Mechanisms for Generating Power-Law Size Distributions, Part 3

Last updated: 2025/10/08, 21:16:55 EDT

Principles of Complex Systems, Vols. 1, 2, 3D, 4 Fourever, V for Vendetta

Prof. Peter Sheridan Dodds

Computational Story Lab | Vermont Complex Systems Institute
University of Vermont | Santa Fe Institute

Licensed under the Creative Commons Attribution 4.0 International

The PoCSverse Power-Law Mechanisms, Pt. 3 1 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Befor Simon's Model

Analysis

Words

Catchphrases

These slides are brought to you by:

The PoCSverse Power-Law Mechanisms, Pt. 3 2 of 50

Rich-Get-Richer Mechanism

Everywherenes

Simon's Model

Analysis

Words

atchphrases

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Power-Law Mechanisms, Pt. 3 3 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Befor

Simon's Model

Words

Catchphrases

Outline

Rich-Get-Richer Mechanism

Everywhereness What Came Before Simon's Model Analysis Words Catchphrases

References

The PoCSverse Power-Law Mechanisms, Pt. 3 4 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Befor Simon's Model

Analysis

Words

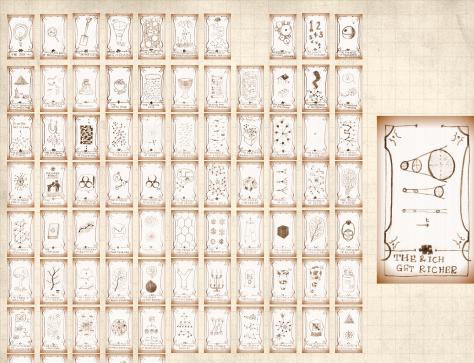
A STANGER

The Boggoracle Speaks:

The PoCSverse Power-Law Mechanisms, Pt. 3 5 of 50

Rich-Get-Richer Mechanism

What Came Before


Simon's Model

Analysis Words

Catchphrases

Aggregation:

- Random walks represent additive aggregation
- 🙈 Mechanism: Random addition and subtraction
- & Compare across realizations, no competition.
- Next: Random Additive/Copying Processes involving Competition.
- Widespread: Words, Cities, the Web, Wealth, Productivity (Lotka), Popularity (Books, People, ...)
- Competing mechanisms (trickiness)

The PoCSverse Power-Law Mechanisms, Pt. 3 8 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came I

Words

Carchphrase

Pre-Zipf's law observations of Zipf's law

- 31910s: Word frequency examined re Stenography (or shorthand or brachygraphy or tachygraphy), Jean-Baptiste Estoup [5].
- 31910s: Felix Auerbach 2 pointed out the Zipfitude of city sizes in

"Das Gesetz der Bevölkerungskonzentration" ("The Law of Population Concentration") $^{[1]}$.

- 3 1924: G. Udny Yule [11]:
 - # Species per Genus (offers first theoretical mechanism)
- 3 1926: Lotka [7]:
 - # Scientific papers per author (Lotka's law)

The PoCSverse Power-Law Mechanisms, Pt. 3 10 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Before

Words

Catchphrases

Theoretical Work of Yore:

1949: Zipf's "Human Behaviour and the Principle of Least-Effort" is published. [12]

1953: Mandelbrot [8]: Optimality argument for Zipf's law; focus on language.

1955: Herbert Simon [10, 12]:
Zipf's law for word frequency, city size, income, publications, and species per genus.

3 1965/1976: Derek de Solla Price [3, 9]: Network of Scientific Citations.

3999: Barabasi and Albert [2]:
The World Wide Web, networks-at-large.

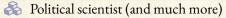
The PoCSverse Power-Law Mechanisms, Pt. 3 11 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Before

Words


Catchphrase

Herbert Simon (1916–2001):

- Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology
- Coined 'bounded rationality' and 'satisficing'
- Nearly 1000 publications (see Google Scholar 🗹)
- An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.
- № 1978 Nobel Laureate in Economics (his Nobel bio is here).

