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Second, not all component type characteristics can be construed (or misconstrued) as
probabilities or rates. For example, rankings for many kinds of sports—at the team and
player level, and not discounting the role of chance—derive from scores achieved through
repeated competition [37–39].

Third, in comparison with probability-based rankings, we are able to more easily con-
tend with components that appear in only one of two systems under comparison. We
demonstrate this visualization feature as we build rank-turbulence divergence (RTD) in
the following sections.

Fourth, rank orderings potentially allow for powerful and robust non-parametric statis-
tical measures such as the standard rank correlation coefficient. All told, while in moving
from sizes to rankings we may trade information for simplification, we still preserve a great
deal of meaningful structure. We also expect rankings to be generally less susceptible to
perturbations and errors in measurement.

Fifth and finally, rankings are an easily interpretable, ubiquitous construct, familiar to
many. Ranked lists suffuse media surrounding entertainment (e.g., box office), music (Bill-
board charts), and sports. Indeed, we will rank anything we believe we can rank along a
wide range of (often questionable) dimensions and composite scores: Individuals (wealth,
fame), countries (GDP, freedom, safety, Olympic medals), cities (liveability, poverty), cor-
porations (market capitalization, environmental records, workplace experience), univer-
sities (endowments, number of Nobel prize winners), students (grades), and animals (in-
telligence, dangerousness).

The above notwithstanding, distances based on comparisons of size rankings are to our
knowledge relatively few, focus on traditional comparative metrics like Kendall’s Tau and
Spearman’s rank correlation coefficient [40], and seem limited in application to extremely
small systems, for example, comparing the top 20 to 50 ranked hits from two different
search engines [40–42].

And while we have argued for a rank-turbulence divergence here, we nevertheless
have separately constructed and explored a probability-turbulence divergence in Ref.
[43]. Analogous in construction to rank-turbulence divergence, we show that probability-
turbulence divergence is more sensitive to detailed system changes, has distinct limiting
behavior, and corresponds to a suite of extant divergences.

1.4 Paper outline
In Sect. 2, we develop rank-turbulence divergence by (1) Establishing our notation and
ranking process (Sect. 2.1); (2) Creating and explaining a specific kind of rank-rank his-
togram (Sect. 2.2); (3) Declaring a set of desired features for rank-turbulence divergence
(Sect. 2.3); and then (4) Building and refining a rank-turbulence divergence that effectively
captures these features (Sect. 2.4).

In Sect. 3, we use all of these elements to realize rank-turbulence divergence as a tunable
instrument for complex system comparison through rank-turbulence divergence allotax-
onographs. To both support our general explanation and explore systems in their own
right, we consider comparisons at different points in time for four case studies: 1. Daily
word use on Twitter, 2. Tree species abundance, 3. Baby names in the US, and 4. Market
capitalization for companies.

To help demonstrate the tunability of rank-turbulence divergence and its behavior over
time for dynamically evolving complex systems, we provide a suite of ‘Flipbooks’ of al-
lotaxonographs as supplementary online material on the arXiv and as part of the paper’s
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FIG. 1. Allotaxonograph comparing 2-gram usage in the first and second half of Jane Austen’s Pride and
Prejudice using probability-turbulence divergence with α=3/4, DP

3/4. Histogram on the left: We bin all non-zero
probability pairs (log10 pτ,1, log10 pτ,2) in logarithmic space. Colors indicate counts of 2-grams per cell, and we highlight example
2-grams along the edges of the histogram. For pairs where one of the probabilities is zero, we add a separate rectangular panel
along the bottom of each axis (lighter gray and lighter blue). Contour lines indicate where probability-turbulence divergence
is constant (the jump to the zero probability region necessitates a break in smoothness). Based on the histogram, we choose
α=3/4 to engineer an approximate fit to the histogram’s periphery. The gray scale for 2-grams is indexed by their percentage
contribution to probability-turbulence divergence, δDP

3/4,τ , showing a mixture of rare and common 2-grams. Ranked list on

the right: We order the most salient 2-grams according to their overall contribution δDP
3/4,τ which we mark by bar length.

We show the rank pair for each 2-gram in light gray opposite each 2-gram. Corresponding Flipbook: Flipbooks S1, S2, and
S3 in the paper’s Online Appendices (compstorylab.org/allotaxonometry/), show how the instrument changes for the same
comparison with α being tuned from 0 to ∞ for 1-, 2-, and 3-grams. See Ref. [1] for a general introduction and motivation for
allotaxonometry and allotaxonographs in the context of rank-turbulence divergence.

The choices of α for the three Twitter examples and the
one from Barro Colorado Island further showcase how
good fits may be achieved by a range of values of α. There
is no universal α characterizing turbulence between Zipf
distributions.

The examples for 2-grams and 3-grams can also be seen
as demonstrations of possible comparisons of features of
complex networks and systems (e.g, 2-grams in text as
directed edges).

As for rank-turbulence divergence [1] but with some
key modifications, our allotaxonographs for probability-
turbulence divergence pair two complimentary visualiza-
tions: A map-like histogram and a ranked list.

In isolation, both the histogram and the ranked list

have important but limited descriptive power. The his-
togram helps us see how well our choice of α performs,
information that is entirely lost by the ranking process.
And the ranked list would be difficult to intuit from the
histogram alone.

Many aspects of our allotaxonographs are configurable.
On Gitlab, we provide our universal code for gener-
ating allotaxonographs for rank-turbulence divergence,
probability-turbulence divergence, and other probability
divergences (see Sec. V B).

In the paper’s Online Appendices (compstory-
lab.org/allotaxonometry/), we complement all of our
allotaxonographs with PDF flipbooks which move sys-
tematically through a range of α values.

“Probability-turbulence divergence: A tunable
allotaxonometric instrument for comparing
heavy-tailed categorical distributions”�
Dodds et al.,
, 2020. [6]
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Basic science = Describe + Explain:

� Dashboards of single scale instruments helps us understand,
monitor, and control systems.

� Archetype: Cockpit dashboard for flying a plane
� Okay if comprehendible.
� Complex systems present two problems for dashboards:

1. Scale with internal diversity of components: We need meters
for every species, every company, every word.

2. Tracking change: We need to re-arrange meters on the fly.
� Goal—Create comprehendible, dynamically-adjusting,

differential dashboards showing two pieces:1

1. ‘Big picture’ map-like overview,
2. A tunable ranking of components.

1See the lexicocalorimeter�
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Baby names, much studied: [12]

How to build a dynamical dashboard that helps sort through a
massive number of interconnected time series?

Journal of Computational Science 21 (2017) 24–37

Contents lists available at ScienceDirect
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a b s t r a  c t

Of basic interest is the quantification of the long term growth  of a language’s lexicon  as  it develops to
more completely cover both a culture’s communication requirements and knowledge  space. Here, we
explore the usage dynamics  of  words  in  the English  language as reflected by the Google Books 2012
English  Fiction corpus. We critique an earlier method that found decreasing  birth and increasing  death
rates of words over the second  half of the 20th Century, showing death rates to be strongly affected by
the imposed  time  cutoff of the arbitrary present and not increasing  dramatically. We provide a  robust,
principled approach to examining  lexical evolution by tracking the volume of word flux across various
relative frequency thresholds. We show that while the overall statistical structure of the English  language
remains stable over time in terms of its raw Zipf distribution, we find evidence  of an enduring ‘lexical
turbulence’: The flux of words across frequency  thresholds from decade  to decade  scales superlinearly
with word  rank and exhibits a scaling break we connect to that of Zipf’s law. To  better understand the
changing lexicon, we examine the contributions  to the Jensen-Shannon divergence of individual words
crossing frequency thresholds.  We  also find indications that scholarly works about fiction  are strongly
represented in the 2012 English Fiction corpus, and  suggest that a future revision of the corpus  should
attempt to separate critical works from fiction itself.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In studying any entity or system, a fundamental scientific goal
is the satisfactory characterization of temporal dynamics, whether
empirically observed, simulated, or theoretically predicted. For lan-
guage, there are many kinds and scales of temporal dynamics to
consider such as the introduction and usage decline of specific
words [1], the evolution of accents, the long term development of
individual languages [2], and the changes in the overall ecology of
human languages which has now moved well into an era of die off
[3].

Here, we are concerned with the dynamics of the English lan-
guage’s lexicon. Primarily, we want to know how the usage of words
has changed in time, and how this is reflected in the English lex-
icon’s evolution. This focus leads us to several core questions: (1)
What are the rates at which words are born and at which they

∗ Corresponding author.
E-mail addresses: eitan.pechenick@gmail.com (E.A. Pechenick),

chris.danforth@uvm.edu (C.M. Danforth), peter.dodds@uvm.edu (P.S. Dodds).

die? (2) How do we reasonably identify word births and deaths
in the first place? (3) As the English lexicon has expanded, how
have overall statistical patterns such as Zipf’s law [4] changed, if
at all? We are especially interested with revisiting work on word
“birth” and “death” rates as performed in [1]. As we will show, the
methods employed in [1] suffer from boundary effects, and we pro-
pose and investigate an alternative approach insensitive to time
range choice. We also investigate lexical changes at a range of usage
frequency levels.

We will perform our analyses using the Google Books corpus
[5,6] whose incredible volume generated from an extensive cover-
age of all written works would seemingly make it an ideal candidate
for linguistic research. However, there are two major caveats that
limit its potency and we will lay them out before proceeding.

In previous research [7], we broadly explored the characteris-
tics and dynamics of the unfiltered English and English Fiction data
sets from both the 2009 and 2012 versions of the Google Books
corpus. We showed that the 2009 and 2012 unfiltered English data
sets and, surprisingly, the 2009 English Fiction data set, all become
increasingly influenced by scientific texts throughout the 1900s,
with medical research language being especially prevalent. We

http://dx.doi.org/10.1016/j.jocs.2017.04.020
1877-7503/© 2017 Elsevier B.V. All rights reserved.

