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Generatingfunctionology "

&% Idea: Givena sequence G, Gy, Gy, ... , associate each element
with a distinct function or other mathematical object.

& Well-chosen functions allow us to manipulate sequences and
retrieve sequence elements.
Definition:

&% The generating function (g.f.) for a sequence {a,, } is

OO
F(z)= Zanx”.
n=0

&< Roughly: transforms a vector in R* into a function defined
on R'.
&2 Related to Fourier, Laplace, Mellin, ...
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Simple examples:

Generating Functions

Rolling dice and flipping coins:
P2 pf) = Pr(throwinga k) = 1/6 wherek = 1,2, ... ,6.

6
. = 1 .
F®(z) = E p,(j)xk:6(x+x2+x3+x4+x5+x6). :
k=1

References
& p™ — Pr(head) = 1/2, p™™ = Pr(ail) = 1/2.

: ; ; 1

Fleoin)(g) = pf)cm")xo +p(1c°'"):v1 = 5(1 + ).

& A generating function for a probability distribution is called a
Probability Generating Function (p.g.f.).

&% We'll come back to these simple examples as we derive various
delicious properties of generating functions.
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Example
&5 Takea degree distribution with exponential decay:

Generating Functions

P, =ce™

where geometricsumfully, we have ¢ = 1 — e

&% The generating function for this distribution is pe
o0 o0 c
F(x) = Zkak = Zce’)‘kxk = T
k=0 k=0 —re

&% Notice that F(1) = ¢/(1 —e™) = 1.
& For probability distributions, we must always have F'(1) = 1

since o o
F()=Y PR1"=> P =1
k=0 k=0

& Check die and coin p-gf’s.
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Properties:

o2y Average degree:

o0 o0
(k)= "kPy = kPt
k=0 k=0

d

T dr

Generating Functions

r=1

F@)| =r@)

z=1 References

& In general, many calculations become simple, if a little abstract.

& For our exponential example:

S (L—e e
Fla) = ey

&
67’\

Sor (1) = F/(1) = (7=

&2 Check for die and coin p.gfs.

Useful pieces for probability distributions:

&% Normalization:
F(l)=1

&% First moment:

<& Higher moments:

(k™) = (1%)n F(x)

z=1
& kth element of sequence (general):
1 d
P, = B dok (17)‘1':0

A beautiful, fundamental thing:

& The generating function for the sum of two random variables

W=U+V

Fy(z) = Fy(z)Fy(z).

&% Convolve yourself with Convolutions:
Insert assignment question .

& Try with die and coin p.g.f.’s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.

Edge-degree distribution

&% Recall our condition for a giant component:

(k?) — (k)
(k)

&5 Let's re-express our condition in terms of generating
functions.

&2 We first need the gf.for ;.

&5 We'll now use this notation:
Fp(x) is the g.f. for P,.
Fr(z)is the g.f. for R,

& Giant component condition in terms of g.f. is:

(kYp = > 1.

(k) = F4(1) > 1.

&% Now find how F is related to Fp ...
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Edge-degree distribution
& We have

Fp(z) = iszk = f: %zk
k=0 k=0

Shiftindex to j = k + 1 and pull out %:

Generating Functions

Fr(z) = %;J’Pj“’j_l = %;PJ%II
1 d& 1 d -
_wdr; it { >£(FP(I) Fy) :®FP( ).
Finally, since (k) = F5(1),
Fp(z)
= F
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Edge-degree distribution

ating Functions

&% Recall giant component condition is (k) = F(1) > 1.
&% Since we have Fip(2) = Fp(w)/Fp(1),

Fp(z)
p(1)-

Fr(z) =

0|

P Setting = 1, our condition becomes

>1
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Size distributions

Generating Functions

To figure out the size of the largest component (S ), we need more
resolution on component sizes.

Definitions:

& T, = probability that a random node belongs to a finite e oo
component of size n. < 00.

References

& p,, = probability that a random end of a random link leads to
a finite subcomponent of size n. < 00.

Local-global connection:

Py Ry <m0,

neighbors < components
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Connecting probabilities:

Generating Functions

n (\ool?s

©,

T

P

&% Markov property of random networks connects T,,, p,,, and
p,.
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Connecting probabilities:

Generating Functions

‘k ou}y-}wg
edges

&% Markov property of random networks connects p,, and Ry
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G.fs for component size distributions:

&

Generating Functions

o0 o]
F.(z)= Z T, and F(x) = Z P&
n=0 n=0

The largest component:

&% Subtle key: F (1) is the probability that a node belongs to a

finite component.

