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Generatingfunctionology [1]

� Idea: Given a sequence 𝑎0, 𝑎1, 𝑎2, … , associate each element
with a distinct function or other mathematical object.

� Well-chosen functions allow us to manipulate sequences and
retrieve sequence elements.

Definition:
� The generating function (g.f.) for a sequence {𝑎𝑛} is

𝐹(𝑥) =
∞

∑
𝑛=0

𝑎𝑛𝑥𝑛.

� Roughly: transforms a vector in𝑅∞ into a function defined
on𝑅1.

� Related to Fourier, Laplace, Mellin, …
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Simple examples:

Rolling dice and flipping coins:

� 𝑝( )
𝑘 = Pr(throwing a 𝑘) = 1/6where 𝑘 = 1, 2, … , 6.

𝐹 ( )(𝑥) =
6

∑
𝑘=1

𝑝( )
𝑘 𝑥𝑘 = 1

6
(𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6).

� 𝑝(coin)0 = Pr(head) = 1/2, 𝑝(coin)1 = Pr(tail) = 1/2.

𝐹 (coin)(𝑥) = 𝑝(coin)0 𝑥0 + 𝑝(coin)1 𝑥1 = 1
2

(1 + 𝑥).

� A generating function for a probability distribution is called a
Probability Generating Function (p.g.f.).

� We’ll come back to these simple examples as we derive various
delicious properties of generating functions.
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Example
� Take a degree distribution with exponential decay:

𝑃𝑘 = 𝑐𝑒−𝜆𝑘

where geometricsumfully, we have 𝑐 = 1 − 𝑒−𝜆

� The generating function for this distribution is

𝐹(𝑥) =
∞

∑
𝑘=0

𝑃𝑘𝑥𝑘 =
∞

∑
𝑘=0

𝑐𝑒−𝜆𝑘𝑥𝑘 = 𝑐
1 − 𝑥𝑒−𝜆 .

� Notice that 𝐹(1) = 𝑐/(1 − 𝑒−𝜆) = 1.
� For probability distributions, we must always have 𝐹(1) = 1

since
𝐹(1) =

∞
∑
𝑘=0

𝑃𝑘1𝑘 =
∞

∑
𝑘=0

𝑃𝑘 = 1.

� Check die and coin p.g.f.’s.
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Properties:
� Average degree:

⟨𝑘⟩ =
∞

∑
𝑘=0

𝑘𝑃𝑘 =
∞

∑
𝑘=0

𝑘𝑃𝑘𝑥𝑘−1∣
𝑥=1

= d
d𝑥

𝐹(𝑥)∣
𝑥=1

= 𝐹 ′(1)

� In general, many calculations become simple, if a little abstract.

� For our exponential example:

𝐹 ′(𝑥) = (1 − 𝑒−𝜆)𝑒−𝜆

(1 − 𝑥𝑒−𝜆)2 .

�

So: ⟨𝑘⟩ = 𝐹 ′(1) = 𝑒−𝜆

(1 − 𝑒−𝜆)
.

� Check for die and coin p.g.f.’s.
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Useful pieces for probability distributions:
� Normalization:

𝐹(1) = 1

� First moment:
⟨𝑘⟩ = 𝐹 ′(1)

� Higher moments:

⟨𝑘𝑛⟩ = (𝑥 d
d𝑥

)
𝑛

𝐹(𝑥)∣
𝑥=1

� 𝑘th element of sequence (general):

𝑃𝑘 = 1
𝑘!

d𝑘

d𝑥𝑘 𝐹(𝑥)∣
𝑥=0
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A beautiful, fundamental thing:
� The generating function for the sum of two random variables

𝑊 = 𝑈 + 𝑉

is
𝐹𝑊(𝑥) = 𝐹𝑈(𝑥)𝐹𝑉(𝑥).

� Convolve yourself with Convolutions:
Insert assignment question� .

� Try with die and coin p.g.f.’s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.
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Edge-degree distribution

� Recall our condition for a giant component:

⟨𝑘⟩𝑅 = ⟨𝑘2⟩ − ⟨𝑘⟩
⟨𝑘⟩

> 1.

� Let’s re-express our condition in terms of generating
functions.

� We first need the g.f. for𝑅𝑘.
� We’ll now use this notation:

𝐹𝑃(𝑥) is the g.f. for 𝑃𝑘.
𝐹𝑅(𝑥) is the g.f. for𝑅𝑘.