“Is language evolution grinding to a halt? The scaling of
lexical turbulence in English fiction suggests it is not”�
Pechenick, Danforth, Dodds, Alshaabi, Adams, Reagan,
Danforth, Frank, Reagan, and Danforth.
Journal of Computational Science, 21, 24–37, 2017. [14]
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For language, Zipf’s law has two scaling regimes: [19]

𝑓 ∼ { 𝑟−𝛼 for 𝑟 ≪ 𝑟b,
𝑟−𝛼′ for 𝑟 ≫ 𝑟b,

When comparing two texts, define Lexical turbulence as flux
of words across a frequency threshold:

𝜙 ∼ {
𝑓−𝜇
thr for 𝑓thr ≪ 𝑓b,

𝑓−𝜇′

thr for 𝑓thr ≫ 𝑓b,

Estimates: 𝜇 ≃ 0.77 and 𝜇′ ≃ 1.10, and 𝑓b is the scaling break
point.

𝜙 ∼ { 𝑟𝜈 = 𝑟𝛼𝜇′ for 𝑟 ≪ 𝑟b,
𝑟𝜈′ = 𝑟𝛼′𝜇 for 𝑟 ≫ 𝑟b.

Estimates: Lower and upper exponents 𝜈 ≃ 1.23 and 𝜈′ ≃ 1.47.
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A. Rank-turbulence histogram:

B. Identical systems:

C. Randomized systems:

D. Disjoint systems:

A. Rank-turbulence histogram:
B. Identical systems:

C. Randomized systems:

D. Disjoint systems:
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Balances:
Top bar (optional)—Total size:
� Relative balance of system sizes.
� Examples: Total number of words in a book, total number of

individuals in an ecology.

Middle bar—Types:
� Fraction of types in each system as a percentage of the union

of types from both systems.

Bottom bar—Exclusive types:
� Types that are present in one system only are ‘exclusive types’.
� Ω(1)-exclusive andΩ(2)-exclusive indicate which system an

exclusive type belongs to.
� Percentage of exclusive types in a system relative to that

system’s total number of types.
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Probability-turbulence histogram:
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So, so many ways to compare probability distributions:
Entropy 2010, 12 1542

Table 1. Asymmetric Alpha-divergences and associated convex Csiszár-Morimoto
functions [30].

Divergence D(α)
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“Families of Alpha- Beta- and Gamma- Divergences:
Flexible and Robust Measures of Similarities”�
Cichocki and Amari,
Entropy, 12, 1532-1568, 2010. [2]

 

 

paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  

II. DEFINITIONS 
Table 1. Lp Minkowski family 
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A couple of thousand years ago, Euclid stated that the 
shortest distance between two points is a line and thus the eqn 
(1) is predominantly known as Euclidean distance. It was 
often called Pythagorean metric since it is derived from the 
Pythagorean Theorem. In the late 19th century, Hermann 
Minkowski considered the city block distance [9]. Other 
names for the eqn (2) include rectilinear distance, taxicab 
norm, and Manhattan distance. Hermann also generalized the 
formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 

 
Table 2. L1 family 
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* L1 family ⊃ {Intersectoin (13), Wave Hedges (15), 
Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 
 
Several distance measures listed in Table 2 facilitate the L1, 

more precisely the absolute difference. The eqn (5), which is 
widely used in ecology [11], is known as Sørensen distance 
[12] or Bray-Curtis [2,4,13]. When it is used for comparing 
two pdfs, it is nothing but the L1 divided by 2. Gower distance 
[14] in the eqn (6) scales the vector space into the normalized 
space and then uses the L1. Since the pdf is already normalized 
space, Gower distance is the L1 divided by d. Other L1 family 
distances that are non-proportional to the L1 include Soergel 
and Kulczynski distances given in the eqns (8) [4] and (9) [2] 
respectively. At first glance, Canberra metric given in the eqn 
(10) [2,15] resembles Sørensen but normalizes the absolute 
difference of the individual level. It is known to be very 
sensitive to small changes near zero [15]. The eqn (11) [2], 
attributed to Lorentzian, also contains the absolute difference 
and the natural logarithm is applied. 1 is added to guarantee 
the non-negativity property and to eschew the log of zero. 
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paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  
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derived and it is called the chessboard distance in 2D, the 
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the non-negativity property and to eschew the log of zero. 

 
Table 3. Intersection family 
11. Intersection ¦

 

 
d

i
iiIS QPs

1
),min(  (12) 

 ¦
 

� � � 
d

i
iiISISnon QPsd

1
||

2
11  (13) 

12. Wave Hedges ¦
 

� 
d

i ii

ii
WH QP

QPd
1

)
),max(
),min(1(  (14) 

 ¦
 

�
 

d

i ii

ii

QP
QP

1 ),max(
||  (15) 

13. Czekanowski 

¦

¦

 

 

�
 d

i
ii

d

i
ii

Cze

QP

QP
s

1

1

)(

),min(2  
(16) 

 

¦

¦

 

 

�

�
 � d

i
ii

d

i
ii

CzeCze

QP

QP
sd

1

1

)(

||
1

  
(17) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 301

 

 

paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  

II. DEFINITIONS 
Table 1. Lp Minkowski family 

1. Euclidean L2 ¦
 

� 
d

i
iiEuc QPd

1

2||  (1) 

2. City block L1 ¦
 

� 
d

i
iiCB QPd

1
||  (2) 

3. Minkowski Lp p
d

i

p
iiMk QPd ¦

 

� 
1

||  (3) 

4. Chebyshev Lf  ||max iiiCheb QPd �  (4) 
 

A couple of thousand years ago, Euclid stated that the 
shortest distance between two points is a line and thus the eqn 
(1) is predominantly known as Euclidean distance. It was 
often called Pythagorean metric since it is derived from the 
Pythagorean Theorem. In the late 19th century, Hermann 
Minkowski considered the city block distance [9]. Other 
names for the eqn (2) include rectilinear distance, taxicab 
norm, and Manhattan distance. Hermann also generalized the 
formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 

 
Table 2. L1 family 
5. Sørensen 

¦

¦

 

 

�

�
 d

i
ii

d

i
ii

sor

QP

QP
d

1

1

)(

||  
(5) 

¦
 

�
 

d

i i

ii
gow R

QP
d

d
1

||1  (6) 
6. Gower 

¦
 

� 
d

i
ii QP

d 1
||1  (7) 

7. Soergel 

¦

¦

 

 

�
 d

i
ii

d

i
ii

sg

QP

QP
d

1

1

),max(

||  
(8) 

8. Kulczynski d 

¦

¦

 

 

�
 d

i
ii

d

i
ii

kul

QP

QP
d

1

1

),min(

||  
(9) 

9. Canberra ¦
 �

�
 

d

i ii

ii
Can QP

QPd
1

||  (10) 

10. Lorentzian ¦
 

�� 
d

i
iiLor QPd

1
|)|1ln(  (11) 

* L1 family � {Intersectoin (13), Wave Hedges (15), 
Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 
 
Several distance measures listed in Table 2 facilitate the L1, 

more precisely the absolute difference. The eqn (5), which is 
widely used in ecology [11], is known as Sørensen distance 
[12] or Bray-Curtis [2,4,13]. When it is used for comparing 
two pdfs, it is nothing but the L1 divided by 2. Gower distance 
[14] in the eqn (6) scales the vector space into the normalized 
space and then uses the L1. Since the pdf is already normalized 
space, Gower distance is the L1 divided by d. Other L1 family 
distances that are non-proportional to the L1 include Soergel 
and Kulczynski distances given in the eqns (8) [4] and (9) [2] 
respectively. At first glance, Canberra metric given in the eqn 
(10) [2,15] resembles Sørensen but normalizes the absolute 
difference of the individual level. It is known to be very 
sensitive to small changes near zero [15]. The eqn (11) [2], 
attributed to Lorentzian, also contains the absolute difference 
and the natural logarithm is applied. 1 is added to guarantee 
the non-negativity property and to eschew the log of zero. 

 
Table 3. Intersection family 
11. Intersection ¦

 

 
d

i
iiIS QPs

1
),min(  (12) 

 ¦
 

� � � 
d

i
iiISISnon QPsd

1
||

2
11  (13) 

12. Wave Hedges ¦
 

� 
d

i ii

ii
WH QP

QPd
1

)
),max(
),min(1(  (14) 

 ¦
 

�
 

d

i ii

ii

QP
QP

1 ),max(
||  (15) 

13. Czekanowski 

¦

¦

 

 

�
 d

i
ii

d

i
ii

Cze

QP

QP
s

1

1

)(

),min(2  
(16) 

 

¦

¦

 

 

�

�
 � d

i
ii

d

i
ii

CzeCze

QP

QP
sd

1

1

)(

||
1

  
(17) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 1, 2007 301

 

 

paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
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pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
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the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  
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The intersection between two pdfs in the eqn (12) is a 

widely used form of similarity [1] where the non-overlaps 
between two pdfs defined in the eqn (13) is nothing but the L1 
divided by 2 [6]. Hence, most similarity measures pertinent to 
the intersection enumerated in Table 3 can be transformed into 
the L1 based distance measures using the technique, i.e., 
dx(P,Q) = 1 – sx(P,Q) with a few of exceptions. The eqn (14) 
is called Wave Hedges [16] and its L1 based distance form is 
given in the eqn (15). Czekanowski Coefficient in the eqn (16) 
[15] has its distance form identical to Sørensen (5). Half of the 
Czekanowski Coefficient is called Motyka similarity in the 
eqn (18) [2]. The eqn (20) is known as Kulczynski similarity 
[2]. Unlike the other similarity and distance relationship, 
Kulczynski has skul skul(P,Q) = 1/ dkul(P,Q). The eqn (22) is 
referred to as Tanimoto distance [1] a.k.a., Jaccard distance. 
Soergel distance in the eqn (8) is identical to Tanimoto. 1 – 
dTani is Ruzicka similarity given in the eqn (21) [2]. The eqn 
(23) is given to help understand their equivalencies. 