The PoCSverse Power-Law Mechanisms, Pt. 3 12 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Before Simon's Model

Words

Catchphrases

Essential Extract of a Growth Model:

Random Competitive Replication (RCR):

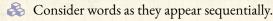
- 1. Start with 1 Moo Deng (or element) of a particular flavor at t=1
- 2. At time t = 2, 3, 4, ..., add a new elephant in one of two ways:
 - With probability ρ , create a new elephant with a new flavor = Mutation/Innovation
 - With probability 1ρ , randomly choose from all existing elephants, and make a copy.
 - = Replication/Imitation
 - Elephants of the same flavor form a group

The PoCSverse Power-Law Mechanisms, Pt. 3 14 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Befo Simon's Model


Analysis

Words Carehphrases

Random Competitive Replication—Simon's rich-get-richer model: [10]

Example: Words appearing in a language

With probability ρ , the next word has not previously appeared = Mutation/Innovation

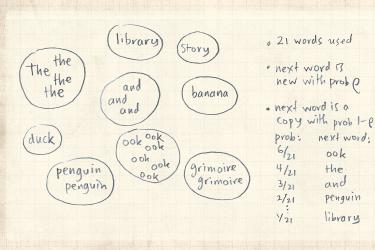
With probability $1 - \rho$, randomly choose one word from all words that have come before, and reuse this word = Replication/Imitation

Note: This is a terrible way to write a novel.

The PoCSverse Power-Law Mechanisms, Pt. 3 15 of 50

Rich-Get-Richer Mechanism

Everywhereness


What Came Before

Simon's Model

Words

For example:

The PoCSverse Power-Law Mechanisms, Pt. 3 16 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Befo

Simon's Model

Words

Catchphrases

Some observations:

Competition for replication between individual elephants is random;

Competition for growth between groups of matching elephants is not random;

Selection on groups is biased by size;

Random selection sounds easy;

Possible that no great knowledge of system needed (but more later ...).

Your free set of tofu knives:

Related to Pólya's Urn Model , a special case of problems involving urns and colored balls .

Sampling with super-duper replacement and sneaky sneaking in of new colors.

The PoCSverse Power-Law Mechanisms, Pt. 3 17 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Bei Simon's Model

Words

Catchphrases

Language Log

Home About Comments policy

The long tail of religious studies?

August 5, 2010 @ 10:33 am · Filed by Mark Liberman under Computational linguistics

« previous post | next post »

Google Books isn't the only outfit that sometimes has trouble with metadata. I happened to notice this morning that Oxford University Press has classified Herbert A. Simon's "On a class of skew distribution functions" (Biometrika 43:425-440, 1955) as "Religious Studies..Death":

BIOMETRIKA

ABOUT THIS JOURNAL CONTACT THIS JOURNAL SUBSCRIPTIONS

Oxford Journals > Mathematics & Physical Sciences > Biometrika > Volume 42, Numb

Biometrika 1955 42(3-4):425-440; doi:10.1093/biomet/42.3-4.425 © 1955 by Biometrika Trust

ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS

HERBERT A. SIMON

You have reached the most complete version of this article accessible without further authentication.

More complete versions are available.

Link to article

Article topics:

· Religious Studies..Death

The PoCSverse Power-Law Mechanisms, Pt. 3 18 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came

Simon's Model Analysis

Words

Carl Burke said,

August 5, 2010 @ 12:14 pm

If I had to guess at features that suggest 'Religious Studies — Death', I'd have to go with the word 'urn' and the suffix 'xion', almost never seen except on 'crucifixion'. Granted that Biometrika is published by Oxford University Press, and 'connexion' is a perfectly good British word, the classification algorithm might be more familiar with the American form 'connection'.

[(myl) Looking a bit further into the paper, one finds things like

it is well known that the negative binomial and the log series distributions can be obtained as the stationary solutions of certain stochastic processes. For example, J.H. Darwin (1953) derives these from birth and death processes, with appropriate assumptions as to the birth- and death-rates and the initial conditions.