� Giant component condition in terms of g.f. is:

⟨𝑘⟩𝑅 = 𝐹 ′
𝑅(1) > 1.

� Now find how 𝐹𝑅 is related to 𝐹𝑃 …
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Edge-degree distribution
� We have

𝐹𝑅(𝑥) =
∞

∑
𝑘=0

𝑅𝑘𝑥𝑘 =
∞

∑
𝑘=0

(𝑘 + 1)𝑃𝑘+1
⟨𝑘⟩

𝑥𝑘.

Shift index to 𝑗 = 𝑘 + 1 and pull out 1
⟨𝑘⟩ :

𝐹𝑅(𝑥) = 1
⟨𝑘⟩

∞
∑
𝑗=1

𝑗𝑃𝑗𝑥𝑗−1 = 1
⟨𝑘⟩

∞
∑
𝑗=1

𝑃𝑗
d
d𝑥

𝑥𝑗

= 1
⟨𝑘⟩

d
d𝑥

∞
∑
𝑗=1

𝑃𝑗𝑥𝑗 = 1
⟨𝑘⟩

d
d𝑥

(𝐹𝑃(𝑥) − 𝑃0) = 1
⟨𝑘⟩

𝐹 ′
𝑃(𝑥).

Finally, since ⟨𝑘⟩ = 𝐹 ′
𝑃(1),

𝐹𝑅(𝑥) = 𝐹 ′
𝑃(𝑥)

𝐹 ′
𝑃(1)
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Edge-degree distribution

� Recall giant component condition is ⟨𝑘⟩𝑅 = 𝐹 ′
𝑅(1) > 1.

� Since we have 𝐹𝑅(𝑥) = 𝐹 ′
𝑃(𝑥)/𝐹 ′

𝑃(1),

𝐹 ′
𝑅(𝑥) = 𝐹 ″

𝑃 (𝑥)
𝐹 ′

𝑃(1).

� Setting 𝑥 = 1, our condition becomes

𝐹 ″
𝑃 (1)

𝐹 ′
𝑃(1)

> 1
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Size distributions

To figure out the size of the largest component (𝑆1), we need more
resolution on component sizes.

Definitions:
� 𝜋𝑛 = probability that a random node belongs to a finite

component of size 𝑛 < ∞.
� 𝜌𝑛 = probability that a random end of a random link leads to

a finite subcomponent of size 𝑛 < ∞.

Local-global connection:

𝑃𝑘, 𝑅𝑘 ⇔ 𝜋𝑛, 𝜌𝑛

neighbors ⇔ components
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Connecting probabilities:

� Markov property of random networks connects 𝜋𝑛, 𝜌𝑛, and
𝑃𝑘.
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Connecting probabilities:

� Markov property of random networks connects 𝜌𝑛 and𝑅𝑘.
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G.f.’s for component size distributions:
�

𝐹𝜋(𝑥) =
∞

∑
𝑛=0

𝜋𝑛𝑥𝑛 and 𝐹𝜌(𝑥) =
∞

∑
𝑛=0

𝜌𝑛𝑥𝑛

The largest component:
� Subtle key: 𝐹𝜋(1) is the probability that a node belongs to a

finite component.
� Therefore: 𝑆1 = 1 − 𝐹𝜋(1).

Our mission, which we accept:
� Determine and connect the four generating functions

𝐹𝑃, 𝐹𝑅, 𝐹𝜋, and 𝐹𝜌.
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Useful results we’ll need for g.f.’s

Sneaky Result 1:
� Consider two random variables𝑈 and 𝑉whose values may be

0, 1, 2, …
� Write probability distributions as𝑈𝑘 and 𝑉𝑘 and g.f.’s as 𝐹𝑈

and 𝐹𝑉.
� SR1: If a third random variable is defined as

𝑊 =
𝑈

∑
𝑖=1

𝑉 (𝑖) with each 𝑉 (𝑖) 𝑑= 𝑉

then
𝐹𝑊(𝑥) = 𝐹𝑈 (𝐹𝑉(𝑥))
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Proof of SR1:

Write probability that variable𝑊 has value 𝑘 as𝑊𝑘.