 
Table 4. Inner Product family 
18. Inner Product ¦

 

 x 
d

j
iiIP QPQPs

1

 (24) 

19. Harmonic  
       mean ¦

 �
 

d

i ii

ii
HM QP

QPs
1

2  (25) 

20. Cosine 

¦¦

¦

  

  
d

i
i

d

i
i

d

i
ii

Cos

QP

QP
s

1

2

1

2

1
 

(26) 

21. Kumar- 
Hassebrook  
(PCE) ¦¦¦

¦

   

 

��
 d

i
ii

d

i
i

d

i
i

d

i
ii

Jac

QPQP

QP
s

11

2

1

2

1
 

(27) 

22. Jaccard 

¦¦¦

¦

   

 

��
 d

i
ii

d

i
i

d

i
i

d

i
ii

Jac

QPQP

QP
s

11

2

1

2

1
 

(28) 

 

¦¦¦

¦

   

 

��

�
 � d

i
ii

d

i
i

d

i
i

d

i
ii

JacJac

QPQP

QP
sd

11

2

1

2

1

2)(
1 (39) 

23. Dice 
     

¦¦

¦

  

 

�
 d

i
i

d

i
i

d

i
ii

Dice

QP

QP
s

1

2

1

2

1
2  

(40) 

 

¦¦

¦

  

 

�

�
 � d

i
i

d

i
i

d

i
ii

DiceDice

QP

QP
sd

1

2

1

2

1

2)(
1

 

(31) 

 
Table 4 deals exclusively with similarity measures which 

incorporate the inner product , PxQ explicitly in their 
definitions. The inner product of two vectors in the eqn (24) 
yields a scalar and is sometimes called the scalar product or 
dot product [1]. The inner product is also called the number of 
matches or the overlap if it is used for binary vectors. The eqn 
(25) is the harmonic mean [2]. The eqn (26) is the normalized 
inner product and called the cosine coefficient because it 
measures the angle between two vectors and thus often called 
the angular metric [2]. Other names for the cosine coefficient 
include Ochiai [2,4] and Carbo [4]. Kumar and Hassebrook 
utilized PxQ to measure the Peak-to-correlation energy, PCE 
in short [17] in the eqn (27). Jaccard coefficient [18], a.k.a. 
Tanimoto [19], defined in the eqn (28) is another variation of 
the normalized inner product. Dice coefficient in the eqn (30) 
[20] is occasionally called Sorensen, Czekannowski, Hodgkin-
Richards [4] or Morisita [21]. The eqns (24,26,28,30) are 
frequently encountered similarity measures in the fields of 
information retrieval and biological taxonomy for the binary 
feature vector comparison (see [2,22] for the exhaustive list of 
distance and similarity measures for the binary feature 
vectors). 
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The intersection between two pdfs in the eqn (12) is a 

widely used form of similarity [1] where the non-overlaps 
between two pdfs defined in the eqn (13) is nothing but the L1 
divided by 2 [6]. Hence, most similarity measures pertinent to 
the intersection enumerated in Table 3 can be transformed into 
the L1 based distance measures using the technique, i.e., 
dx(P,Q) = 1 – sx(P,Q) with a few of exceptions. The eqn (14) 
is called Wave Hedges [16] and its L1 based distance form is 
given in the eqn (15). Czekanowski Coefficient in the eqn (16) 
[15] has its distance form identical to Sørensen (5). Half of the 
Czekanowski Coefficient is called Motyka similarity in the 
eqn (18) [2]. The eqn (20) is known as Kulczynski similarity 
[2]. Unlike the other similarity and distance relationship, 
Kulczynski has skul skul(P,Q) = 1/ dkul(P,Q). The eqn (22) is 
referred to as Tanimoto distance [1] a.k.a., Jaccard distance. 
Soergel distance in the eqn (8) is identical to Tanimoto. 1 – 
dTani is Ruzicka similarity given in the eqn (21) [2]. The eqn 
(23) is given to help understand their equivalencies. 
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Table 4 deals exclusively with similarity measures which 

incorporate the inner product , PxQ explicitly in their 
definitions. The inner product of two vectors in the eqn (24) 
yields a scalar and is sometimes called the scalar product or 
dot product [1]. The inner product is also called the number of 
matches or the overlap if it is used for binary vectors. The eqn 
(25) is the harmonic mean [2]. The eqn (26) is the normalized 
inner product and called the cosine coefficient because it 
measures the angle between two vectors and thus often called 
the angular metric [2]. Other names for the cosine coefficient 
include Ochiai [2,4] and Carbo [4]. Kumar and Hassebrook 
utilized PxQ to measure the Peak-to-correlation energy, PCE 
in short [17] in the eqn (27). Jaccard coefficient [18], a.k.a. 
Tanimoto [19], defined in the eqn (28) is another variation of 
the normalized inner product. Dice coefficient in the eqn (30) 
[20] is occasionally called Sorensen, Czekannowski, Hodgkin-
Richards [4] or Morisita [21]. The eqns (24,26,28,30) are 
frequently encountered similarity measures in the fields of 
information retrieval and biological taxonomy for the binary 
feature vector comparison (see [2,22] for the exhaustive list of 
distance and similarity measures for the binary feature 
vectors). 
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The intersection between two pdfs in the eqn (12) is a 

widely used form of similarity [1] where the non-overlaps 
between two pdfs defined in the eqn (13) is nothing but the L1 
divided by 2 [6]. Hence, most similarity measures pertinent to 
the intersection enumerated in Table 3 can be transformed into 
the L1 based distance measures using the technique, i.e., 
dx(P,Q) = 1 – sx(P,Q) with a few of exceptions. The eqn (14) 
is called Wave Hedges [16] and its L1 based distance form is 
given in the eqn (15). Czekanowski Coefficient in the eqn (16) 
[15] has its distance form identical to Sørensen (5). Half of the 
Czekanowski Coefficient is called Motyka similarity in the 
eqn (18) [2]. The eqn (20) is known as Kulczynski similarity 
[2]. Unlike the other similarity and distance relationship, 
Kulczynski has skul skul(P,Q) = 1/ dkul(P,Q). The eqn (22) is 
referred to as Tanimoto distance [1] a.k.a., Jaccard distance. 
Soergel distance in the eqn (8) is identical to Tanimoto. 1 – 
dTani is Ruzicka similarity given in the eqn (21) [2]. The eqn 
(23) is given to help understand their equivalencies. 
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Table 4 deals exclusively with similarity measures which 

incorporate the inner product , PxQ explicitly in their 
definitions. The inner product of two vectors in the eqn (24) 
yields a scalar and is sometimes called the scalar product or 
dot product [1]. The inner product is also called the number of 
matches or the overlap if it is used for binary vectors. The eqn 
(25) is the harmonic mean [2]. The eqn (26) is the normalized 
inner product and called the cosine coefficient because it 
measures the angle between two vectors and thus often called 
the angular metric [2]. Other names for the cosine coefficient 
include Ochiai [2,4] and Carbo [4]. Kumar and Hassebrook 
utilized PxQ to measure the Peak-to-correlation energy, PCE 
in short [17] in the eqn (27). Jaccard coefficient [18], a.k.a. 
Tanimoto [19], defined in the eqn (28) is another variation of 
the normalized inner product. Dice coefficient in the eqn (30) 
[20] is occasionally called Sorensen, Czekannowski, Hodgkin-
Richards [4] or Morisita [21]. The eqns (24,26,28,30) are 
frequently encountered similarity measures in the fields of 
information retrieval and biological taxonomy for the binary 
feature vector comparison (see [2,22] for the exhaustive list of 
distance and similarity measures for the binary feature 
vectors). 
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The intersection between two pdfs in the eqn (12) is a 

widely used form of similarity [1] where the non-overlaps 
between two pdfs defined in the eqn (13) is nothing but the L1 
divided by 2 [6]. Hence, most similarity measures pertinent to 
the intersection enumerated in Table 3 can be transformed into 
the L1 based distance measures using the technique, i.e., 
dx(P,Q) = 1 – sx(P,Q) with a few of exceptions. The eqn (14) 
is called Wave Hedges [16] and its L1 based distance form is 
given in the eqn (15). Czekanowski Coefficient in the eqn (16) 
[15] has its distance form identical to Sørensen (5). Half of the 
Czekanowski Coefficient is called Motyka similarity in the 
eqn (18) [2]. The eqn (20) is known as Kulczynski similarity 
[2]. Unlike the other similarity and distance relationship, 
Kulczynski has skul skul(P,Q) = 1/ dkul(P,Q). The eqn (22) is 
referred to as Tanimoto distance [1] a.k.a., Jaccard distance. 
Soergel distance in the eqn (8) is identical to Tanimoto. 1 – 
dTani is Ruzicka similarity given in the eqn (21) [2]. The eqn 
(23) is given to help understand their equivalencies. 
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Table 4 deals exclusively with similarity measures which 

incorporate the inner product , PxQ explicitly in their 
definitions. The inner product of two vectors in the eqn (24) 
yields a scalar and is sometimes called the scalar product or 
dot product [1]. The inner product is also called the number of 
matches or the overlap if it is used for binary vectors. The eqn 
(25) is the harmonic mean [2]. The eqn (26) is the normalized 
inner product and called the cosine coefficient because it 
measures the angle between two vectors and thus often called 
the angular metric [2]. Other names for the cosine coefficient 
include Ochiai [2,4] and Carbo [4]. Kumar and Hassebrook 
utilized PxQ to measure the Peak-to-correlation energy, PCE 
in short [17] in the eqn (27). Jaccard coefficient [18], a.k.a. 
Tanimoto [19], defined in the eqn (28) is another variation of 
the normalized inner product. Dice coefficient in the eqn (30) 
[20] is occasionally called Sorensen, Czekannowski, Hodgkin-
Richards [4] or Morisita [21]. The eqns (24,26,28,30) are 
frequently encountered similarity measures in the fields of 
information retrieval and biological taxonomy for the binary 
feature vector comparison (see [2,22] for the exhaustive list of 
distance and similarity measures for the binary feature 
vectors). 
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The sum of geometric means in the eqn (32) is referred to 

as Fidelity similarity, a.k.a. Bhattacharyya coefficient or 
Hellinger affinity [2]. Bhattacharyya distance given in the eqn 
(33), which is a value between 0 and 1, provides bounds on 
the Bayes misclassification probability [23]. Other approaches 
closely related to Bhattacharyya include Hellinger [2] and 
Matusita [24] in eqns (34) and (36) respectively. The basic 
form in the eqn (38), i.e., Matusita without the square root is 
called Squared-chord distance [5] and thus all Fidelity based 
measures have their alternative representation using the 
squared-chord distance. 
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* Squared L2 family � {Jaccard (29), Dice (31)} 
 
