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Optimal supply networks

What’s the best way to distribute stuff?
 Stuff = medical services, energy, people, …
 Some fundamental network problems:

1. Distribute stuff from a single source to many sinks
2. Distribute stuff from many sources to many sinks
3. Redistribute stuff between nodes that are both

sources and sinks

 Supply and Collection are equivalent problems
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Single source optimal supply

Basic question for distribution/supply networks:
 How does flow behave given cost:

𝐶 = ∑
𝑗

𝐼 𝛾
𝑗 𝑍𝑗

where
𝐼𝑗 = current on link 𝑗
and
𝑍𝑗 = link 𝑗’s impedance.

 Example: 𝛾 = 2 for electrical networks.
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Single source optimal supply

the potential at the nodes by solving the system of linear
equations ik !

P
lRkl"Uk #Ul$, then the currents through

the links Ikl are determined. We use these currents to
determine a first approximation of the optimal conductiv-
ities on the basis of the scaling relation. Then, the currents
are recalculated with this set of conductivities, and the
scaling relation is reused for the next approximation.
These steps are repeated until the values have converged.
We check by perturbing the solution that it actually is a
minimum of the dissipation, which was always the case.

For all !> 1, independently of the initial conditions, the
same conductivity distribution is obtained, which con-
forms to the analytical result of [6]: there exists a unique
minimum which is therefore global.

Furthermore, the distribution of "kl is ‘‘smooth,’’ vary-
ing only on a ‘‘macroscopic scale,’’ as show in Fig. 2(a).
No formation of any particular structure occurs. However,
the conductivity distribution is not isotropic. We can inter-
pret the conductivity distribution as a discrete approxima-
tion of a continuous, macroscopic conductivity tensor (see
also [10]). The smooth aspect of the distribution is con-
served while approaching ! ! 1 while the local anisotropy
increases, while the values of all "kl remain finite, even if
they get very small. For ! ! 1:5 and Ndia ! 15, the con-
ductivity distribution spreads already over eight decades
and becomes still broader as ! ! 1%, in which limit the
number of iteration steps diverges as the minima becomes
less and less steep.

! ! 1 presents a marginal case. The results of the
simulation suggest that the minimum is highly degenerate;
i.e., there are a large number of conductivity distributions
yielding the same minimal dissipation.

For !< 1, the output of the relaxation algorithm is
qualitatively different [Fig. 2(b)]. A large number of con-
ductivities converge to zero so that no loop remains. The
highly redundant network is transformed to a spanning
tree topology and the currents are canalized in a hierarch-
ical manner. This, too, is predicted by the analytical results
[6]. In contrast to !> 1, the conductivity distribution
cannot be interpreted as a discrete approximation of a
conductivity tensor: for Ndia ! 1, the structure becomes
fractal.

For different initial conditions, the relaxation algorithm
yields trees with different topologies: each local minima in
the high-dimensional and continuous space of conductiv-
ities f"klg corresponds to a different tree topology. To find
the global minima with !< 1, we search consequently in
the (exponentially large) space of tree topologies using a
Monte Carlo algorithm. (We start with some initial tree and
then switch links without creating loops and without dis-
connecting a part of the network.) Note that for a tree
topology, the currents do not depend on the values "kl
and, using the scaling relation, one may directly write
down the dissipation rate for a given tree; the iterative
relaxation is not necessary here. This regime has been
widely explored in the context of river networks
[4,5,13,15], mainly for a set of parameters that corre-
sponds, in our case, to ! ! 0:5. An example of a resulting
minimal dissipation tree structure is given in Fig. 2(c).
Note also, that the scaling relations can be seen as some
kind of erosion model: the more currents flows through a
link, the better the link conducts [4].