𝑊𝑘 =
∞

∑
𝑗=0

𝑈𝑗 × Pr(sum of 𝑗 draws of variable 𝑉 = 𝑘)

=
∞

∑
𝑗=0

𝑈𝑗 ∑
{𝑖1,𝑖2,…,𝑖𝑗}|

𝑖1+𝑖2+…+𝑖𝑗=𝑘

𝑉𝑖1
𝑉𝑖2

⋯ 𝑉𝑖𝑗

∴𝐹𝑊(𝑥) =
∞

∑
𝑘=0

𝑊𝑘𝑥𝑘 =
∞

∑
𝑘=0

∞
∑
𝑗=0

𝑈𝑗 ∑
{𝑖1,𝑖2,…,𝑖𝑗}|

𝑖1+𝑖2+…+𝑖𝑗=𝑘

𝑉𝑖1
𝑉𝑖2

⋯ 𝑉𝑖𝑗
𝑥𝑘

=
∞

∑
𝑗=0

𝑈𝑗

∞
∑
𝑘=0

∑
{𝑖1,𝑖2,…,𝑖𝑗}|

𝑖1+𝑖2+…+𝑖𝑗=𝑘

𝑉𝑖1
𝑥𝑖1𝑉𝑖2

𝑥𝑖2 ⋯ 𝑉𝑖𝑗
𝑥𝑖𝑗
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Proof of SR1:

With some concentration, observe:

𝐹𝑊(𝑥) =
∞

∑
𝑗=0

𝑈𝑗

∞
∑
𝑘=0

∑
{𝑖1,𝑖2,…,𝑖𝑗}|

𝑖1+𝑖2+…+𝑖𝑗=𝑘

𝑉𝑖1
𝑥𝑖1𝑉𝑖2

𝑥𝑖2 ⋯ 𝑉𝑖𝑗
𝑥𝑖𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥𝑘 piece of (∑∞
𝑖′=0 𝑉𝑖′𝑥𝑖′)

𝑗
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(∑∞
𝑖′=0 𝑉𝑖′𝑥𝑖′)

𝑗
= (𝐹𝑉(𝑥))𝑗

=
∞

∑
𝑗=0

𝑈𝑗 (𝐹𝑉(𝑥))𝑗

= 𝐹𝑈 (𝐹𝑉(𝑥))

� Alternate, groovier proof in the accompanying assignment.
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Useful results we’ll need for g.f.’s

Sneaky Result 2:
� Start with a random variable𝑈with distribution𝑈𝑘

(𝑘 = 0, 1, 2, … )
� SR2: If a second random variable is defined as

𝑉 = 𝑈 + 1 then 𝐹𝑉(𝑥) = 𝑥𝐹𝑈(𝑥)

� Reason: 𝑉𝑘 = 𝑈𝑘−1 for 𝑘 ≥ 1 and 𝑉0 = 0.
�

∴𝐹𝑉(𝑥) =
∞

∑
𝑘=0

𝑉𝑘𝑥𝑘 =
∞

∑
𝑘=1

𝑈𝑘−1𝑥𝑘

= 𝑥
∞

∑
𝑗=0

𝑈𝑗𝑥𝑗 = 𝑥𝐹𝑈(𝑥).
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Useful results we’ll need for g.f.’s

Generalization of SR2:
� (1) If 𝑉 = 𝑈 + 𝑖 then

𝐹𝑉(𝑥) = 𝑥𝑖𝐹𝑈(𝑥).

� (2) If 𝑉 = 𝑈 − 𝑖 then

𝐹𝑉(𝑥) = 𝑥−𝑖𝐹𝑈(𝑥)

= 𝑥−𝑖
∞

∑
𝑘=0

𝑈𝑘𝑥𝑘
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Connecting generating functions:

� Goal: figure out forms of the component generating
functions, 𝐹𝜋 and 𝐹𝜌.

� Relate 𝜋𝑛 to 𝑃𝑘 and 𝜌𝑛 through one step of recursion.
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Connecting generating functions:

� 𝜋𝑛 = probability that a random node belongs to a finite
component of size 𝑛

=
∞

∑
𝑘=0

𝑃𝑘 × Pr( sum of sizes of subcomponents
at end of 𝑘 random links = 𝑛 − 1 )

�

Therefore: 𝐹𝜋(𝑥) = 𝑥⏟
SR2

𝐹𝑃 (𝐹𝜌(𝑥))⏟⏟⏟⏟⏟
SR1

� Extra factor of 𝑥 accounts for random node itself.
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Connecting generating functions:

� Relate 𝜌𝑛 to𝑅𝑘 and 𝜌𝑛 through one step of recursion.
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Connecting generating functions:

� 𝜌𝑛 = probability that a random link leads to a finite
subcomponent of size 𝑛.