1

The PoCSverse Power-Law Mechanisms, Pt. 3 19 of 50

Rich-Get-Richer Mechanism

verywhereness

What Came Bef

Simon's Model

Words

Carchphrases

Some observations:

Steady growth of system: +1 elephant per unit time.

Steady growth of distinct flavors at rate ρ

We can incorporate

- 1. Elephant elimination
- 2. Elephants moving between groups
- 3. Variable innovation rate ρ
- 4. Different selection based on group size (But mechanism for selection is not as simple...)

The PoCSverse Power-Law Mechanisms, Pt. 3 20 of 50

Rich-Get-Richer Mechanism

Simon's Model

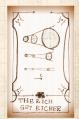
Words

"The Self-Organizing Economy" **3** 2 by Paul Krugman (1996). [6]

Ch. 3: An Urban Mystery, p. 46

"...Simon showed—in a completely impenetrable exposition!—that the exponent of the power law distribution should be ..."^{1, 2}

The PoCSverse Power-Law Mechanisms, Pt. 3 21 of 50


Rich-Get-Richer Mechanism

verywhereness

What Came B

Simon's Model

Words

¹Krugman's book was handed to the Deliverator by a certain Álvaro Cartea

many years ago at the Santa Fe Institute Summer School.

²Let's use π for probability because π 's not special, right guys?

Definitions:

 $k_i =$ size of a group i

 \aleph $N_{k,t}$ = # groups containing k elephants at time t.

Basic question: How does $N_{k,t}$ evolve with time?

First: $\sum_{\cdot} kN_{k,t} = t = \text{number of elephants at time } t$

The PoCSverse Power-Law Mechanisms, Pt. 3 23 of 50

Rich-Get-Richer Mechanism

Simon's Model

Analysis Words

 $P_k(t)$ = Probability of choosing an elephant that belongs to a group of size k:

 $\Longrightarrow kN_{k,t}$ elephants in size k groups

 \Leftrightarrow t elephants overall

$$P_k(t) = \frac{kN_{k,t}}{t}.$$

The PoCSverse Power-Law Mechanisms, Pt. 3 24 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Beto Simon's Model

Analysis Words

Carebohraca

$N_{k,t}$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with *k* elephants is replicated:

$$\begin{split} N_{k,t+1} &= N_{k,t} - 1 \\ \text{Happens with probability } (1-\rho)kN_{k,t}/t \end{split}$$

2. An elephant belonging to a group with k-1 elephants is replicated:

$$\begin{split} N_{k,t+1} &= N_{k,t} + 1 \\ \text{Happens with probability } (1-\rho)(k-1)N_{k-1,t}/t \end{split}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 25 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Befo Simon's Model

Analysis

Catchphrase

Special case for $N_{1,t}$:

- 1. The new elephant is a new flavor: $N_{1,t+1}=N_{1,t}+1$ Happens with probability ρ
- 2. A unique elephant is replicated:

$$N_{1,t+1} = N_{1,t} - 1$$
 Happens with probability $(1-\rho)N_{1,t}/t$

The PoCSverse Power-Law Mechanisms, Pt. 3 26 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Before Simon's Model

Analysis Words

Catchphrases

The PoCSverse Power-Law Mechanisms, Pt. 3 27 of 50

Rich-Get-Richer Mechanism

verywhereness

What Came Before Simon's Model

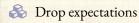
Analysis

Catchphrases

References

Putting everything together:

For k > 1:


$$\left< N_{k,t+1} - N_{k,t} \right> = (1 - \rho) \left((\textcolor{red}{\textbf{+1}})(k-1) \frac{N_{k-1,t}}{t} + (\textcolor{red}{\textbf{-1}})k \frac{N_{k,t}}{t} \right)$$

For k = 1:

$$\left< N_{1,t+1} - N_{1,t} \right> = (+1)\rho + (-1)(1-\rho)1 \cdot \frac{N_{1,t}}{t}$$

Assume distribution stabilizes: $N_{k,t} = n_k t$ (Reasonable for t large)

Numbers of elephants now fractional

Okay over large time scales

$$\frac{N_{k,t}}{\rho t} = \frac{n_k t}{\rho t} = \frac{n_k}{\rho}.$$

The PoCSverse Power-Law Mechanisms, Pt. 3 28 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Before Simon's Model

