Lognormals and friends

Last updated: 2024/10/14, 16:39:46 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2024-2025

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

Licensed under the Creative Commons Attribution 4.0 International

Lognormals

Random Growth with Variable

These slides are brought to you by:

The PoCSverse Lognormals and friends 2 of 26

Lognormals

Equipment Confine billion

Random Multiplicative Growt Model

Random Growth with Variable Lifespan

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Lognormals and friends 3 of 26

Lognormals Model

Outline

Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

The PoCSverse Lognormals and friends 4 of 26

Lognormals

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Alternative distributions

There are other 'heavy-tailed' distributions:

1. The Log-normal distribution 🗷

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln\!x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

CCDF = stretched exponential \square .

3. Also: Gamma distribution , Erlang distribution , and more.

The PoCSverse Lognormals and friends 7 of 26

Lognormals

Empirical Confusability

Random Growth with Variable

References

lognormals

The lognormal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- $\ \ \,$ ln x is distributed according to a normal distribution with mean μ and variance σ .
- Appears in economics and biology where growth increments are distributed normally.

The PoCSverse Lognormals and friends 8 of 26

Lognormals

Empirical Confusability

Random Multiplicative Growt

Random Growth with Variab Lifespan

lognormals

 $\red{standard}$ form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\begin{split} \mu_{\rm lognormal} &= e^{\mu + \frac{1}{2}\sigma^2}, \qquad {\rm median}_{\rm lognormal} = e^{\mu}, \\ \sigma_{\rm lognormal} &= (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \qquad {\rm mode}_{\rm lognormal} = e^{\mu - \sigma^2}. \end{split}$$

All moments of lognormals are finite.

The PoCSverse Lognormals and friends 9 of 26

Lognormals

Empirical Confusability

Derivation from a normal distribution

Take Y as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) dy$$

Set $Y = \ln X$:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)\mathrm{d}x = \frac{1}{x\sqrt{2\pi}\sigma}\mathrm{exp}\left(-\frac{(\ln\!x - \mu)^2}{2\sigma^2}\right)\mathrm{d}x$$

The PoCSverse Lognormals and friends 10 of 26

Lognormals

Empirical Confusability

Random Growth with Variabl

Confusion between lognormals and pure power laws

Lognormals

Empirical Confusability

References

Near agreement over four orders of magnitude!

 \clubsuit For lognormal (blue), $\mu = 0$ and $\sigma = 10$.

Solution For power law (red), $\gamma = 1$ and c = 0.03.

Confusion

What's happening:

$$\begin{split} \ln\!P(x) &= \ln\left\{\frac{1}{x\sqrt{2\pi}\sigma}\!\exp\left(-\frac{(\ln\!x-\mu)^2}{2\sigma^2}\right)\right\} \\ &= -\!\ln\!x - \ln\!\sqrt{2\pi}\sigma - \frac{(\ln\!x-\mu)^2}{2\sigma^2} \end{split}$$

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi}\sigma - \frac{\mu^2}{2\sigma^2}.$$

If the first term is relatively small,

$$\left|\ln\!P(x) \sim -\left(1 - \frac{\mu}{\sigma^2}\right) \ln\!x + \mathrm{const.}\right| \Rrightarrow \left|\gamma = 1 - \frac{\mu}{\sigma^2}\right|$$

The PoCSverse Lognormals and friends 12 of 26

Lognormals

Empirical Confusability

Model

Random Growth with Variable

Lifespan

Confusion

 \Re If $\mu < 0, \gamma > 1$ which is totally cool.

 \Re If $\sigma^2 \gg 1$ and μ ,

$$\ln\!P(x) \sim -\ln\!x + {\rm const.}$$

Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$:

$$\begin{split} &-\frac{1}{2\sigma^2}(\text{ln}x)^2 \simeq 0.05 \left(\frac{\mu}{\sigma^2}-1\right) \text{ln}x \\ \Rightarrow &\log_{10}x \lesssim 0.05 \times 2(\sigma^2-\mu) \text{log}_{10}e \simeq 0.05 (\sigma^2-\mu) \end{split}$$

you may have a lognormal distribution... The PoCSverse Lognormals and friends 13 of 26

Lognormals

Empirical Confusability

Generating lognormals:

Random multiplicative growth:

$$x_{n+1} = rx_n$$

where r > 0 is a random growth variable

In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

 $\Longrightarrow x_n$ is lognormally distributed

The PoCSverse Lognormals and friends 15 of 26

Lognormals

Random Multiplicative Growth Model

Random Growth with Varial

Lognormals or power laws?