&% Therefore: S; = 1 — F.(1).

Our mission, which we accept:

&% Determine and connect the four generating functions

Fp, Fg, Fy, and F,.
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Useful results we’ll need for g.f.’s

Generating Functions

Sneaky Result 1:
& Consider two random variables U and V'whose values may be

0,1,2,...
&% Write probability distributions as Uy, and V}, and g.f’s as I, )

and FV. References
&% SRI: If a third random variable is defined as

v _d
W => V" witheach VD £V
i=1
then
‘Fw(”f) = Fy (Fy(z)) ‘
Proof of SR1: é]d;”g{
250f 58

Generating Functions

Write probability that variable 1 has value & as 1V,

W, = Z U; x Pr(sum of j draws of variable V'= k)

=0

=

=>U Y Ve,
j: {i1si9,m0ig)

iy g teti=k

fee] oo} o0
_ k_ k
Fy(z) = E Wyah = E U; E ViVi, Vi@
k=0 k=0 j=0 {i12igmmig)l
iy it =k
e} o0
— ) 1o i,
= g U; E Vix 1Vi2xz---Vi]xJ
7=0 k=0 {i1,ig,igzl
iytint ot =k
The PoCSverse
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With some concentration, observe:

o] o]
Fy(z) = E U; E E Viah Vi wtz  V; ats
J=0 k=0 {i1.ig...ij}l

iy iyt =k
. oo i\
x pleceof(zi/zo Vix )

(5, Ver'') = (Fy())?

&5 Alternate, groovier proof in the accompanying assignment.



Useful results we’ll need for g.£7’s

Sneaky Result 2:

&% Start with a random variable U with distribution U,
(k=0,1,2,...)
&% SR2: If a second random variable is defined as

V =U +1 then | Fy(z) = v Fy(x)

& Reason: V, = U, _; fork > land V; = 0.
&

~Fy(z) = i Veak = i U, z*
k=0

k=1

o0
= xZUﬂ:] = xFy(x).
=0

Useful results we’ll need for g.f.’s

Generalization of SR2:
& ()IFV = U +ithen

Fy(x) = 2 Fy(z).
& (QIfV =U —ithen

Fy(z) = 2 " Fy(x)

00
=z Z Uyz®
k=0

Connecting generating functions:

& Goal: figure out forms of the component generating
functions, F; and F,.

&% Relate 7, to P, and p,, through one step of recursion.
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Average Componens S
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Connecting generating functions:

Generating Functions

&% 7, = probability that a random node belongs to a finite

component of size n

>, sum of sizes of subcomponents o
= E Pk x Pr . References
prd atend of k random links = n — 1

Therefore: |F,(z) = z Fp(F,(z))
SR

&% Extra factor of x accounts for random node itself.
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Connecting generating functions:

Generating Functions

ok ou}y(mg
edges

&% Relate p,, to Ry, and p,, through one step of recursion.
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Connecting generating functions:

Ge

g Functions

&% p,, = probability that a random link leads to a finite

subcomponent of size n.

& Invoke one step of recursion:
p,, = probability that in following a random edge, the
outgoing edges of the node reached lead to finite
subcomponents of combined size n — 1,

sum of sizes of subcomponents
atend of k random links =n — 1

Therefore: |F,(z) = z Fg(F,(z))

P2} Again, extra factor of 2 accounts for random node itself.

Connecting generating functions:

&

LRI R

We now have two functional equations connecting our
generating functions:

F.(x)=aFp (Fp(.’lj)> and F,(z) =xFy (Fp<,l))

Taking stock: We know Fp(z) and Fip(x) = Fp(x)/Fp(1).

We first untangle the second equation to find F),
We can do this because it only involves F, and F.

The first equation then immediately gives us F in terms of

F,and F,.

Component sizes

&

Remembering vaguely what we are doing:
Finding F; to obtain the fractional size of the largest

component S; =1 — F_(1).

™

Setx = 1in our two equations:

F.(1)=Fp (Fp(l)) and F,(1) = Fy (Fp(l))

Solve second equation numerically for F,(1).

Plug F,(1) into first equation to obtain F(1).

Component sizes

Example: Standard random graphs.

&

& HH®

We can show Fp(z) = e~ (K(1-2)

= Fp(z) = Fp(x)/Fp(1)

RHS’s of our two equations are the same.

So F7r<:I:) = Fp(:[) = mFR(Fp(‘Z)) = ‘ZFR(Fﬂ(‘T))
Consistent with how our dirty (but wrong) trick worked
earlier ...