The qualitative transition is reflected also quantitatively
in the value of the minimal dissipation [Fig. 3(a)]. The
points for !> 1 were obtained with the relaxation algo-
rithm, the points !< 1 by optimizing the tree topologies
with a Monte Carlo algorithm. For ! ! 1, Jmin=Jhomo !
1 by definition; for ! ! 0, Jmin=Jhomo ! 0, because the
vanishing "kl allow the remaining "kl ! 1.

Figure 3(b) shows the behavior of minimal dissipation
rate close to ! ! 1. For ! smaller than 1, the relaxation
method only furnishes a local minimum, the Monte Carlo
algorithm searching for the optimal tree topologies gives
lower dissipation values. The different values correspond-
ing to different realization indicate that the employed
Monte Carlo method does not find the exact global min-
ima. For !> 1, the optimal tree obtained by the
Monte Carlo algorithm is not the optimal solution since
the absolute and only minima has loops. The dissipation
rate which results from the relaxation algorithm is then, of
course, lower than the dissipation of any tree. While the
curve is continuous, the crossover at ! ! 1 shows a clear
change in the slope of Jmin"!$. One could interpret this
behavior as a second order phase transition. (The change in

 

)c()b()a(

FIG. 2. Examples of the optimized conductivity distributions obtained by the relaxation method for (a) ! ! 2:0 and (b) ! ! 0:5. For
!< 1, the relaxation leads in general only to a local minimum. The global minimum can be approached by searching in the space of
tree topologies. The result for ! ! 0:5 is shown in (c). The arrows indicate the localized inlet.

PRL 98, 088702 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 FEBRUARY 2007

088702-3

(a) 𝛾 > 1: Braided (bulk) flow
(b) 𝛾 < 1: Local minimum: Branching flow
(c) 𝛾 < 1: Global minimum: Branching flow
 Note: This is a single source supplying a region.

From Bohn and Magnasco [3]

See also Banavar et al. [1]: “Topology of the Fittest
Transportation Network”; focus is on presence or absence
of loops—same story
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Single source optimal supply
Optimal paths related to transport (Monge)
problems:
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Algorithm:

(1) Given an approximating depth n, let an = An(µ) be the nth dyadic approxi-
mation of µ as in Example 3.1.

(2) For each h ∈ Zm ∩ [0, 2n−1)m, the cube Qh
n−1 of level n − 1 consisting of 2m

subcubes of level n. For any x ∈ X×[0, H ], let Gh
x be the union of (the cone over

an%Qh
n−1 with vertex x) and the line segment xp with weight µ(Qh

n−1). Then Gh
x

is a transport path in Path (an(µ)%Qh
n−1, µ(Qh

n−1)δp). Let qh ∈ X × [0, H ] be
the point at which Mα(Gh

x) achieves its minimum among all x ∈ X× [0, H ]. Let

an−1 =
∑

h∈Zm∩[0,2n−1)m

µ(Qh
n−1)δqh .

(3) For each k = n − 1, . . . , 1, repeatedly doing step 2 to get ak−1. In the end we
get a transport path Gn ∈ Path (an, δp) with finite Mα mass.

(4) By using Example 1, we can locally optimize the locations of the vertices of G.
One may repeatedly doing upward optimization and downward optimization
until the transport path converges to a fixed graph.

(5) Increase depth n to get better approximation.

Example 6.1. When taking µ = Lebesgue measure on [0, 1] and p = 1
2 , α = 0.95,

H = 1 and take the depth n = 6, the above algorithm gives the following graph.
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As we increase the approximating depth n, the Mα mass of approximating
paths may also be increasing. However, by Theorem 3.1, they will converge to a
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as follows:
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7. Transport Path Versus Transport Plan

When splitting a vertex on a transport path, information about source and target
may become unclear. However, we’ll see very soon that those information can be
traced by a transport path together with a compatible transport plan.

Recall that a transport plan for µ+, µ− ∈ M1(X) is a probability measure
γ ∈ M1(X × X) such that

πx#γ = µ+, πy#γ = µ− , (7.1)

where πx (and πy): X×X → X are the first (and the second) component projection.
Let

Plan (µ+, µ−)

be the space of all transport plan for µ+ and µ−.