- Gibrat ^[2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- But Robert Axtell $^{[1]}$ (2001) shows a power law fits the data very well with $\gamma=2$, not $\gamma=1$ (!)
- Problem of data censusing (missing small firms).

Freq \propto (size) $^{-\gamma}$ $\gamma \simeq 2$

One piece in Gibrat's model seems okay empirically: Growth rate r appears to be independent of firm size. [1].

The PoCSverse Lognormals and friends 16 of 26

Lognormals

Random Multiplicative Growth

Random Growth with Varia

Lifespan

An explanation

 $\ensuremath{\mathfrak{S}}$ The set up: N entities with size $x_i(t)$

Generally:

$$x_i(t+1) = rx_i(t)$$

where r is drawn from some happy distribution

Same as for lognormal but one extra piece.

& Each x_i cannot drop too low with respect to the other sizes:

$$x_i(t+1) = \max(rx_i(t), c\left\langle x_i\right\rangle)$$

The PoCSverse Lognormals and friends

Lognormals

Random Multiplicative Growth Model

Model

Random Growth with Variable

Latespan

Some math later...

Insert assignment question

Find
$$P(x) \sim x^{-\gamma}$$

 \Leftrightarrow where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
 and $\gamma > 2$ $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

The PoCSverse Lognormals and friends 18 of 26

Lognormals

Random Multiplicative Growth Model

The second tweak

Ages of firms/people/... may not be the same

 \Leftrightarrow Example: $P(t)dt = ae^{-at}dt$ where t = age.

 $\ensuremath{\mathfrak{S}}$ Back to no bottom limit: each x_i follows a lognormal

Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

Now averaging different lognormal distributions.

The PoCSverse Lognormals and friends 20 of 26

Lognormals

Empirical Confusability

Random Growth with Variable

Averaging lognormals

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln\frac{x}{m})^2}{2t}\right) \mathrm{d}t$$

Insert fabulous calculation (team is spared).

Some enjoyable suffering leads to:

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda (\ln \frac{x}{m})^2}}$$

The PoCSverse Lognormals and friends 21 of 26

Lognormals

Empirical Confusability

Random Multiplicative Growth

Random Growth with Variable Lifespan

The second tweak

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln\frac{x}{m})^2}}$$

 \Re Depends on sign of $\ln \frac{x}{m}$, i.e., whether $\frac{x}{m} > 1$ or $\frac{x}{m} < 1$.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } \frac{x}{m} < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } \frac{x}{m} > 1 \end{cases}$$

& 'Break' in scaling (not uncommon)

A Double-Pareto distribution

First noticed by Montroll and Shlesinger [7,8]

A Later: Huberman and Adamic [3, 4]: Number of pages per website

The PoCSverse Lognormals and friends 22. of 26

Lognormals

Random Growth with Variable

Summary of these exciting developments:

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- Take-home message: Be careful out there...

The PoCSverse Lognormals and friends 23 of 26

Lognormals

Random Growth with Variable

References I

[1] R. Axtell.

Zipf distribution of U.S. firm sizes.

Science, 293(5536):1818–1820, 2001. pdf

[2] R. Gibrat.
 Les inégalités économiques.
 Librairie du Recueil Sirey, Paris, France, 1931.

- [3] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide Web. Technical report, Xerox Palo Alto Research Center, 1999.
- [4] B. A. Huberman and L. A. Adamic. The nature of markets in the World Wide Web. Quarterly Journal of Economic Commerce, 1:5–12, 2000.

The PoCSverse Lognormals and friends 24 of 26

Lognormals

Empirical Confusability

Model

Random Growth with Variable

Lifespan

References II

[5] O. Malcai, O. Biham, and S. Solomon.

Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements.

Phys. Rev. E, 60(2):1299-1303, 1999. pdf

[6] M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions. Internet Mathematics, 1:226–251, 2003. pdf

[7] E. W. Montroll and M. W. Shlesinger.
 On 1/f noise and other distributions with long tails.
 Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf

The PoCSverse Lognormals and friends 25 of 26

Lognormals

Random Multiplicative Growth

Random Growth with Varial

References III

The PoCSverse Lognormals and friends 26 of 26

Lognormals

Empirical Confusability

Random Growth with Varial Lifespan

References

[8] E. W. Montroll and M. W. Shlesinger.

Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails.

J. Stat. Phys., 32:209-230, 1983.