Several distance measures containing the Squared 

Euclidean distance in the eqn (40) as the dividend are 
corralled in Table 6. Jaccard and Dice distance forms in the 
eqns (29) and (31) also belong to this family. The cornerstone 
to the F2 family (eqns (41)~(47)) is Pearson F2 divergence in 
the eqn (41) [25] which embodies the Squared Euclidean 
distance. Of particular concern to mathematicians is that 
Pearson F2 divergence is asymmetric. Neyman F2 in the eqn 
(42) [26] is dP(P,Q)= dP(Q,P). Various symmetric versions of 
the F2 have been exploited. The eqn (43) is called the squared 
F2 distance [5] or triangular discrimination [27,28]. Twice of 

the eqn (44) is called the probabilistic symmetric F2 [2] which 
is equivalent to Sangvi F2 distance between populations [2]. 
The term ‘divergence’ is pronominal to refer non-metric 
distance. Notwithstanding the eqn (45) has been commonly 
called divergence [29]. The squared root of half of the 
divergence is called Clark in the eqn (46) [2].  

One of techniques to transform asymmetric distances into 
symmetric form utilizes the addition method; dsym(P,Q)= 
dasym(P,Q) + dasym(Q,P), e.g., The eqn (47) is dAdChi(P,Q) = 
dP(P,Q) + dP(Q,P) [2,3]. Albeit the eqn (47) is occasionally 
called ‘symmetric F2 divergence’, let’s call it the additive 
symmetric F2 here in order to distinguish other symmetric 
versions of F2. Other techniques that are not listed in the 
above table would include max, min, and avg methods; dmax-

sym(P,Q) = max(dasym(P,Q), dasym(Q,P)), dmin-sym(P,Q) = 
min(dasym(P,Q), dasym(Q,P)), and davg-sym(P,Q) = 
avg(dasym(P,Q), dasym(Q,P)). 
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Eqns (48~53) in Table 7 are primary due to Shannon’s 

concept of probabilistic uncertainty or “entropy” H(P)=6d
i=1  

Pi lnPi [30]. Kullback and Leibler [31] introduced the eqn (48) 
called KL divergence, relative entropy, or information 
deviation [2]. The symmetric form of the KL divergence using 
the addition method is in the eqn (49) [31-33] and it is called 
Jeffreys or J divergence. The eqn (50) is called the K 
divergence and its symmetric form using the addition method 
is given in the eqn (51) and called Topsøe distance [2] or 
information statistics [5]. The half of the Topsøe distance is 
called Jensen-Shannon divergence [2,34] which uses the avg 
method to make the K divergence symmetric. Sibson [35] 
studied the idea of information radius for a measure arising 
due to concavity property of Shannon's entropy and 
introduced the Jensen difference in the eqn (53) [33]. All eqns 
(48~53) can be expressed in terms of entropy. 
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The sum of geometric means in the eqn (32) is referred to 

as Fidelity similarity, a.k.a. Bhattacharyya coefficient or 
Hellinger affinity [2]. Bhattacharyya distance given in the eqn 
(33), which is a value between 0 and 1, provides bounds on 
the Bayes misclassification probability [23]. Other approaches 
closely related to Bhattacharyya include Hellinger [2] and 
Matusita [24] in eqns (34) and (36) respectively. The basic 
form in the eqn (38), i.e., Matusita without the square root is 
called Squared-chord distance [5] and thus all Fidelity based 
measures have their alternative representation using the 
squared-chord distance. 
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* Squared L2 family � {Jaccard (29), Dice (31)} 
 
Several distance measures containing the Squared 

Euclidean distance in the eqn (40) as the dividend are 
corralled in Table 6. Jaccard and Dice distance forms in the 
eqns (29) and (31) also belong to this family. The cornerstone 
to the F2 family (eqns (41)~(47)) is Pearson F2 divergence in 
the eqn (41) [25] which embodies the Squared Euclidean 
distance. Of particular concern to mathematicians is that 
Pearson F2 divergence is asymmetric. Neyman F2 in the eqn 
(42) [26] is dP(P,Q)= dP(Q,P). Various symmetric versions of 
the F2 have been exploited. The eqn (43) is called the squared 
F2 distance [5] or triangular discrimination [27,28]. Twice of 

the eqn (44) is called the probabilistic symmetric F2 [2] which 
is equivalent to Sangvi F2 distance between populations [2]. 
The term ‘divergence’ is pronominal to refer non-metric 
distance. Notwithstanding the eqn (45) has been commonly 
called divergence [29]. The squared root of half of the 
divergence is called Clark in the eqn (46) [2].  

One of techniques to transform asymmetric distances into 
symmetric form utilizes the addition method; dsym(P,Q)= 
dasym(P,Q) + dasym(Q,P), e.g., The eqn (47) is dAdChi(P,Q) = 
dP(P,Q) + dP(Q,P) [2,3]. Albeit the eqn (47) is occasionally 
called ‘symmetric F2 divergence’, let’s call it the additive 
symmetric F2 here in order to distinguish other symmetric 
versions of F2. Other techniques that are not listed in the 
above table would include max, min, and avg methods; dmax-

sym(P,Q) = max(dasym(P,Q), dasym(Q,P)), dmin-sym(P,Q) = 
min(dasym(P,Q), dasym(Q,P)), and davg-sym(P,Q) = 
avg(dasym(P,Q), dasym(Q,P)). 
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Eqns (48~53) in Table 7 are primary due to Shannon’s 

concept of probabilistic uncertainty or “entropy” H(P)=6d
i=1  

Pi lnPi [30]. Kullback and Leibler [31] introduced the eqn (48) 
called KL divergence, relative entropy, or information 
deviation [2]. The symmetric form of the KL divergence using 
the addition method is in the eqn (49) [31-33] and it is called 
Jeffreys or J divergence. The eqn (50) is called the K 
divergence and its symmetric form using the addition method 
is given in the eqn (51) and called Topsøe distance [2] or 
information statistics [5]. The half of the Topsøe distance is 
called Jensen-Shannon divergence [2,34] which uses the avg 
method to make the K divergence symmetric. Sibson [35] 
studied the idea of information radius for a measure arising 
due to concavity property of Shannon's entropy and 
introduced the Jensen difference in the eqn (53) [33]. All eqns 
(48~53) can be expressed in terms of entropy. 
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The sum of geometric means in the eqn (32) is referred to 

as Fidelity similarity, a.k.a. Bhattacharyya coefficient or 
Hellinger affinity [2]. Bhattacharyya distance given in the eqn 
(33), which is a value between 0 and 1, provides bounds on 
the Bayes misclassification probability [23]. Other approaches 
closely related to Bhattacharyya include Hellinger [2] and 
Matusita [24] in eqns (34) and (36) respectively. The basic 
form in the eqn (38), i.e., Matusita without the square root is 
called Squared-chord distance [5] and thus all Fidelity based 
measures have their alternative representation using the 
squared-chord distance. 
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* Squared L2 family � {Jaccard (29), Dice (31)} 
 
Several distance measures containing the Squared 

Euclidean distance in the eqn (40) as the dividend are 
corralled in Table 6. Jaccard and Dice distance forms in the 
eqns (29) and (31) also belong to this family. The cornerstone 
to the F2 family (eqns (41)~(47)) is Pearson F2 divergence in 
the eqn (41) [25] which embodies the Squared Euclidean 
distance. Of particular concern to mathematicians is that 
Pearson F2 divergence is asymmetric. Neyman F2 in the eqn 
(42) [26] is dP(P,Q)= dP(Q,P). Various symmetric versions of 
the F2 have been exploited. The eqn (43) is called the squared 
F2 distance [5] or triangular discrimination [27,28]. Twice of 

the eqn (44) is called the probabilistic symmetric F2 [2] which 
is equivalent to Sangvi F2 distance between populations [2]. 
The term ‘divergence’ is pronominal to refer non-metric 
distance. Notwithstanding the eqn (45) has been commonly 
called divergence [29]. The squared root of half of the 
divergence is called Clark in the eqn (46) [2].  