Analysis

words

Stochastic difference equation:

$$\left\langle N_{k,t+1} - N_{k,t} \right\rangle = (1-\rho) \left((k-1) \frac{N_{k-1,t}}{t} - k \frac{N_{k,t}}{t} \right)$$

becomes

$$\begin{split} n_k(t+1) - n_k t &= (1-\rho) \left((k-1) \frac{n_{k-1} t}{t} - k \frac{n_k t}{t} \right) \\ n_k(t+1-t) &= (1-\rho) \left((k-1) \frac{n_{k-1} t}{t} - k \frac{n_k t}{t} \right) \\ \Rightarrow n_k &= (1-\rho) \left((k-1) n_{k-1} - k n_k \right) \\ \Rightarrow n_k \left(1 + (1-\rho) k \right) &= (1-\rho) (k-1) n_{k-1} \end{split}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 29 of 50

Rich-Get-Richer Mechanism

erywhereness

What Came Before Simon's Model

Analysis

We have a simple recursion:

$$\frac{n_k}{n_{k-1}} = \frac{(k-1)(1-\rho)}{1+(1-\rho)k}$$

- Interested in k large (the tail of the distribution)
- Can be solved exactly.
 Insert assignment question ☑
- For just the tail: Expand as a series of powers of 1/kInsert assignment question \square

We (okay, you) find

$$n_k \propto k^{-\frac{(2-\rho)}{(1-\rho)}} = k^{-\gamma}$$

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 30 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Befor Simon's Model

Analysis

Carchahrases

Micro-to-Macro story with ρ and γ measurable.

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

 \Leftrightarrow Observe $2 < \gamma < \infty$ for $0 < \rho < 1$.

A For $\rho \simeq 0$ (low innovation rate):

 $\gamma \simeq 2$

😽 'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.

 \Leftrightarrow For $\rho \simeq 1$ (high innovation rate):

 $\gamma \simeq \infty$

All elephants have different flavors.

Upshot: Tunable mechanism producing a family of universality classes.

The PoCSverse Power-Law Mechanisms, Pt. 3 31 of 50

Rich-Get-Richer Mechanism

Simon's Model

Analysis

- Recall size-ranking law: $s_r \sim r^{-\alpha}$ (s_r = size of the rth largest group of elephants)
- $\ensuremath{\mathfrak{S}}$ We found $\alpha=1/(\gamma-1)$ so:

$$\alpha = \frac{1}{\gamma - 1} = \frac{1}{\frac{1}{1 + \frac{1}{(1 - \rho)} - \frac{1}{1}}} = 1 - \rho.$$

- We (roughly) see Zipfian exponent [12] of $\alpha=1$ for many real systems: city sizes, word distributions, ...
- $\ensuremath{\mathfrak{S}}$ Corresponds to $\rho \to 0$, low innovation.
- Still, other quite different mechanisms are possible...
- Must look at the details to see if mechanism makes sense... more later.

The PoCSverse Power-Law Mechanisms, Pt. 3 32 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Before Simon's Model

Analysis Words

Catchphrases

What about small k?:

We had one other equation:

$$\left\langle N_{1,t+1} - N_{1,t} \right\rangle = \rho - (1-\rho)1 \cdot \frac{N_{1,t}}{t}$$

 $\ensuremath{ \leqslant} \ensuremath{ }$ As before, set $N_{1,t}=n_1t$ and drop expectations

$$n_1(t+1)-n_1t=\rho-(1-\rho)1\cdot\frac{n_1t}{t}$$

$$n_1=\rho-(1-\rho)n_1$$

$$n_1 + (1 - \rho)n_1 = \rho$$

$$n_1 = \frac{\rho}{2 - \rho}$$

The PoCSverse Power-Law Mechanisms, Pt. 3 33 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Before Simon's Model