� Invoke one step of recursion:
𝜌𝑛 = probability that in following a random edge, the
outgoing edges of the node reached lead to finite
subcomponents of combined size 𝑛 − 1,

=
∞

∑
𝑘=0

𝑅𝑘 × Pr( sum of sizes of subcomponents
at end of 𝑘 random links = 𝑛 − 1 )

�

Therefore: 𝐹𝜌(𝑥) = 𝑥⏟
SR2

𝐹𝑅 (𝐹𝜌(𝑥))⏟⏟⏟⏟⏟
SR1

� Again, extra factor of 𝑥 accounts for random node itself.
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Connecting generating functions:

� We now have two functional equations connecting our
generating functions:

𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥)) and 𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥))

� Taking stock: We know 𝐹𝑃(𝑥) and 𝐹𝑅(𝑥) = 𝐹 ′
𝑃(𝑥)/𝐹 ′

𝑃(1).
� We first untangle the second equation to find 𝐹𝜌

� We can do this because it only involves 𝐹𝜌 and 𝐹𝑅.
� The first equation then immediately gives us 𝐹𝜋 in terms of

𝐹𝜌 and 𝐹𝑅.
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Component sizes

� Remembering vaguely what we are doing:

Finding 𝐹𝜋 to obtain the fractional size of the largest
component 𝑆1 = 1 − 𝐹𝜋(1).

� Set 𝑥 = 1 in our two equations:

𝐹𝜋(1) = 𝐹𝑃 (𝐹𝜌(1)) and 𝐹𝜌(1) = 𝐹𝑅 (𝐹𝜌(1))

� Solve second equation numerically for 𝐹𝜌(1).
� Plug 𝐹𝜌(1) into first equation to obtain 𝐹𝜋(1).
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Component sizes
Example: Standard random graphs.
� We can show 𝐹𝑃(𝑥) = 𝑒−⟨𝑘⟩(1−𝑥)

⇒ 𝐹𝑅(𝑥) = 𝐹 ′
𝑃(𝑥)/𝐹 ′

𝑃(1)

= ⟨𝑘⟩𝑒−⟨𝑘⟩(1−𝑥)/⟨𝑘⟩𝑒−⟨𝑘⟩(1−𝑥′)|𝑥′=1

= 𝑒−⟨𝑘⟩(1−𝑥) = 𝐹𝑃(𝑥) …aha!

� RHS’s of our two equations are the same.
� So 𝐹𝜋(𝑥) = 𝐹𝜌(𝑥) = 𝑥𝐹𝑅(𝐹𝜌(𝑥)) = 𝑥𝐹𝑅(𝐹𝜋(𝑥))
� Consistent with how our dirty (but wrong) trick worked

earlier …
� 𝜋𝑛 = 𝜌𝑛 just as 𝑃𝑘 = 𝑅𝑘.
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Component sizes
� We are down to

𝐹𝜋(𝑥) = 𝑥𝐹𝑅(𝐹𝜋(𝑥)) and 𝐹𝑅(𝑥) = 𝑒−⟨𝑘⟩(1−𝑥).
�

∴𝐹𝜋(𝑥) = 𝑥𝑒−⟨𝑘⟩(1−𝐹𝜋(𝑥))

� We’re first after 𝑆1 = 1 − 𝐹𝜋(1) so set 𝑥 = 1 and replace
𝐹𝜋(1) by 1 − 𝑆1:

1 − 𝑆1 = 𝑒−⟨𝑘⟩𝑆1

Or: ⟨𝑘⟩ = 1
𝑆1

ln
1

1 − 𝑆1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

〈  k 〉

S
1

� Just as we found with our dirty trick …
� Again, we (usually) have to resort to numerics …
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A few simple random networks to contemplate and play
around with:
� Notation: The Kronecker delta function� 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗

and 0 otherwise.
� 𝑃𝑘 = 𝛿𝑘1.
� 𝑃𝑘 = 𝛿𝑘2.
� 𝑃𝑘 = 𝛿𝑘3.
� 𝑃𝑘 = 𝛿𝑘𝑘′ for some fixed 𝑘′ ≥ 0.
� 𝑃𝑘 = 1

2𝛿𝑘1 + 1
2𝛿𝑘3.