One of techniques to transform asymmetric distances into 
symmetric form utilizes the addition method; dsym(P,Q)= 
dasym(P,Q) + dasym(Q,P), e.g., The eqn (47) is dAdChi(P,Q) = 
dP(P,Q) + dP(Q,P) [2,3]. Albeit the eqn (47) is occasionally 
called ‘symmetric F2 divergence’, let’s call it the additive 
symmetric F2 here in order to distinguish other symmetric 
versions of F2. Other techniques that are not listed in the 
above table would include max, min, and avg methods; dmax-

sym(P,Q) = max(dasym(P,Q), dasym(Q,P)), dmin-sym(P,Q) = 
min(dasym(P,Q), dasym(Q,P)), and davg-sym(P,Q) = 
avg(dasym(P,Q), dasym(Q,P)). 
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Eqns (48~53) in Table 7 are primary due to Shannon’s 

concept of probabilistic uncertainty or “entropy” H(P)=6d
i=1  

Pi lnPi [30]. Kullback and Leibler [31] introduced the eqn (48) 
called KL divergence, relative entropy, or information 
deviation [2]. The symmetric form of the KL divergence using 
the addition method is in the eqn (49) [31-33] and it is called 
Jeffreys or J divergence. The eqn (50) is called the K 
divergence and its symmetric form using the addition method 
is given in the eqn (51) and called Topsøe distance [2] or 
information statistics [5]. The half of the Topsøe distance is 
called Jensen-Shannon divergence [2,34] which uses the avg 
method to make the K divergence symmetric. Sibson [35] 
studied the idea of information radius for a measure arising 
due to concavity property of Shannon's entropy and 
introduced the Jensen difference in the eqn (53) [33]. All eqns 
(48~53) can be expressed in terms of entropy. 
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The sum of geometric means in the eqn (32) is referred to 

as Fidelity similarity, a.k.a. Bhattacharyya coefficient or 
Hellinger affinity [2]. Bhattacharyya distance given in the eqn 
(33), which is a value between 0 and 1, provides bounds on 
the Bayes misclassification probability [23]. Other approaches 
closely related to Bhattacharyya include Hellinger [2] and 
Matusita [24] in eqns (34) and (36) respectively. The basic 
form in the eqn (38), i.e., Matusita without the square root is 
called Squared-chord distance [5] and thus all Fidelity based 
measures have their alternative representation using the 
squared-chord distance. 
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* Squared L2 family � {Jaccard (29), Dice (31)} 
 
Several distance measures containing the Squared 

Euclidean distance in the eqn (40) as the dividend are 
corralled in Table 6. Jaccard and Dice distance forms in the 
eqns (29) and (31) also belong to this family. The cornerstone 
to the F2 family (eqns (41)~(47)) is Pearson F2 divergence in 
the eqn (41) [25] which embodies the Squared Euclidean 
distance. Of particular concern to mathematicians is that 
Pearson F2 divergence is asymmetric. Neyman F2 in the eqn 
(42) [26] is dP(P,Q)= dP(Q,P). Various symmetric versions of 
the F2 have been exploited. The eqn (43) is called the squared 
F2 distance [5] or triangular discrimination [27,28]. Twice of 

the eqn (44) is called the probabilistic symmetric F2 [2] which 
is equivalent to Sangvi F2 distance between populations [2]. 
The term ‘divergence’ is pronominal to refer non-metric 
distance. Notwithstanding the eqn (45) has been commonly 
called divergence [29]. The squared root of half of the 
divergence is called Clark in the eqn (46) [2].  

One of techniques to transform asymmetric distances into 
symmetric form utilizes the addition method; dsym(P,Q)= 
dasym(P,Q) + dasym(Q,P), e.g., The eqn (47) is dAdChi(P,Q) = 
dP(P,Q) + dP(Q,P) [2,3]. Albeit the eqn (47) is occasionally 
called ‘symmetric F2 divergence’, let’s call it the additive 
symmetric F2 here in order to distinguish other symmetric 
versions of F2. Other techniques that are not listed in the 
above table would include max, min, and avg methods; dmax-

sym(P,Q) = max(dasym(P,Q), dasym(Q,P)), dmin-sym(P,Q) = 
min(dasym(P,Q), dasym(Q,P)), and davg-sym(P,Q) = 
avg(dasym(P,Q), dasym(Q,P)). 
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Eqns (48~53) in Table 7 are primary due to Shannon’s 

concept of probabilistic uncertainty or “entropy” H(P)=6d
i=1  

Pi lnPi [30]. Kullback and Leibler [31] introduced the eqn (48) 
called KL divergence, relative entropy, or information 
deviation [2]. The symmetric form of the KL divergence using 
the addition method is in the eqn (49) [31-33] and it is called 
Jeffreys or J divergence. The eqn (50) is called the K 
divergence and its symmetric form using the addition method 
is given in the eqn (51) and called Topsøe distance [2] or 
information statistics [5]. The half of the Topsøe distance is 
called Jensen-Shannon divergence [2,34] which uses the avg 
method to make the K divergence symmetric. Sibson [35] 
studied the idea of information radius for a measure arising 
due to concavity property of Shannon's entropy and 
introduced the Jensen difference in the eqn (53) [33]. All eqns 
(48~53) can be expressed in terms of entropy. 
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Table 8 exhibits distance measures utilizing multiple ideas 

or measures. Taneja utilized both arithmetic and geometric 
means came up with the arithmetic and geometric mean 
divergence in the eqn (54) [36]. Symmetric F2, arithmetic and 
geometric mean divergence is given in the eqn (55) [37]. The 
average of city block and Chebyshev distances in the eqn (56) 
appears in [9]. 

 
Table 9. Grouping of distance/similarity measures by 
caveats to implementation 
Vector 
Ops 

Eqns (1~9), (11~13), (16~19), (21~23),
(26~40), and (56~57) 

0 / 0 Canberra (10), Wave Hedges (14), Harmonic 
mean (25), Squared F2 (43),  Probabilistic 
Symmetric F2 (44), Divergence (45), Clark (46), 
and Additive Symmetric F2 (47) 

division 
by zero 

Kulczynski (9) (20),  Pearson F2 (41), Neyman 
F2 (42), KL (48), Jeffreys (49), Taneja (54), and 
Kumar-Johnson (55) 

0 log0 KL (48), K divergence (50), Topsøe (51), 
Jensen-Shannon (52), Jensen difference (53), 
and Taneja (54) 

Log of 0 Jeffreys (49) 
 

Those readers who wish to implement some 
distance/similarity measures presented in this section will face 
some technical problems. Table 9 identifies measures with 
their caveats to implementation. While most measures can be 
efficiently computed using simple vector operators, some 
measures prone to the division by zero and the log of zero 
cases deserve careful attention. Measures like Canberra 
belong to the zero divided by zero caveat group. When the 
divisor becomes zero, the dividend is always zero as well. It 
should be noted that 0/0 are treated as 0. Similarly, 0 log0 is 
treated as 0 as well. For the division by zero and log of zero 
group cases, the zero is replaced by a very small value.   

III. HIERARCHICAL CLUSTERING ON DISTANCE/SIMILARITY 
MEASURES 

Hitherward, the focus is moved from the syntactic similarity 
to the semantic similarity between distance/similarity 
measures. So as to assess how similar distance/similarity 
measures are, the following experiments were conducted 
using the cluster analysis. n samples whose values are 
between 1 and d are randomly selected to build a histogram. 
Next, each bin is divided by n to produce the pdf. Let R be the 
set of r number of reference pdfs and q be a query pdf. Then r 

number of distance values are produced using a certain 
distance measure dx(ri,q) for �i. ri and q are randomly 
generated pdfs.  

Figure 2 presents the upper triangle matrix of correlation 
between dx(ri,q) and dy(ri,q) plots for selected distance or 
similarity measures where n = 20, b = 8, and r = 30. Each plot 
in Figure 2 represents the relation between two distance 
measures. In order to quantify the correlation between 
distance/similarity measures, a correlation coefficient measure 
in the eqn (57) is used. 
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(57) 

It indicates the strength and direction of a linear 
relationship between two distance measures. If the value gets 
close to 1, it represents a good fit, i.e., two distance measures 
are semantically similar. As the fit gets worse, the correlation 
coefficient approaches zero. When either two distance or two 
similarity measures are compared, the correlation coefficient 
is a positive value. When a distance measure and a similarity 
measure are compared, the correlation coefficient is a negative 
value e.g., the squared F2 and probabilistic symmetric F2 
divergences have dSsqChi,= .5 dPrChi and Corr (dSsqChi, dPrChi) = 1 
whereas Motyka similarity (20) and Sørensen (5) have sMot = 1 
– dSor and Corr (sMot, dSor) = –1.  

To adequately understand the similarities among 
distance/similarity measures, cluster analysis is adopted. The 
correlation coefficient is converted into the distance in the eqn 
(58) to find clusters of distance or similarity measures shown 
in Figure 3. 

dDM (dx, dy) = 1 – |Corr(dx, dy)| (58) 
The dendrogram representing the hierarchical clusters of 

distance/similarity measures is produced by averaging 30 
independent trials of the above experiment. It is built using the 
agglomerative single linkage with the average clustering 
method [1]. The vertical scale on the left represents various 
distance/similarity measures and the horizontal scale 
represents the closeness between two clusters of 
distance/similarity measures. The dendrogram provides 
intuitive groupings of distance/similarity measures. Some 
distance measures in syntactic groups are interspersed in the 
semantic groups. Here are a few simple observations.   
Observation 1: if two measures are proportional to each 
other, i.e., dx=cdy , dDM (dx, dy) = 0.  
Observation 2: if two measures are in distance/similarity 
relation such that dx=1 – sy,  

dDM (dx, dy) = 0.  
Observation 3: if two measures are in distance/similarity 
relation such that sy = 1/dx, dDM (dx, dy) � 0.    e.g, Kulczynski 
has skul = 1/dkul and dDM (skul, dkul) > 0. 
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Observation 4: Angular based similarity coefficients such as 
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Fig. 4 Histogram / PDF space. 

