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to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world

network data. Our first such example is taken from one of the

classic studies in social network analysis. Over the course of

two years in the early 1970s, Wayne Zachary observed social

interactions between the members of a karate club at an

American university "36#. He constructed networks of ties
between members of the club based on their social interac-

tions both within the club and outside it. By chance, a dis-

pute arose during the course of his study between the club’s

administrator and its principal karate teacher over whether to

raise club fees, and as a result the club eventually split in

two, forming two smaller clubs, centered around the admin-

istrator and the teacher.

In Fig. 8, we show a consensus network structure ex-

tracted from Zachary’s observations before the split. Feeding

this network into our algorithms, we find the results shown in

Fig. 9. In the leftmost two panels, we show the dendrograms

generated by the shortest-path and random-walk versions of

our algorithm, along with the modularity measures for the

same. As we see, both algorithms give reasonably high val-

ues for the modularity when the network is split into two

communities—around 0.4 in each case—indicating that there

is a strong natural division at this level. What is more, the

divisions in question correspond almost perfectly to the ac-

tual divisions in the club revealed by which group each club

member joined after the club split up. $The shapes of the
vertices representing the two factions are the same as those

of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-

fied by the random-walk version—the latter gets a perfect

score on this test. $On the other hand, the two-community
split fails to produce a local maximum in the modularity for

the random-walk method, unlike the shortest-path method,

for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and

modularity for an algorithm based on shortest-path between-

ness but without the crucial recalculation step discussed in

Sec. II. As the figure shows, without this step, the algorithm

fails to find the division of the network into the two known

groups. Furthermore, the modularity does not reach nearly

such high values as in the first two panels, indicating that the

divisions suggested are much poorer than in the cases with

the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network

of scientists. Figure 10$a! shows the largest component of a
network of collaborations between physicists who conduct

research on networks. $The authors of the present paper, for
instance, are among the nodes in this network.! This network
$which appeared previously in Ref. "37#! was constructed by
taking names of authors appearing in the lengthy bibliogra-

phy of Ref. "4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-

tion of the archive, where, for historical reasons, most papers

on networks have appeared. Authors appearing in both were

added to the network as vertices, and edges between them

indicate coauthorship of one or more papers appearing in the

archive. Thus the collaborative ties represented in the figure

are not limited to papers on topics concerning networks—we

were interested primarily in whether people know one an-

other, and collaboration on any topic is a reasonable indica-

tor of acquaintance.

The network as presented in Fig. 10$a! is difficult to in-
terpret. Given the names of the scientists, knowledgeable

readers with too much time on their hands could, no doubt,

pick out known groupings, for instance at particular institu-

tions, from the general confusion. But were this a network

about which we had no a priori knowledge, we would be

hard pressed to understand its underlying structure.

Applying the shortest-path version of our algorithm to this

network, we find that the modularity, Eq. $5!, has a strong
peak at 13 communities with a value of Q!0.72"0.02. Ex-
tracting the communities from the corresponding dendro-

gram, we have indicated them with colors in Fig. 10$b!. The
knowledgeable reader will again be able to discern known

groups of scientists in this rendering, and more easily now

with the help of the colors. Still, however, the structure of the

network as a whole and of the interactions between groups is

quite unclear.

In Fig. 10$c!, we have reduced the network to only the
groups. In this panel, we have drawn each group as a circle,

with size varying roughly with the number of individuals in

the group. The lines between groups indicate collaborations

between group members, with the thickness of the lines

varying in proportion to the number of pairs of scientists

who have collaborated. Now the overall structure of the net-

work becomes easy to see. The network is centered around

the large group in the middle $which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower

right of the picture $mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the

karate club study of Zachary "36#. The administrator and the in-
structor are represented by nodes 1 and 33, respectively. Shaded

squares represent individuals who ended up aligning with the club’s

administrator after the fission of the club, open circles those who

aligned with the instructor.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 $2004!