� 𝑃𝑘 = 𝑎𝛿𝑘1 + (1 − 𝑎)𝛿𝑘3, with 0 ≤ 𝑎 ≤ 1.
� 𝑃𝑘 = 1

2𝛿𝑘1 + 1
2𝛿𝑘𝑘′ for some fixed 𝑘′ ≥ 2.

� 𝑃𝑘 = 𝑎𝛿𝑘1 + (1 − 𝑎)𝛿𝑘𝑘′ for some fixed 𝑘′ ≥ 2with
0 ≤ 𝑎 ≤ 1.
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A joyful example �:

𝑃𝑘 = 1
2

𝛿𝑘1 + 1
2

𝛿𝑘3.

� We find (two ways): 𝑅𝑘 = 1
4𝛿𝑘0 + 3

4𝛿𝑘2.
� A giant component exists because:

⟨𝑘⟩𝑅 = 0 × 1/4 + 2 × 3/4 = 3/2 > 1.
� Generating functions for 𝑃𝑘 and𝑅𝑘:

𝐹𝑃(𝑥) = 1
2

𝑥 + 1
2

𝑥3 and 𝐹𝑅(𝑥) = 1
4

𝑥0 + 3
4

𝑥2

� Check for goodness:
� 𝐹𝑅(𝑥) = 𝐹 ′

𝑃(𝑥)/𝐹 ′
𝑃(1) and 𝐹𝑃(1) = 𝐹𝑅(1) = 1.

� 𝐹 ′
𝑃(1) = ⟨𝑘⟩𝑃 = 2 and 𝐹 ′

𝑅(1) = ⟨𝑘⟩𝑅 = 3
2 .

� Things to figure out: Component size generating functions
for 𝜋𝑛 and 𝜌𝑛, and the size of the giant component.
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Find 𝐹𝜌(𝑥) first:

� We know:
𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥)) .
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� Sticking things in things, we have:

𝐹𝜌(𝑥) = 𝑥 (1
4

+ 3
4

[𝐹𝜌(𝑥)]2) .

� Rearranging:

3𝑥 [𝐹𝜌(𝑥)]2 − 4𝐹𝜌(𝑥) + 𝑥 = 0.

� Please and thank you:

𝐹𝜌(𝑥) = 2
3𝑥

(1 ± √1 − 3
4

𝑥2)

� Time for a Taylor series expansion.
� The promise: non-negative powers of 𝑥with non-negative

coefficients.
� First: which sign do we take?
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� Because 𝜌𝑛 is a probability distribution, we know 𝐹𝜌(1) ≤ 1
and 𝐹𝜌(𝑥) ≤ 1 for 0 ≤ 𝑥 ≤ 1.

� Thinking about the limit 𝑥 → 0 in

𝐹𝜌(𝑥) = 2
3𝑥

(1 ± √1 − 3
4

𝑥2) ,

we see that the positive sign solution blows to smithereens,
and the negative one is okay.

� So we must have:

𝐹𝜌(𝑥) = 2
3𝑥

(1 − √1 − 3
4

𝑥2) ,

� We can now deploy the Taylor expansion:

(1 + 𝑧)𝜃 = (𝜃
0)𝑧0 + (𝜃

1)𝑧1 + (𝜃
2)𝑧2 + (𝜃

3)𝑧3 + …
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� Let’s define a binomial for arbitrary 𝜃 and 𝑘 = 0, 1, 2, …:

(𝜃
𝑘) = Γ(𝜃 + 1)

Γ(𝑘 + 1)Γ(𝜃 − 𝑘 + 1)

� For 𝜃 = 1
2 , we have:

(1 + 𝑧) 1
2 = (

1
2
0)𝑧0 + (

1
2
1)𝑧1 + (

1
2
2)𝑧2 + …

=
Γ( 3

2 )
Γ(1)Γ( 3

2 )
𝑧0 +

Γ( 3
2 )

Γ(2)Γ( 1
2 )

𝑧1 +
Γ( 3

2 )
Γ(3)Γ(− 1

2 )
𝑧2 + …

= 1 + 1
2

𝑧 − 1
8

𝑧2 + 1
16

𝑧3 − …

where we’ve used Γ(𝑥 + 1) = 𝑥Γ(𝑥) and noted that Γ( 1
2 ) =

√
𝜋

2 .