 
It is because histograms are of the same size. As depicted in 

Figure 4 (a), pdf or histogram space of the same size is only 
subpart of the entire vector space. The pdf space in the d 
dimensional vector space is a segmented d – 1 space which 
has three corners in Figure 4 (c) case. Figure 4 (b) illustrates 
the intuitive close relation between the angle and the 
Euclidean distances.  

IV. CONCLUSION 
This article built the edifice of distance/similarity measures 

by enumerating and categorizing a large variety of 
distance/similarity measures for comparing nominal type 
histograms. Grouping aforementioned measures has 
concentrated upon three general aspects: syntactic similarity, 
implementation caveats, and semantics. The importance of 
finding suitable distance/similarity measures cannot be 
overemphasized. There is a continual demand for better ones.  
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Table 10 exhibits a few distance measures that are not in 

literature. Similar syntactic relationship between Sørensen and 
Canberra can be applied to Kulczynski which yields the eqn 
(60). When squared, a new kind of symmetric F2divergence 
can be derived in the eqn (61). Evolving from this point, two 
symmetric F2 divergences can be generated given in eqns (62) 
and (63). They are not the same as using the max and min 
method to make the F2 divergence symmetric given in eqns 
(64) and (65). A large number of new distance/similarity can 
be relayed by studying the syntactic relations and may be 
useful in some applications. 
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Shannon tried to slow things down in 1956:
1956 IRE TRANSACTIONS---INFORMATION THEORY 3 

The Bandwagon 
CLAUDE E. SHANNON 

NFORMATION theory has, in the last few years, 
become something of a scientific bandwagon. 
Starting as a technical tool for the communica- 

tion engineer, it has received an extraordinary 
amount of publicity in the popular as well as the 
scientific press. In part, this has been due to connec- 
tions with such fashionable fields as computing ma- 
chines, cybernetics, and automation; and in part, to 
the novelty of its subject matter. As a consequence, 
it has perhaps been ballooned to an importance 
beyond its actual accomplishments. Our fellow scien- 
tists in many different fields, attracted by the fanfare 
and by the new avenues opened to scientific analysis, 
are using these ideas in their own problems. Applica- 
tions are being made to biology, psychology, lin- 
guistics, fundamental physics, economics, the theory 
of organization, and many others. In short, informa- 
tion theory is currently partaking of a somewhat 
heady draught of general popularity. 

Although this wave of popularity is certainly 
pleasant and exciting for those of us working in the 
field, it carries at the same time an element of danger. 
While we feel that information theory is indeed a 
valuable tool in providing fundamental insights into 
the nature of communication problems and will 
continue to grow in importance, it is certainly no 
panacea for the communication engineer or, a fortiori, 
for anyone else. Seldom do more than a few of 
nature’s secrets give way at one time. It will be all 
too easy for our somewhat artificial prosperity to 
collapse overnight when it is realized that the use of a 
few exciting words like information, entropy, redun- 
dancy, do not solve all our problems. 

What can be done to inject a note of moderation in 
this situation? In the first place, workers in other 
fields should realize that the basic results of the 

subject are aimed in a very specific direction, a 
direction that is not necessarily relevant to such 
fields as psychology, economics, and other social 
sciences. Indeed, the hard core of information theory 
is, essentially, a branch of mathematics, a strictly 
deductive system. A thorough understanding of the 
mathematical foundation and its communication 
application is surely a prerequisite to other applica- 
tions. I personally believe that many of the concepts 
of information theory will prove useful in these other 
fields-and, indeed, some results are already quite 
promising-but the establishing of such applications 
is not a trivial matter of translating words to a new 
domain, but rather the slow tedious process of 
hypothesis and experimental verification. If, for 
example, the human being acts in some situations like 
an ideal decoder, this is an experimental and not a 
mathematical fact, and as such must be tested under 
a wide variety of experimental situations. 

Secondly, we must keep our own house in first class 
order. The subject of information theory has cer- 
tainly been sold, if not oversold. We should now turn 
our attention to the business of research and devel- 
opment at the highest scientific plane we can main- 
tain. Research rather than exposition is the keynote, 
and our critical thresholds should be raised. Authors 
should submit only their best efforts, and these only 
after careful criticism by themselves and their col- 
leagues. A few first rate research papers are preferable 
to a large number that are poorly conceived or half- 
finished. The latter are no credit to their writers and 
a waste of time to their readers. Only by maintaining 
a thoroughly scientific attitude can we achieve real 
progress in communication theory and consolidate 
our present position. 

“The bandwagon”�
Claude E Shannon,
IRE Transactions on Information Theory, 2, 3,
1956. [16]

� “Information theory has … become something of a scientific
bandwagon.”

� “While … information theory is indeed a valuable tool … [it] is
certainly no panacea for the communication engineer or … for
anyone else.

� “A few first rate research papers are preferable to a large
number that are poorly conceived or half-finished.”
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� Wewant two main things:
1. A measure of difference

between systems
2. A way of sorting which

types/species/words
contribute to that
difference

� For sorting, many
comparisons give the same
ordering.

� A few basic building blocks:
� |𝑃𝑖 − 𝑄𝑖| (dominant)
� max(𝑃𝑖, 𝑄𝑖)
� min(𝑃𝑖, 𝑄𝑖)
� 𝑃𝑖𝑄𝑖
� |𝑃 1/2

𝑖 − 𝑄1/2
𝑖 | (Hellinger)

 

 

paper have the shuffling invariant property [6] and thus 
naturally imply the level independency.  

There are two approaches in pdf distance/similarity 
measures: vector and probabilistic. Since each level is 
assumed to be independent from other levels, a histogram or 
pdf can be considered as a vector, i.e., a point in the Euclidean 
space or a Cartesian coordinate system. Hence, numerous 
geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
divergences in probability and information theory fields [7,8]. 
Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  

II. DEFINITIONS 
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A couple of thousand years ago, Euclid stated that the 
shortest distance between two points is a line and thus the eqn 
(1) is predominantly known as Euclidean distance. It was 
often called Pythagorean metric since it is derived from the 
Pythagorean Theorem. In the late 19th century, Hermann 
Minkowski considered the city block distance [9]. Other 
names for the eqn (2) include rectilinear distance, taxicab 
norm, and Manhattan distance. Hermann also generalized the 
formulae (1) and (2) to the eqn (3) which is coined after 
Minkowski. When p goes to infinite, the eqn (4) can be 
derived and it is called the chessboard distance in 2D, the 
minimax approximation, or the Chebyshev distance named 
after Pafnuty Lvovich Chebyshev [10]. 
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* L1 family � {Intersectoin (13), Wave Hedges (15), 
Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 
 
Several distance measures listed in Table 2 facilitate the L1, 

more precisely the absolute difference. The eqn (5), which is 
widely used in ecology [11], is known as Sørensen distance 
[12] or Bray-Curtis [2,4,13]. When it is used for comparing 
two pdfs, it is nothing but the L1 divided by 2. Gower distance 
[14] in the eqn (6) scales the vector space into the normalized 
space and then uses the L1. Since the pdf is already normalized 
space, Gower distance is the L1 divided by d. Other L1 family 
distances that are non-proportional to the L1 include Soergel 
and Kulczynski distances given in the eqns (8) [4] and (9) [2] 
respectively. At first glance, Canberra metric given in the eqn 
(10) [2,15] resembles Sørensen but normalizes the absolute 
difference of the individual level. It is known to be very 
sensitive to small changes near zero [15]. The eqn (11) [2], 
attributed to Lorentzian, also contains the absolute difference 
and the natural logarithm is applied. 1 is added to guarantee 
the non-negativity property and to eschew the log of zero. 
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pdf can be considered as a vector, i.e., a point in the Euclidean 
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geometrical distances can be applied to compare two pdf’s. 
There is much literature regarding discrete versions of various 
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Computing the distance between two pdf’s can be regarded as 
the same as computing the Bayes (or minimum 
misclassification) probability [1]. This is equivalent to 
measuring the overlap between two pdfs as the distance. The 
probabilistic approach is based on the fact that a histogram of 
a measurement provides the basis for an empirical estimate of 
the pdf.  

The rest of the paper is organized as follows. In section 2, 
various distance/similarity measures are enumerated according 
to their syntactic similarities. In order to provide a better 
perspective on distance/similarity measures, section 3 presents 
the hierarchical cluster tree using the correlations between 
different measures. Finally, section 4 concludes this work.  
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Czekanowski (16), Ruzicka (21), Tanimoto (23), etc}. 
 
Several distance measures listed in Table 2 facilitate the L1, 

more precisely the absolute difference. The eqn (5), which is 
widely used in ecology [11], is known as Sørensen distance 
[12] or Bray-Curtis [2,4,13]. When it is used for comparing 
two pdfs, it is nothing but the L1 divided by 2. Gower distance 
[14] in the eqn (6) scales the vector space into the normalized 
space and then uses the L1. Since the pdf is already normalized 
space, Gower distance is the L1 divided by d. Other L1 family 
distances that are non-proportional to the L1 include Soergel 
and Kulczynski distances given in the eqns (8) [4] and (9) [2] 
respectively. At first glance, Canberra metric given in the eqn 
(10) [2,15] resembles Sørensen but normalizes the absolute 
difference of the individual level. It is known to be very 
sensitive to small changes near zero [15]. The eqn (11) [2], 
attributed to Lorentzian, also contains the absolute difference 
and the natural logarithm is applied. 1 is added to guarantee 
the non-negativity property and to eschew the log of zero. 
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� Shannon’s Entropy:

𝐻(𝑃) = ⟨log
2

1
𝑝𝜏

⟩ = ∑
𝜏∈𝑅1,2;𝛼

𝑝𝜏 log2
1
𝑝𝜏

(1)

� Kullback-Liebler (KL) divergence:

𝐷KL (𝑃2 ∣∣ 𝑃1) = ⟨log
2

1
𝑝2,𝜏

− log
2

1
𝑝1,𝜏

⟩
𝑃2

= ∑
𝜏∈𝑅1,2;𝛼

𝑝2,𝜏 [log
2

1
𝑝2,𝜏

− log
2

1
𝑝1,𝜏

]

= ∑
𝜏∈𝑅1,2;𝛼

𝑝2,𝜏 log2

𝑝1,𝜏

𝑝2,𝜏
. (2)

� Problem: If just one component type in system 2 is not present in
system 1, KL divergence =∞.