Analysis Words

Catchphrases

So...
$$N_{1,t}=n_1t=\frac{\rho t}{2-\rho}$$

- \Re Recall number of distinct elephants = ρt .
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$\frac{1}{\rho t} N_{1,t} = \frac{1}{\rho \ell} \frac{\rho \ell}{2 - \rho} = \frac{1}{2 - \rho}$$

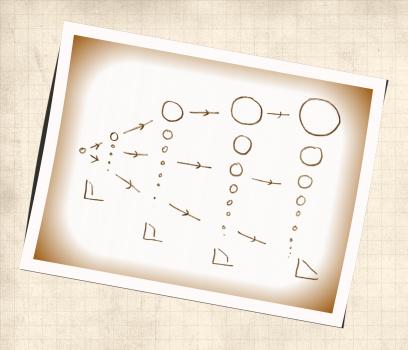
(also = fraction of groups of size 1)

- \clubsuit For ho small, fraction of unique elephants $\sim 1/2$
- Roughly observed for real distributions

- Model works well for large and small k #awesome

The PoCSverse Power-Law Mechanisms, Pt. 3 34 of 50

Rich-Get-Richer Mechanism


Everywhereness

What Came Before Simon's Model

Analysis

. . .

The PoCSverse Power-Law Mechanisms, Pt. 3 35 of 50

Rich-Get-Richer Mechanism


Everywhereness

What Came Before Simon's Model

Analysis

Words

Catchphrase

Words:

From Simon [10]:

Estimate $\rho_{\rm est}=$ # unique words/# all words

For Joyce's Ulysses: $\rho_{\rm est} \simeq 0.115$

N_1 (real)	N_1 (est)	N_2 (real)	N_2 (est)
16,432	15,850	4,776	4,870

The PoCSverse Power-Law Mechanisms, Pt. 3 37 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Bel Simon's Model

Analysis

Words

Catchphrases

Yule's paper (1924) [11]: "A mathematical theory of

"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."

Simon's paper (1955) [10]:

"On a class of skew distribution functions" (snore)

From Simon's introduction:

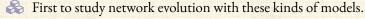
It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data—particularly data describing sociological, biological and economic phenomena.

Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

The PoCSverse Power-Law Mechanisms, Pt. 3 39 of 50

Rich-Get-Richer Mechanism

verywhereness


What Came Before

Analysis

Catchphrases

Derek de Solla Price:

Citation network of scientific papers

Price's term: Cumulative Advantage

A Idea: papers receive new citations with probability proportional to their existing # of citations

Directed network

Two (surmountable) problems:

1. New papers have no citations

2. Selection mechanism is more complicated

The PoCSverse Power-Law Mechanisms, Pt. 3 40 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Be Simon's Model

Analysis

Words

Catchphrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given...

(Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away.

And cast the worthless servant into the outer darkness; there men will weep and gnash their teeth."

(Hath = suggested unit of purchasing power.)

Matilda effect: women's scientific achievements are often overlooked

The PoCSverse Power-Law Mechanisms, Pt. 3 41 of 50

Rich-Get-Richer Mechanism

Words

Catchphrases

Merton was a catchphrase machine:

- 1. Self-fulfilling prophecy
- 2. Role model
- 3. Unintended (or unanticipated) consequences
- 4. Focused interview \rightarrow focus group
- 5. Obliteration by incorporation (includes above examples from Merton himself)

And just to be clear...

Merton's son, Robert C. Merton, won the Nobel Prize for Economics in 1997.

The PoCSverse Power-Law Mechanisms, Pt. 3 42 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Befo Simon's Model

Words

Catchphrases

Barabasi and Albert [2]—thinking about the Web

Independent reinvention of a version of Simon and Price's theory for networks

Another term: "Preferential Attachment"

Considered undirected networks (not realistic but avoids 0 citation problem)

Still have selection problem based on size (non-random)

Solution: Randomly connect to a node (easy) ...

...and then randomly connect to the node's friends (also easy)

Scale-free networks" = food on the table for physicists

The PoCSverse Power-Law Mechanisms, Pt. 3 43 of 50

Rich-Get-Richer Mechanism

Simon's Model

Words

Catchphrases

More mattering:

Rich-get-richerness in social contagion:

People, wealth, sports, music, movies, books, schools, cities, countries, dogs (13/10) , ...