T, = p, justas P, = R,

The PoCSverse
Generating Functions
and Networks
340f58

Generating Functions

References

The PoCSverse
Generating Functions
and Networks
350f58

Generating Functions

The PoCSverse
Generating Functions
and Networks
360f58

Generating Functions

References



The PoCSverse The PoCSverse The PoCSverse

Com ponent sizes Generating Functions Generating Functions Generating Functions

and Networks and Networks and Networks
2 We are down to (-l:xysx o Find Fp(l') first: *’1\\)58 ) ‘ & Let’s define a binomial for arbitrary f and k = 0, 1,2, ...: ::v’f‘fjuﬂ"mm.\
— — —{(k)(1— X X
F_(z) = 2FR(F,(z)) and Fp(z) = e~ W02, 2 We know: (a) _ O +1)
® Fy(z) = B T T(k+DL(0—k+1)
“F_(z) = ze~R(-F(@)
For 6 = 1, we have:
& We're firstafter S; = 1 — F (1) soset z = 1 and replace & For 2> Wehave
F.(1)byl1—S5;: References References . 1 1 1 References
L _(2\,04 (2).1 0 (2).2
J%*\Y * @ (1+2) (O)Z +(1)z +(2)z +..
— —(k)S .
1—8, =e WS s on q _ INE)) 04 r'($) . I 2
o L))"  TErG)~  TEr(-3 7
1 1
Or: (k) = —In— o4 11, 1.
r: (k) Slnl_sl 02 //é :1+§Z7§22+176z37"'
k uu% \]Mq
0 1 2 3 2 Ric X edgjq where we've used I'(z + 1) = 2I'(z) and noted that '(}) = @
kO
. 0.
&5 Just as we found with our dirty trick ... & Note: (1 +2) 1+ Oz always.
&% Again, we (usually) have to resort to numerics ...
The PoCSverse The PoCSverse
S;f ;Z;:\fri?nmm & Sticking things in things, we have: S:; ;Z:ﬂ?mm <& Totally psyched, we go back to here:
A few simple random networks to contemplate and play B L3 S
around with: F,(v) =2 (Z +t3 [F, ()] ) . S F,(x) = 3% (1 —/1— %7@2> .
& Notation: The Kronecker LJL:IE&}}II}S(}(}I}E 61'] =1lifi=j e
and 0 otherwise. R ing:
& Po_s & carranging P Setting z = —%1‘2 and expanding, we have:
k — Yk1- P s 2 verge Componcat i
& Pk = 6k2' References 3 [Fp(x)} - 4FP(I) +z=0. References Fp(x) =
& P= Ors- &% Please and thank you: 2 1 3 L | 3 .\% 1 3.\
— 1|1+ (-52?) —<(=52?) +=(—=2?) |+
&> P, = 6y, forsome fixed & > 0. 3z 2\ 4 8\ 4 16\ 4
-1 1 2 3
& By = 26’“ + 26k3' Fﬂ(a:) =— 1|1+ \/ 1— 22 P Giving:
& P, =aby, + (1 —a)dys, with0 < a < 1. 3z 4 ) i .,
z) = T =
& P, = 16y + 164 for some fixed &' > 2. ) . , ’ n:(]p
I s . 5ok fred K > 2 with &% Time for a Taylor series expansion. X . X
= — " /> i _1)kt1p(3
“ “ orsomefped v = Zwit e promise: non-negative powers of  with non-negative oty T oghy a2 (%) L A8 g2kl
& P, w1+ ( )0k 2 Th . . £ 2 with . 1 3 .9 2 /3 (=D*IT(5) 5y
0<a<l b i & e st T3\L) tarore—n” T
- coefficients. (k+1F(5 = k)
& First: which sign do we take? & Do odd powers make sense?
The PoCSverse The PoCSverse The PoCSverse
. enerating Functions Because p,, is a probability distribution, we know F,(1) < 1 Generating Functions Generating Functions
A joyful example [: i e & n1$3p Y ’ P = and Newworks and Newworks
] Y p 4\)‘11\25' b and Fp(a:) < 1for0 <z< 1. a}i?lsx b a(,c},:\[sx b
1 1 Generating Functions Ge g Functions . Generating Functions
P, = 55“ + 5(5%. [ &% Thinking about the limit z — O in : [ & We can now find F () with: [

Fﬂ'(‘z) = Q:FP (Fp(z))

& We find (two ways): By, = 26,0 + 36,

2 / 3
Fp(x):3<1:|; 14:52),
T
& A giant component exists because:

(kY =0x1/4+2x3/4=3/2>1. References we see that the positive sign solution blows to smithereens, References

&% Generating functions for Py, and Ry: and the negative one is okay. 1|2 3 23 3 :
&% So we must have: =z5 | | 1—y/1—722 | + 1—4/1——a? .
: 2 |3z 4 (3x)3 4

Fp(@) = 2+ 228 and Fp(z) = Lo 3,0

2 2 4 4 2 3
Fp(a:) = ? 1—4/1— 1322 R & Delicious.
&% Check for goodness: z

© Fp(e) = Fp(e)/Fp(1) and Fp(1) = Fp(l) = 1. & In principle, we can now extract all the r,,.
0 Fp(1) = (k)p=2and Fp(1) = (k) = 3. &% We can now deploy the Taylor expansion: &% Butlet’s just find the size of the giant component.

< Things to figure out: Component size generating functions

for m,, and p,,, and the size of the giant component. (1+2)f= (g) 20+ (?) 2+ (g) 22+ (g) 2+ ..




First, we need F),(1):

2 3 1
— _ — 212 —
Fp<x>‘z:1 T 3-1 (1 ! 41 ) 3

This is the probability that a random edge leads to a sub-component
of finite size.

Next:

R O B E O

This is the probability that a random chosen node belongs to a
finite component.

Finally, we have

51:1—FW(1):1—%:%.
S
b} ,(MC{/’;WLQJ}
(O o e
' — Lk

K2 A

Average component size

Next: find average size of finite components (7).

Using standard G.F. result: (n) = F(1).

Try to avoid finding F () ...

Starting from F(x) = 2Fp (F,(z)), we differentiate:

F(z) = Fp(F,(z)) + aF)(z)Fp (F,(z))
While F,(2) = ©F, (F,(x)) gives
Fl(x) = Fp (F,(2)) + 2F)(x)Fp (F,(z))

Now set z = 1 in both equations.

We solve the second equation for F (1) (we must already have

F,(1).

Plug F)(1) and F,(1) into first equation to find F (1).
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Example: Standard random graphs.

Generating Functions

e Use fact that Fp = Frand F, = Fp,

Two differentiated equations reduce to only one:

Fr(a) = Fp(Fr(2)) + 2 Fr(2) Fp (Fr(2))

. Fp(Fy(x)
Rearrange: F.(z) = m

Simplify denominator using Fp(z) = (k) Fp(x)
Replace Fp(F, (x)) using F, (x) = xFp(F,(z)).
Setz = 1 and replace F (1) with 1 — S.

End result: (n) = Fy(1) = 5 (1=5)
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QOur result for standard random networks:

’ (l_sl)
=)= = a 5,

Generating Functions

standard random networks.

Look at what happens when we increase (k) to 1 from below.

We have S; = Oforall (k) <1 so

This blows up as (k) — 1.

Reason: we have a power law distribution of component sizes

at (k) = 1.

Typical critical point behavior ...
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Generating Functions

Limits of (k) = 0and co make sense for
, (1-5)
n)=F(l)= ——~7"5~
A T

As (k) — 0,5, =0,and (n) — 1.
All nodes are isolated.
As (k) — 00, S; = 1and (n) — 0.

No nodes are outside of the giant component.

Extra on largest component size:
For (k) = 1,8, ~ N*3/N.
For (k) < 1,5, ~ (logN)/N.

— (k)1 =5

Recall that (k) = 1is the critical value of average degree for
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Let’s return to our example: P, = é(skl + %61‘73‘

We’re after:
(n) = F;(1) = Fp(F,(1)) + Fy()Fp (F,(1))
where we first need to compute

F)(1) = Fg (F,(1)) + F,(1)Fg (F,(1)) -

Place stick between teeth, and recall that we have:

1 1. 1 3
Fp(x) = 5o + 5a® and Fr(a) = 72 + 7o,

Differentiation gives us:

1 3 . 3
Fp(z) = 5 + §z2 and F(z) = 5%

We bite harder and use F/,(1) = % to find:

Fy(1) = Fg (F,(1) + Fj(1)Ff, (F,(1))

After some reallocation of objects, we have I, (1) = 3.

Finallys (n) = F/(1) = Fp (%) + ?F}’, (%)

1 13/1 %1 5 13 122

11,1 1.2
233

Ly
T 23

2+2§

So, kinda small.

Nutshell

Generating functions allow us to strangely calculate features
of random networks.

They’re a bit scary and magical.
Generating functions can be useful for contagion.

But: For the big results, more direct, physics-bearing
calculations are possible.
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