026113-9

s Zachary’s karate club [19, 12]

 The issue:
how do we
elucidate the
internal structure of
large networks
across many scales?

 Possible substructures:
hierarchies, cliques, rings, …

 Plus:
All combinations of substructures.

 Much focus on hierarchies (pyramids) …...



The PoCSverse
Structure
detection
methods
6 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

Structure detection

to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world

network data. Our first such example is taken from one of the

classic studies in social network analysis. Over the course of

two years in the early 1970s, Wayne Zachary observed social

interactions between the members of a karate club at an

American university "36#. He constructed networks of ties
between members of the club based on their social interac-

tions both within the club and outside it. By chance, a dis-

pute arose during the course of his study between the club’s

administrator and its principal karate teacher over whether to

raise club fees, and as a result the club eventually split in

two, forming two smaller clubs, centered around the admin-

istrator and the teacher.

In Fig. 8, we show a consensus network structure ex-

tracted from Zachary’s observations before the split. Feeding

this network into our algorithms, we find the results shown in

Fig. 9. In the leftmost two panels, we show the dendrograms

generated by the shortest-path and random-walk versions of

our algorithm, along with the modularity measures for the

same. As we see, both algorithms give reasonably high val-

ues for the modularity when the network is split into two

communities—around 0.4 in each case—indicating that there

is a strong natural division at this level. What is more, the

divisions in question correspond almost perfectly to the ac-

tual divisions in the club revealed by which group each club

member joined after the club split up. $The shapes of the
vertices representing the two factions are the same as those

of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-

fied by the random-walk version—the latter gets a perfect

score on this test. $On the other hand, the two-community
split fails to produce a local maximum in the modularity for

the random-walk method, unlike the shortest-path method,

for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and

modularity for an algorithm based on shortest-path between-

ness but without the crucial recalculation step discussed in

Sec. II. As the figure shows, without this step, the algorithm

fails to find the division of the network into the two known

groups. Furthermore, the modularity does not reach nearly

such high values as in the first two panels, indicating that the

divisions suggested are much poorer than in the cases with

the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network

of scientists. Figure 10$a! shows the largest component of a
network of collaborations between physicists who conduct

research on networks. $The authors of the present paper, for
instance, are among the nodes in this network.! This network
$which appeared previously in Ref. "37#! was constructed by
taking names of authors appearing in the lengthy bibliogra-

phy of Ref. "4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-

tion of the archive, where, for historical reasons, most papers

on networks have appeared. Authors appearing in both were

added to the network as vertices, and edges between them

indicate coauthorship of one or more papers appearing in the

archive. Thus the collaborative ties represented in the figure

are not limited to papers on topics concerning networks—we

were interested primarily in whether people know one an-

other, and collaboration on any topic is a reasonable indica-

tor of acquaintance.

The network as presented in Fig. 10$a! is difficult to in-
terpret. Given the names of the scientists, knowledgeable

readers with too much time on their hands could, no doubt,

pick out known groupings, for instance at particular institu-

tions, from the general confusion. But were this a network

about which we had no a priori knowledge, we would be

hard pressed to understand its underlying structure.

Applying the shortest-path version of our algorithm to this

network, we find that the modularity, Eq. $5!, has a strong
peak at 13 communities with a value of Q!0.72"0.02. Ex-
tracting the communities from the corresponding dendro-

gram, we have indicated them with colors in Fig. 10$b!. The
knowledgeable reader will again be able to discern known

groups of scientists in this rendering, and more easily now

with the help of the colors. Still, however, the structure of the

network as a whole and of the interactions between groups is

quite unclear.

In Fig. 10$c!, we have reduced the network to only the
groups. In this panel, we have drawn each group as a circle,

with size varying roughly with the number of individuals in

the group. The lines between groups indicate collaborations

between group members, with the thickness of the lines

varying in proportion to the number of pairs of scientists

who have collaborated. Now the overall structure of the net-

work becomes easy to see. The network is centered around

the large group in the middle $which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower

right of the picture $mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the

karate club study of Zachary "36#. The administrator and the in-
structor are represented by nodes 1 and 33, respectively. Shaded

squares represent individuals who ended up aligning with the club’s

administrator after the fission of the club, open circles those who

aligned with the instructor.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 $2004!