� Solution: If we can’t compare a spork and a platypus directly, we
create a fictional spork-platypus hybrid.

� New problem: Re-read solution.
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� Jensen-Shannon divergence (JSD): [9, 7, 13, 1]

𝐷JS (𝑃1 ∣∣ 𝑃2)

= 1
2 𝐷KL (𝑃1 ∣∣ 1

2 [𝑃1 + 𝑃2]) + 1
2 𝐷KL (𝑃2 ∣∣ 1

2 [𝑃1 + 𝑃2])

= 1
2

∑
𝜏∈𝑅1,2;𝛼

(𝑝1,𝜏 log2
𝑝1,𝜏

1
2 [𝑝1,𝜏 + 𝑝2,𝜏]

+ 𝑝2,𝜏 log2
𝑝2,𝜏

1
2 [𝑝1,𝜏 + 𝑝2,𝜏]

) .

(3)

� Involving a third intermediate averaged systemmeans JSD is now finite:
0 ≤ 𝐷JS (𝑃1 ∣∣ 𝑃2) ≤ 1.

� Generalized entropy divergence: [2]

𝐷AS2
𝛼 (𝑃1 ∣∣ 𝑃2) =

1
𝛼(𝛼 − 1)

∑
𝜏∈𝑅1,2;𝛼

[(𝑝1−𝛼
𝜏,1 + 𝑝1−𝛼

𝜏,2 ) (
𝑝𝜏,1 + 𝑝𝜏,2

2
)

𝛼
− (𝑝𝜏,1 + 𝑝𝜏,2)] .

(4)

Produces JSD when𝛼 → 0.

1.5 1 0.5 0 0.5 1 1.5

A. Rank-turbulence histogram:
B. Identical systems:

C. Randomized systems:

D. Disjoint systems:

 B.

 E.

 F.

 D.

 A.  G.

 C.

 J.

 I.

 H.
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Desirable rank-turbulence divergence features:
1. Rank-based.
2. Symmetric.
3. Semi-positive: 𝐷R

𝛼(Ω1 ∣∣ Ω2) ≥ 0.
4. Linearly separable, for interpretability.
5. Subsystem applicable: Ranked lists of any principled subset

may be equally well compared (e.g., hashtags on Twitter, stock
prices of a certain sector, etc.).

6. Turbulence-handling: Suited for systems with rank-ordered
component size distribution that are heavy-tailed.

7. Scalable: Allow for sensible comparisons across system sizes.
8. Tunable.
9. Story-finding: Features 1–8 combine to show which

component types are most ‘important’

The PoCSverse
Allotaxonometry
25 of 70
A plenitude of
distances

Rank-turbulence
divergence

Probability-
turbulence divergence

Explorations

Nutshell

References

Some good things about ranks:
� Working with ranks is intuitive
� Affords some powerful statistics (e.g., Spearman’s rank

correlation coefficient)
� Can be used to generalize beyond systems with probabilities

A start:

∣ 1
𝑟𝜏,1

− 1
𝑟𝜏,2

∣ . (5)

� Inverse of rank gives an increasing measure of ‘importance’
� High rank means closer to rank 1
� We assign tied ranks for components of equal ‘size’
� Issue: Biases toward high rank components
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We introduce a tuning parameter:

∣ 1
[𝑟𝜏,1]𝛼 − 1

[𝑟𝜏,2]𝛼 ∣
1/𝛼

. (6)

� As 𝛼 → 0, high ranked components are increasingly
dampened

� For words in texts, for example, the weight of common words
and rare words move increasingly closer together.

� As 𝛼 → ∞, high rank components will dominate.
� For texts, the contributions of rare words will vanish.
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Trouble:
� The limit of 𝛼 → 0 does not behave well for

∣ 1
[𝑟𝜏,1]𝛼 − 1

[𝑟𝜏,2]𝛼 ∣
1/𝛼

.

� The leading order term is:

(1 − 𝛿𝑟𝜏,1𝑟𝜏,2
) 𝛼1/𝛼 ∣ln

𝑟𝜏,1

𝑟𝜏,2
∣
1/𝛼

, (7)

which heads toward∞ as 𝛼 → 0.
� Oops.
� But the insides look nutritious:

∣ln
𝑟𝜏,1

𝑟𝜏,2
∣

is a nicely interpretable log-ratio of ranks.
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Some reworking:

𝛿𝐷R
𝛼,𝜏(𝑅1 ∣∣ 𝑅2) ∝ 𝛼 + 1

𝛼
∣ 1
[𝑟𝜏,1]𝛼 − 1

[𝑟𝜏,2]𝛼 ∣
1/(𝛼+1)

. (8)

� Keeps the core structure.
� Large 𝛼 limit remains the same.
� 𝛼 → 0 limit now returns log-ratio of ranks.
� Next: Sum over 𝜏 to get divergence.
� Still have an option for normalization.

Rank-turbulence divergence:

𝐷R
𝛼(𝑅1 ∣∣ 𝑅2) = 1

𝒩1,2;𝛼
∑

𝜏∈𝑅1,2;𝛼

𝛿𝐷R
𝛼,𝜏(𝑅1 ∣∣ 𝑅2) (9)
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Normalization:
� Take a data-driven rather than analytic approach to

determining𝒩1,2;𝛼.
� Compute𝒩1,2;𝛼 by taking the two systems to be disjoint

while maintaining their underlying Zipf distributions.
� Ensures: 0 ≤ 𝐷R

𝛼(𝑅1 ‖ 𝑅2) ≤ 1
� Limits of 0 and 1 correspond to the two systems having

identical and disjoint Zipf distributions.
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Rank-turbulence divergence:
Summing over all types, dividing by a normalization prefactor
𝒩1,2;𝛼 we have our prototype:

𝐷R
𝛼(𝑅1 ∣∣ 𝑅2) = 1

𝒩1,2;𝛼

𝛼 + 1
𝛼

∑
𝜏∈𝑅1,2;𝛼

∣ 1
[𝑟𝜏,1]𝛼 − 1

[𝑟𝜏,2]𝛼 ∣
1/(𝛼+1)

.

(10)
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General normalization:
� Iif the Zipf distributions are disjoint, then inΩ(1)’s merged

ranking, the rank of allΩ(2) types will be 𝑟 = 𝑁1 + 1
2𝑁2,

where𝑁1 and𝑁2 are the number of distinct types in each
system.

� Similarly,Ω(2)’s merged ranking will have all ofΩ(1)’s types in
last place with rank 𝑟 = 𝑁2 + 1

2𝑁1.
� The normalization is then:

𝒩1,2;𝛼 = 𝛼 + 1
𝛼

∑
𝜏∈𝑅1

∣ 1
[𝑟𝜏,1]𝛼 − 1

[𝑁1 + 1
2𝑁2]𝛼 ∣

1/(𝛼+1)

+ 𝛼 + 1
𝛼

∑
𝜏∈𝑅2

∣ 1
[𝑁2 + 1

2𝑁1]𝛼 − 1
[𝑟𝜏,2]𝛼 ∣

1/(𝛼+1)

.

(11)
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Limit of 𝛼 → 0:

𝐷R
0 (𝑅1 ‖ 𝑅2) = ∑

𝜏∈𝑅1,2;𝛼

𝛿𝐷R
0,𝜏 = 1

𝒩1,2;0
∑

𝜏∈𝑅1,2;𝛼

∣ln
𝑟𝜏,1

𝑟𝜏,2
∣ ,

(12)
where

𝒩1,2;0 = ∑
𝜏∈𝑅1

∣ln
𝑟𝜏,1

𝑁1 + 1
2𝑁2

∣ + ∑
𝜏∈𝑅2

∣ln
𝑟𝜏,2

1
2𝑁1 + 𝑁2

∣ . (13)

� Largest rank ratios dominate.
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Limit of 𝛼 → ∞:

𝐷R
∞(𝑅1 ‖ 𝑅2) = ∑

𝜏∈𝑅1,2;𝛼

𝛿𝐷R
∞,𝜏

= 1
𝒩1,2;∞

∑
𝜏∈𝑅1,2;𝛼

(1 − 𝛿𝑟𝜏,1𝑟𝜏,2
)max

𝜏
{ 1

𝑟𝜏,1
, 1
𝑟𝜏,2

} . (14)

where

𝒩1,2;∞ = ∑
𝜏∈𝑅1

1
𝑟𝜏,1

+ ∑
𝜏∈𝑅2

1
𝑟𝜏,2

. (15)

� Highest ranks dominate.

1 0.5 0 0.5 1
 A.  D.
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 F.

Probability-turbulence divergence:

𝐷P
𝛼(𝑃1 ∣∣ 𝑃2) = 1

𝒩P
1,2;𝛼

𝛼 + 1
𝛼

∑
𝜏∈𝑅1,2;𝛼

∣ [ 𝑝𝜏,1]𝛼−[ 𝑝𝜏,2]𝛼 ∣
1/(𝛼+1)

.

