𝛽 > 1.

� A fraction (1-𝛽) of edges do not transmit infection.
� Analogous phase transition to giant component case but

critical value of ⟨𝑘⟩ is increased.
� Aka bond percolation�.

� Resulting degree distribution ̃𝑃𝑘:

̃𝑃𝑘 = 𝛽𝑘
∞

∑
𝑖=𝑘

(𝑖
𝑘
)(1 − 𝛽)𝑖−𝑘𝑃𝑖.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Percolation_theory
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∞

∑
𝑘=0

𝑘𝑃𝑘
⟨𝑘⟩

• (𝑘 − 1) • 𝛽 > 1.

� A fraction (1-𝛽) of edges do not transmit infection.
� Analogous phase transition to giant component case but

critical value of ⟨𝑘⟩ is increased.
� Aka bond percolation�.

� Resulting degree distribution ̃𝑃𝑘:

̃𝑃𝑘 = 𝛽𝑘
∞

∑
𝑖=𝑘

(𝑖
𝑘
)(1 − 𝛽)𝑖−𝑘𝑃𝑖.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Percolation_theory
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Giant component for standard random networks:
� Recall ⟨𝑘2⟩ = ⟨𝑘⟩2 + ⟨𝑘⟩.

� Determine condition for giant component:

⟨𝑘⟩𝑅 = ⟨𝑘2⟩ − ⟨𝑘⟩
⟨𝑘⟩

= ⟨𝑘⟩2 + ⟨𝑘⟩ − ⟨𝑘⟩
⟨𝑘⟩

= ⟨𝑘⟩

� Therefore when ⟨𝑘⟩ > 1, standard random networks have a
giant component.

� When ⟨𝑘⟩ < 1, all components are finite.
� Fine example of a continuous phase transition�.
� We say ⟨𝑘⟩ = 1marks the critical point of the system.

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
http://en.wikipedia.org/wiki/Phase_transition
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Random networks with skewed 𝑃𝑘:
� e.g, if 𝑃𝑘 = 𝑐𝑘−𝛾 with 2 < 𝛾 < 3, 𝑘 ≥ 1, then

⟨𝑘2⟩ = 𝑐
∞

∑
𝑘=1

𝑘2𝑘−𝛾

∼ ∫
∞

𝑥=1
𝑥2−𝛾d𝑥

∝ 𝑥3−𝛾∣∞
𝑥=1

= ∞ (≫ ⟨𝑘⟩).

� So giant component always exists for these kinds of networks.
� Cutoff scaling is 𝑘−3: if 𝛾 > 3 then we have to look harder at

⟨𝑘⟩𝑅.
� How about 𝑃𝑘 = 𝛿𝑘𝑘0

?

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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Giant component

And how big is the largest component?
� Define 𝑆1 as the size of the largest component.

� Consider an infinite ER random network with average degree ⟨𝑘⟩.

� Let’s find 𝑆1 with a back-of-the-envelope argument.

� Define 𝛿 as the probability that a randomly chosen node does not
belong to the largest component.

� Simple connection: 𝛿 = 1 − 𝑆1.

� Dirty trick: If a randomly chosen node is not part of the largest
component, then none of its neighbors are.

� So

𝛿 =
∞

∑
𝑘=0

𝑃𝑘𝛿𝑘

� Substitute in Poisson distribution...

https://pdodds.w3.uvm.edu/teaching/courses/2024-2025pocsverse
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� Define 𝛿 as the probability that a randomly chosen node does not
belong to the largest component.

� Simple connection: 𝛿 = 1 − 𝑆1.

� Dirty trick: If a randomly chosen node is not part of the largest
component, then none of its neighbors are.

� So

𝛿 =
∞

∑
𝑘=0

𝑃𝑘𝛿𝑘

� Substitute in Poisson distribution...
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� Carrying on:

𝛿 =
∞

∑
𝑘=0

𝑃𝑘𝛿𝑘

=
∞

∑
𝑘=0

⟨𝑘⟩𝑘

𝑘!
𝑒−⟨𝑘⟩𝛿𝑘

= 𝑒−⟨𝑘⟩
∞

∑
𝑘=0

(⟨𝑘⟩𝛿)𝑘

𝑘!

= 𝑒−⟨𝑘⟩𝑒⟨𝑘⟩𝛿 = 𝑒−⟨𝑘⟩(1−𝛿).

� Now substitute in 𝛿 = 1 − 𝑆1 and rearrange to obtain:

𝑆1 = 1 − 𝑒−⟨𝑘⟩𝑆1 .
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� We can figure out some limits and details for
𝑆1 = 1 − 𝑒−⟨𝑘⟩𝑆1 .

� First, we can write ⟨𝑘⟩ in terms of 𝑆1:

⟨𝑘⟩ = 1
𝑆1

ln
1

1 − 𝑆1
.

� As ⟨𝑘⟩ → 0, 𝑆1 → 0.
� As ⟨𝑘⟩ → ∞, 𝑆1 → 1.
� Notice that at ⟨𝑘⟩ = 1, the critical point, 𝑆1 = 0.
� Only solvable for 𝑆1 > 0when ⟨𝑘⟩ > 1.
� Really a transcritical bifurcation. [8]
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Turns out we were lucky...
� Our dirty trick only works for ER random networks.

� The problem: We assumed that neighbors have the same
probability 𝛿 of belonging to the largest component.

� But we know our friends are different from us...
� Works for ER random networks because ⟨𝑘⟩ = ⟨𝑘⟩𝑅.
� We need a separate probability 𝛿′ for the chance that an edge

leads to the giant (infinite) component.
� We can sort many things out with sensible probabilistic

arguments...
� More detailed investigations will profit from a spot of

Generatingfunctionology. [9]
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