� Note: (1 + 𝑧)𝜃 ∼ 1 + 𝜃𝑧 always.

� Totally psyched, we go back to here:

𝐹𝜌(𝑥) = 2
3𝑥

(1 − √1 − 3
4

𝑥2) .

� Setting 𝑧 = − 3
4 𝑥2 and expanding, we have:

𝐹𝜌(𝑥) =

2
3𝑥

(1 − [1 + 1
2

(−3
4

𝑥2)
1

− 1
8

(−3
4

𝑥2)
2

+ 1
16

(−3
4

𝑥2)
3
] + …)

� Giving:

𝐹𝜌(𝑥) =
∞

∑
𝑛=0

𝜌𝑛𝑥𝑛 =

1
4

𝑥+ 3
64

𝑥3+ 9
512

𝑥5+…+2
3

(3
4

)
𝑘 (−1)𝑘+1Γ( 3

2 )
Γ(𝑘 + 1)Γ( 3

2 − 𝑘)
𝑥2𝑘−1+…

� Do odd powers make sense?

The PoCSverse
Generating Functions
and Networks
46 of 58
Generating Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant Component

A few examples

Average Component Size

References

� We can now find 𝐹𝜋(𝑥)with:

𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥))

= 𝑥1
2

((𝐹𝜌(𝑥))1 + (𝐹𝜌(𝑥))3)

= 𝑥1
2

⎡⎢
⎣

2
3𝑥

(1 − √1 − 3
4

𝑥2) + 23

(3𝑥)3 (1 − √1 − 3
4

𝑥2)
3

⎤⎥
⎦

.

� Delicious.

� In principle, we can now extract all the 𝜋𝑛.

� But let’s just find the size of the giant component.
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� First, we need 𝐹𝜌(1):

𝐹𝜌(𝑥)∣
𝑥=1

= 2
3 ⋅ 1

(1 − √1 − 3
4

12) = 1
3

.

� This is the probability that a random edge leads to a sub-component
of finite size.

� Next:

𝐹𝜋(1) = 1 ⋅ 𝐹𝑃 (𝐹𝜌(1)) = 𝐹𝑃 (1
3

) = 1
2

⋅ 1
3

+ 1
2

(1
3

)
3

= 5
27

.

� This is the probability that a random chosen node belongs to a
finite component.

� Finally, we have

𝑆1 = 1 − 𝐹𝜋(1) = 1 − 5
27

= 22
27

.
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Average component size

� Next: find average size of finite components ⟨𝑛⟩.
� Using standard G.F. result: ⟨𝑛⟩ = 𝐹 ′

𝜋(1).
� Try to avoid finding 𝐹𝜋(𝑥)…
� Starting from 𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥)), we differentiate:

𝐹 ′
𝜋(𝑥) = 𝐹𝑃 (𝐹𝜌(𝑥)) + 𝑥𝐹 ′

𝜌(𝑥)𝐹 ′
𝑃 (𝐹𝜌(𝑥))

� While 𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥)) gives

𝐹 ′
𝜌(𝑥) = 𝐹𝑅 (𝐹𝜌(𝑥)) + 𝑥𝐹 ′

𝜌(𝑥)𝐹 ′
𝑅 (𝐹𝜌(𝑥))

� Now set 𝑥 = 1 in both equations.
� We solve the second equation for 𝐹 ′

𝜌(1) (we must already have
𝐹𝜌(1)).

� Plug 𝐹 ′
𝜌(1) and 𝐹𝜌(1) into first equation to find 𝐹 ′

𝜋(1).
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Average component size
Example: Standard random graphs.
� Use fact that 𝐹𝑃 = 𝐹𝑅 and 𝐹𝜋 = 𝐹𝜌.
� Two differentiated equations reduce to only one:

𝐹 ′
𝜋(𝑥) = 𝐹𝑃 (𝐹𝜋(𝑥)) + 𝑥𝐹 ′

𝜋(𝑥)𝐹 ′
𝑃 (𝐹𝜋(𝑥))

Rearrange: 𝐹 ′
𝜋(𝑥) = 𝐹𝑃 (𝐹𝜋(𝑥))

1 − 𝑥𝐹 ′
𝑃 (𝐹𝜋(𝑥))

� Simplify denominator using 𝐹 ′
𝑃(𝑥) = ⟨𝑘⟩𝐹𝑃(𝑥)

� Replace 𝐹𝑃(𝐹𝜋(𝑥)) using 𝐹𝜋(𝑥) = 𝑥𝐹𝑃(𝐹𝜋(𝑥)).
� Set 𝑥 = 1 and replace 𝐹𝜋(1)with 1 − 𝑆1.