7.1. Atomic case

In this subsection, we fix two given atomic probability measures

a =
m∑

i=1

miδxi and b =
n∑

j=1

njδyj
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In transport problems of Monge’s types, the total cost of a transport map is usually an
integral of some function of the distance, such as |x − y|p. In many real applications,
the actual cost may naturally be determined by a transport path. For shipping two
items to one location, a “Y shaped” path may be preferable to a “V shaped” path.
Here, we show that any probability measure can be transported to another probability
measure through a general optimal transport path, which is given by a vector measure
in our setting. Moreover, we define a new distance on the space of probability measures
which in fact metrizies the weak * topology of measures. Under this distance, the space
of probability measures becomes a length space. Relations as well as related problems
about transport paths and transport plans are also discussed in the end.
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1. Introduction

The transport problem introduced by Monge in 1781 [8] has been studied in many

interesting works in the last 10 years [1, 4, 5, 7, 11]. In these works, the cost of

a transport mapping or a transport plan is usually an integral of some convex

(or concave [7]) function of the distance, such as |x − y|p. However, in some

real applications, the actual cost of the transport procedures is not necessarily

determined by just knowing an optimal mapping from the starting position to the

target position. For example in shipping two items from nearby cities to the same

far away city, it may be less expensive to first bring them to a common location and

put them on a single truck for most of the transport. In this case, a “Y shaped”

path is preferable to a “V shaped” path. In both cases, the transport mapping is

trivially the same, but the actual transport path naturally gives the total cost. We

may consider the following general problem.

Problem 1.1. Given two general probability measures µ+ and µ−, find an optimal

path for transporting µ+ to µ−.

251

“Optimal paths related to transport
problems”
Qinglan Xia,
Communications in Contemporary
Mathematics, 5, 251–279, 2003. [20]
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Growing networks—two parameter model: [21]
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 Parameters control impedance (0 ≤ 𝛼 < 1) and
angles of junctions (0 < 𝛽)

 For this example: 𝛼 = 0.6 and 𝛽 = 0.5
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Growing networks: [21]
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 Top: 𝛼 = 0.66, 𝛽 = 0.38; Bottom: 𝛼 = 0.66, 𝛽 = 0.70
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Single source optimal supply

An immensely controversial issue …
 The form of natural branching networks:

Random, optimal, or some
combination? [6, 19, 2, 5, 4]

 River networks, blood networks, trees, …

Two observations:
 Self-similar networks appear everywhere in nature

for single source supply/single sink collection.
 Real networks differ in details of scaling but

reasonably agree in scaling relations.
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River network models

Optimality:
 Optimal channel networks [13]

 Thermodynamic analogy [14]

versus …

Randomness:
 Scheidegger’s directed random networks
 Undirected random networks
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Optimization—Murray’s law
 Murray’s law (1926)

connects branch radii at
forks: [11, 10, 12, 7, 17]

𝑟3
parent = 𝑟3

offspring1 + 𝑟3
offspring2

where 𝑟parent = radius of
‘parent’ branch, and
𝑟offspring1 and 𝑟offspring2 are
radii of the two ‘offspring’
sub-branches.

 Holds up well for outer branchings of blood
networks [15].

 Also found to hold for trees [12, 8] when xylem is
not a supporting structure [9].

 See D’Arcy Thompson’s “On Growth and Form” for
background and general inspiration [16, 17].
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 Use hydraulic equivalent of Ohm’s law:

Δ𝑝 = Φ𝑍 ⇔ 𝑉 = 𝐼𝑅
where Δ𝑝 = pressure difference, Φ = flux.