(16)

� For the unnormalized version (𝒩P
1,2;𝛼=1), some troubles

return with 0 probabilities and 𝛼 → 0.
� Weep not: 𝒩P

1,2;𝛼 will save the day.
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Normalization:
With no matching types, the probability of a type present in one
system is zero in the other, and the sum can be split between the
two systems’ types:

𝒩P
1,2;𝛼 = 𝛼 + 1

𝛼
∑

𝜏∈𝑅1

[ 𝑝𝜏,1]𝛼/(𝛼+1) + 𝛼 + 1
𝛼

∑
𝜏∈𝑅2

[ 𝑝𝜏,2]𝛼/(𝛼+1)

(17)
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Limit of 𝛼 = 0 for probability-turbulence divergence
� if both 𝑝𝜏,1 > 0 and 𝑝𝜏,2 > 0 then

lim
𝛼→0

𝛼 + 1
𝛼

∣ [ 𝑝𝜏,1]𝛼 − [ 𝑝𝜏,2]𝛼 ∣
1/(𝛼+1)

= ∣ln
𝑝𝜏,2

𝑝𝜏,1
∣ . (18)

� But if 𝑝𝜏,1 = 0 or 𝑝𝜏,2 = 0, limit diverges as 1/𝛼.
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Limit of 𝛼=0 for probability-turbulence divergence
� Normalization:

𝒩P
1,2;𝛼 → 1

𝛼
(𝑁1 + 𝑁2) . (19)

� Because the normalization also diverges as 1/𝛼, the divergence
will be zero when there are no exclusive types and non-zero
when there are exclusive types.
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Combine these cases into a single expression:

𝐷P
0(𝑃1 ‖ 𝑃2) = 1

(𝑁1 + 𝑁2)
∑

𝜏∈𝑅1,2;0

(𝛿𝑝𝜏,1,0 + 𝛿0,𝑝𝜏,2
) . (20)

� The term (𝛿𝑝𝜏,1,0 + 𝛿0,𝑝𝜏,2
) returns 1 if either 𝑝𝜏,1 = 0 or

𝑝𝜏,2 = 0, and 0 otherwise when both 𝑝𝜏,1 > 0 and 𝑝𝜏,2 > 0.
� Ratio of types that are exclusive to one system relative to the

total possible such types,
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Type contribution ordering for the limit of 𝛼=0
� In terms of contribution to the divergence score, all exclusive

types supply a weight of 1/(𝑁1 + 𝑁2). We can order them by
preserving their ordering as 𝛼 → 0, which amounts to
ordering by descending probability in the system in which
they appear.

� And while types that appear in both systems make no
contribution to𝐷P

0(𝑃1 ‖ 𝑃2),we can still order them
according to the log ratio of their probabilities.

� The overall ordering of types by divergence contribution for
𝛼=0 is then: (1) exclusive types by descending probability and
then (2) types appearing in both systems by descending log
ratio.
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Limit of 𝛼=∞ for probability-turbulence divergence

𝐷P
∞(𝑃1 ‖ 𝑃2) = 1

2
∑

𝜏∈𝑅1,2;∞

(1 − 𝛿𝑝𝜏,1,𝑝𝜏,2
)max (𝑝𝜏,1, 𝑝𝜏,2)

(21)
where

𝒩P
1,2;∞ = ∑

𝜏∈𝑅1,2;∞

( 𝑝𝜏,1 + 𝑝𝜏,2 )= 1 + 1 = 2. (22)
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Connections for PTD:
� 𝛼 = 0: Similarity measure Sørensen-Dice coefficient [4, 17, 10],

𝐹1 score of a test’s accuracy [18, 15].
� 𝛼 = 1/2: Hellinger distance [8] andMautusita distance [11].
� 𝛼 = 1: Many including all𝐿(𝑝)-norm type constructions.
� 𝛼 = ∞: Motyka distance [3].
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FIG. 8. Rank-turbulence divergence allotaxonograph [34] of word rank distributions in the incel vs
random comment corpora. The rank-rank histogram on the left shows the density of words by their rank in the
incel comments corpus against their rank in the random comments corpus. Words at the top of the diamond are
higher frequency, or lower rank. For example, the word “the” appears at the highest observed frequency, and thus
has the lowest rank, 1. This word has the lowest rank in both corpora, so its coordinates lie along the center vertical
line in the plot. Words such as “women” diverge from the center line because their rank in the incel corpus is higher
than in the random corpus. The top 40 words with greatest divergence contribution are shown on the right. In this
comparison, nearly all of the top 40 words are more common in the incel corpus, so they point to the right. The
word that has the most notable change in rank from the random to incel corpus is “women”, the object of hatred
and desire for the incel community. The following words reference various categories of men: “incels”, “chad”, and
“men”. References to physical appearance are also more common in the incel corpus, such as “ugly”, “attractive”,
and “height”. A number of these words are made-up: “normies”, “foids”, “blackpill”, “femoids”, “roastie”, “volcel”,
and “fakecel”. These 40 words capture the real-life topics and made-up terms that populate the incel lexicon.

indicates that the discussion in incel forums is
topic-specific and homogeneous. It is these words
derived from rank-turbulence divergence that we
identify as the empirical incel lexicon in Table II.
Our identified lexicon is comparable to online incel
glossaries, written by and for the incel community
[35], but is revealed algorithmically in Fig. 8. As
such, it confirms prior knowledge about the words
that incels use to communicate with each other.
In the following analysis, we will study changes in
the prevalence of incel language over time, and the
contexts in which they are used.

To examine the stability of these words, we
plot the timeseries of the incel lexicon in Fig. 9.
A word may have had a short period of high
frequency that contributed greatly to its rank, but
may not reflect the incel lexicon as accurately as

words that appear consistently over time. The
timeseries shown in Fig. 9 reveal that the relative
frequency of the words “women”, “men”, “incel”,
“chad”, “cope”, “cuck”, “normies”, “virgin”, and
“blackpill” are consistent over time, and consistent
over three di↵erent communities. To assess the
stability of each of the timeseries in Fig. 9, we
perform Augmented Dickey-Fuller (ADF) tests for
the unit root. We reject the null hypothesis for
the timeseries which yield a p-value below our
significance threshold, 0.05. These timeseries do
not have a unit root, and are therefore stationary.
See Supplementary Table S1 for the ADF test
summaries for each timeseries in Fig. 9.

Consistent relative frequency over three banned
communities shows us that the words in our
identified lexicon may be a fingerprint for the larger
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Effect of subsampling:
N=1000 N=3,162 N=10,000 N=31,623 N=100,000 N=316,228 N=1,000,000 N<3,162,278

DR
1/3=0.235 DR

1/3=0.269 DR
1/3=0.283 DR

1/3=0.282 DR
1/3=0.285 DR

1/3=0.326 DR
1/3=0.462 DR

1/3=0.493
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N=31 N=100 N<316

DR
0 =0.152 DR

0 =0.118 DR
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N=31 N=100 N=316 N=1,000 N=3,162 N=10,000 N<31,622

DR
∞=0.993 DR

∞=0.991 DR
∞=0.974 DR

∞=0.951 DR
∞=0.934 DR

∞=0.926 DR
∞=0.926

B
a
b
y

g
ir
l
n
a
m

e
s:

N=31 N=100 N=316 N=1,000 N=3,162 N=10,000 N=<31,622

DR
∞=0.881 DR

∞=0.887 DR
∞=0.878 DR

∞=0.855 DR
∞=0.848 DR

∞=0.847 DR
∞=0.850

B
a
b
y

b
o
y

n
a
m

e
s:

N=31 N=100 N=316 N=1000 N=3,162 N<10,000

DR
1/3=0.931 DR

1/3=0.938 DR
1/3=0.907 DR

1/3=0.809 DR
1/3=0.504 DR

1/3=0.441

M
a
rk

e
t
c
a
p
s:

8 6 4 2 0 2 4 6 8

2 1.5 1 0.5 0 0.5 1 1.5 2

0.2 0.1 0 0.1 0.2



5 0 5

6 4 2 0 2 4 6

0.03 0.02 0.01 0 0.01 0.02 0.03

2 1.5 1 0.5 0 0.5 1 1.5 2

Flipbooks for RTD:

� Twitter:
allotaxonometer-flipbook-1-rank-div.pdf��
allotaxonometer-flipbook-2-probability-div.pdf��
allotaxonometer-flipbook-3-gen-entropy-div.pdf��

� Market caps:
allotaxonometer-flipbook-4-marketcaps-6years-rank-div.pdf��

� Baby names:
allotaxonometer-flipbook-5-babynames-girls-50years-rank-div.pdf��
allotaxonometer-flipbook-6-babynames-boys-50years-rank-div.pdf��

Baby girl names over time relative to 1950��
Baby boy names over time relative to 1950��
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� Google books:
allotaxonometer-flipbook-7-google-books-onegrams-rank-div.pdf��
allotaxonometer-flipbook-8-google-books-bigrams-rank-div.pdf��
allotaxonometer-flipbook-9-google-books-trigrams-rank-div.pdf��

Flipbooks for PTD:

� Jane Austen:
Pride and Prejudice, 1-grams��
Pride and Prejudice, 2-grams��
Pride and Prejudice, 3-grams��

� Social media:
Twitter, 1-grams��
Twitter, 2-grams��
Twitter, 3-grams��

� Ecology:
Barro Colorado Island��
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Code:
https://gitlab.com/compstorylab/allotaxonometer
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Claims, exaggerations, reminders:
� Needed for comparing large-scale complex systems:

Comprehendible, dynamically-adjusting, differential
dashboards.

� Many measures seem poorly motivated and largely
unexamined (e.g., JSD).

� Of value: Combining big-picture maps with ranked lists.
� Online tunable versions of rank-turbulence divergence now

exist:
� App version: https://allotaxp.vercel.app/�
� Observable version:

https://observablehq.com/@jstonge/allotaxonometer-4-all�
� Github: https://github.com/jstonge/allotaxp�

� Future: Probability-turbulence divergence plus many other
instruments.
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