& Gameable: payola ☑, astroturfing ☑, sockpuppetry ☑, John Barron ☑ (the sockpuppet hype man ☑), ...

Black-box ranking algorithms make ranking opaque.

Black boxes are gameable but takes money and commensurate skill.

Black box algorithms can make things spread rampantly.¹

No "regramming" is a positive feature of Instagram (also: Pratchett the Cat 🗷)

What if a healthier Facebook is just ... Instagram? (hahahhaaha)

Rich-Get-Richer Mechanism

Everywhereness

What Came I

Simon's Model

Words

Catchphrases

The PoCSverse Power-Law Mechanisms, Pt. 3 44 of 50

¹"With great power comes great responsibility." –S. Man.

Rich-get-richerness is everywhere in reality

But:

Simon's Model

Is

WRONG.

To be continued ...

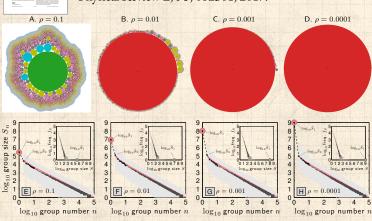
The PoCSverse Power-Law Mechanisms, Pt. 3 45 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Before Simon's Model

Analysis


Catchphrases

"Simon's fundamental rich-get-richer model entails a dominant first-mover advantage"

Dodds et al., Physical Review E, **95**, 052301, 2017. [4]

The PoCSverse Power-Law Mechanisms, Pt. 3 46 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Befo Simon's Model

Analysis

Words Catchphrases

References

See Fletcher Hazlehurst's visualization at paper's online appendices

References I

- [1] F. Auerbach.

 Das gesetz der bevölkerungskonzentration.

 Petermanns Geogr. Mitteilungen, 59:73–76, 1913.
- [2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–511, 1999. pdf
- [3] D. J. de Solla Price.

 Networks of scientific papers.

 Science, 149:510–515, 1965. pdf
- [4] P. S. Dodds, D. R. Dewhurst, F. F. Hazlehurst, C. M. Van Oort, L. Mitchell, A. J. Reagan, J. R. Williams, and C. M. Danforth.
 Simon's fundamental rich-get-richer model entails a dominant first-mover advantage.
 Physical Review E, 95:052301, 2017. pdf

The PoCSverse Power-Law Mechanisms, Pt. 3 47 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Before

Words

Carchphrase

References II

[5] J.-B. Estoup.

Gammes sténographiques: méthode et exercices pour l'acquisition de la vitesse.

Institut Sténographique, 1916.

[6] P. Krugman.

The Self-Organizing Economy.

Blackwell Publishers, Cambridge, Massachusetts, 1996.

[7] A. J. Lotka.
 The frequency distribution of scientific productivity.
 Journal of the Washington Academy of Science, 16:317–323, 1926.

The PoCSverse Power-Law Mechanisms, Pt. 3 48 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Before Simon's Model

Analysis

Words

References III

[8] B. B. Mandelbrot.

An informational theory of the statistical structure of languages.

In W. Jackson, editor, Communication Theory, pages 486–502. Butterworth, Woburn, MA, 1953. pdf

[9] D. D. S. Price.

A general theory of bibliometric and other cumulative advantage processes.

Journal of the American Society for Information Science, pages 292–306, 1976. pdf

[10] H. A. Simon.

On a class of skew distribution functions.

Biometrika, 42:425-440, 1955. pdf

The PoCSverse Power-Law Mechanisms, Pt. 3 49 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Befo

Morde

Carchphrase

References IV

[11] G. U. Yule.

A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S.

Phil. Trans. B, 213:21–87, 1925. pdf

[12] G. K. Zipf.

Human Behaviour and the Principle of Least-Effort.

Addison-Wesley, Cambridge, MA, 1949.

The PoCSverse Power-Law Mechanisms, Pt. 3 50 of 50

Rich-Get-Richer Mechanism

Everywhereness

What Came Be Simon's Model

Analysis

Words