 Fluid mechanics: Poiseuille
impedance for smooth
Poiseuille flow in a tube of
radius 𝑟 and length ℓ:

𝑍 = 8𝜂ℓ
𝜋𝑟4

 𝜂 = dynamic viscosity (units: 𝑀𝐿−1𝑇 −1).
 Power required to overcome impedance:

𝑃drag = ΦΔ𝑝 = Φ2𝑍.
 Also have rate of energy expenditure in

maintaining blood given metabolic constant 𝑐:
𝑃metabolic = 𝑐𝑟2ℓ
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Optimization—Murray’s law

Aside on 𝑃drag

 Work done = 𝐹 ⋅ 𝑑 = energy transferred by force 𝐹
 Power = 𝑃 = rate work is done = 𝐹 ⋅ 𝑣
 Δ𝑝 = Pressure differential = Force per unit area
 Φ = Volume flow per unit time (current)

= cross-sectional area ⋅ velocity
 S o ΦΔ𝑝 = Force ⋅ velocity
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Optimization—Murray’s law

Murray’s law:
 Total power (cost):

𝑃 = 𝑃drag + 𝑃metabolic = Φ2 8𝜂ℓ
𝜋𝑟4 + 𝑐𝑟2ℓ

 Observe power increases linearly with ℓ
 But 𝑟’s effect is nonlinear:

 increasing 𝑟 makes flow easier but increases
metabolic cost (as 𝑟2)

 decreasing 𝑟 decrease metabolic cost but
impedance goes up (as 𝑟−4)
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Optimization—Murray’s law

Murray’s law:
 Minimize 𝑃 with respect to 𝑟:

𝜕𝑃
𝜕𝑟 = 𝜕

𝜕𝑟 (Φ2 8𝜂ℓ
𝜋𝑟4 + 𝑐𝑟2ℓ)

 Flow rates at each branching have to add up (else
our organism is in serious trouble …):

Φ0 = Φ1 + Φ2

where again 0 refers to the main branch and 1
and 2 refers to the offspring branches
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Optimization—Murray’s law

Murray’s law:
 Find:

Φ = 𝑘𝑟3

 Insert assignment question
 All of this means we have a groovy cube-law:

𝑟3
parent = 𝑟3

offspring1 + 𝑟3
offspring2
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Murray meets Tokunaga:
 Φ𝜔 = volume rate of flow into an order 𝜔 vessel

segment
 Tokunaga picture:

Φ𝜔 = 2Φ𝜔−1 +
𝜔−1
∑
𝑘=1

𝑇𝑘Φ𝜔−𝑘

 Using 𝜙𝜔 = 𝑘𝑟3
𝜔

(𝑟𝜔)3 = 2 (𝑟𝜔−1)3 +
𝜔−1
∑
𝑘=1

𝑇𝑘 (𝑟𝜔−𝑘)3

 Same form as:

𝑛𝜔 = 2𝑛𝜔+1⏟
generation

+
Ω

∑
𝜔′=𝜔+1

𝑇𝜔′−𝜔𝑛𝜔′⏟⏟⏟⏟⏟
absorption
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Optimization

Murray meets Tokunaga:
 Find Horton ratio for vessel radius 𝑅𝑟 = 𝑟𝜔/𝑟𝜔−1.
 Find 𝑅 3

𝑟 satisfies same equation as 𝑅𝑛 and 𝑅𝑣
(𝑣 is for volume):

𝑅3
𝑟 = 𝑅𝑛 = 𝑅𝑣

 Is there more we could do here to constrain the
Horton ratios and Tokunaga constants?
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Optimization

Murray meets Tokunaga:
 Isometry: 𝑉𝜔 ∝ ℓ 3

𝜔
 Gives

𝑅3
ℓ = 𝑅3

𝑟 = 𝑅𝑛 = 𝑅𝑣

 We need one more constraint …
 West et al. (1997) [19] achieve similar results

following Horton’s laws (but this work is a
disaster).

 So does Turcotte et al. (1998) [18] using Tokunaga
(sort of).
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