End result: ⟨𝑛⟩ = 𝐹 ′
𝜋(1) = (1 − 𝑆1)

1 − ⟨𝑘⟩(1 − 𝑆1)
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Average component size
� Our result for standard random networks:

⟨𝑛⟩ = 𝐹 ′
𝜋(1) = (1 − 𝑆1)

1 − ⟨𝑘⟩(1 − 𝑆1)

� Recall that ⟨𝑘⟩ = 1 is the critical value of average degree for
standard random networks.

� Look at what happens when we increase ⟨𝑘⟩ to 1 from below.
� We have 𝑆1 = 0 for all ⟨𝑘⟩ < 1 so

⟨𝑛⟩ = 1
1 − ⟨𝑘⟩

� This blows up as ⟨𝑘⟩ → 1.
� Reason: we have a power law distribution of component sizes

at ⟨𝑘⟩ = 1.
� Typical critical point behavior …
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Average component size

� Limits of ⟨𝑘⟩ = 0 and∞make sense for

⟨𝑛⟩ = 𝐹 ′
𝜋(1) = (1 − 𝑆1)

1 − ⟨𝑘⟩(1 − 𝑆1)

� As ⟨𝑘⟩ → 0, 𝑆1 = 0, and ⟨𝑛⟩ → 1.
� All nodes are isolated.
� As ⟨𝑘⟩ → ∞, 𝑆1 → 1 and ⟨𝑛⟩ → 0.
� No nodes are outside of the giant component.

Extra on largest component size:

� For ⟨𝑘⟩ = 1, 𝑆1 ∼ 𝑁2/3/𝑁.
� For ⟨𝑘⟩ < 1, 𝑆1 ∼ (log𝑁)/𝑁.
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� Let’s return to our example: 𝑃𝑘 = 1
2 𝛿𝑘1 + 1

2 𝛿𝑘3.

� We’re after:

⟨𝑛⟩ = 𝐹 ′
𝜋(1) = 𝐹𝑃 (𝐹𝜌(1)) + 𝐹 ′

𝜌(1)𝐹 ′
𝑃 (𝐹𝜌(1))

where we first need to compute

𝐹 ′
𝜌(1) = 𝐹𝑅 (𝐹𝜌(1)) + 𝐹 ′

𝜌(1)𝐹 ′
𝑅 (𝐹𝜌(1)) .

� Place stick between teeth, and recall that we have:

𝐹𝑃(𝑥) = 1
2

𝑥 + 1
2

𝑥3 and 𝐹𝑅(𝑥) = 1
4

𝑥0 + 3
4

𝑥2.

� Differentiation gives us:

𝐹 ′
𝑃(𝑥) = 1

2
+ 3

2
𝑥2 and 𝐹 ′

𝑅(𝑥) = 3
2

𝑥.
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� We bite harder and use 𝐹𝜌(1) = 1
3 to find:

𝐹 ′
𝜌(1) = 𝐹𝑅 (𝐹𝜌(1)) + 𝐹 ′

𝜌(1)𝐹 ′
𝑅 (𝐹𝜌(1))

= 𝐹𝑅 (1
3

) + 𝐹 ′
𝜌(1)𝐹 ′

𝑅 (1
3

)

= 1
4

+ �3
4

1
3�2

+ 𝐹 ′
𝜌(1)�3

2
1
�3

.

� After some reallocation of objects, we have 𝐹 ′
𝜌(1) = 13

2 .

�

Finally: ⟨𝑛⟩ = 𝐹 ′
𝜋(1) = 𝐹𝑃 (1

3
) + 13

2
𝐹 ′

𝑃 (1
3

)

= 1
2

1
3

+ 1
2

1
33 + 13

2
(1

2
+ �3

2
1
3�2

) = 5
27

+ 13
3

= 122
27

.

� So, kinda small.
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Nutshell

� Generating functions allow us to strangely calculate features
of random networks.

� They’re a bit scary and magical.
� Generating functions can be useful for contagion.
� But: For the big results, more direct, physics-bearing

calculations are possible.
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