026113-9

s Zachary’s karate club [19, 12]

 The issue:
how do we
elucidate the
internal structure of
large networks
across many scales?

 Possible substructures:
hierarchies, cliques, rings, …

 Plus:
All combinations of substructures.

 Much focus on hierarchies (pyramids) …...



The PoCSverse
Structure
detection
methods
6 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

Structure detection

to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world

network data. Our first such example is taken from one of the

classic studies in social network analysis. Over the course of

two years in the early 1970s, Wayne Zachary observed social

interactions between the members of a karate club at an

American university "36#. He constructed networks of ties
between members of the club based on their social interac-

tions both within the club and outside it. By chance, a dis-

pute arose during the course of his study between the club’s

administrator and its principal karate teacher over whether to

raise club fees, and as a result the club eventually split in

two, forming two smaller clubs, centered around the admin-

istrator and the teacher.

In Fig. 8, we show a consensus network structure ex-

tracted from Zachary’s observations before the split. Feeding

this network into our algorithms, we find the results shown in

Fig. 9. In the leftmost two panels, we show the dendrograms

generated by the shortest-path and random-walk versions of

our algorithm, along with the modularity measures for the

same. As we see, both algorithms give reasonably high val-

ues for the modularity when the network is split into two

communities—around 0.4 in each case—indicating that there

is a strong natural division at this level. What is more, the

divisions in question correspond almost perfectly to the ac-

tual divisions in the club revealed by which group each club

member joined after the club split up. $The shapes of the
vertices representing the two factions are the same as those

of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-

fied by the random-walk version—the latter gets a perfect

score on this test. $On the other hand, the two-community
split fails to produce a local maximum in the modularity for

the random-walk method, unlike the shortest-path method,

for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and

modularity for an algorithm based on shortest-path between-

ness but without the crucial recalculation step discussed in

Sec. II. As the figure shows, without this step, the algorithm

fails to find the division of the network into the two known

groups. Furthermore, the modularity does not reach nearly

such high values as in the first two panels, indicating that the

divisions suggested are much poorer than in the cases with

the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network

of scientists. Figure 10$a! shows the largest component of a
network of collaborations between physicists who conduct

research on networks. $The authors of the present paper, for
instance, are among the nodes in this network.! This network
$which appeared previously in Ref. "37#! was constructed by
taking names of authors appearing in the lengthy bibliogra-

phy of Ref. "4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-

tion of the archive, where, for historical reasons, most papers

on networks have appeared. Authors appearing in both were

added to the network as vertices, and edges between them

indicate coauthorship of one or more papers appearing in the

archive. Thus the collaborative ties represented in the figure

are not limited to papers on topics concerning networks—we

were interested primarily in whether people know one an-

other, and collaboration on any topic is a reasonable indica-

tor of acquaintance.

The network as presented in Fig. 10$a! is difficult to in-
terpret. Given the names of the scientists, knowledgeable

readers with too much time on their hands could, no doubt,

pick out known groupings, for instance at particular institu-

tions, from the general confusion. But were this a network

about which we had no a priori knowledge, we would be

hard pressed to understand its underlying structure.

Applying the shortest-path version of our algorithm to this

network, we find that the modularity, Eq. $5!, has a strong
peak at 13 communities with a value of Q!0.72"0.02. Ex-
tracting the communities from the corresponding dendro-

gram, we have indicated them with colors in Fig. 10$b!. The
knowledgeable reader will again be able to discern known

groups of scientists in this rendering, and more easily now

with the help of the colors. Still, however, the structure of the

network as a whole and of the interactions between groups is

quite unclear.

In Fig. 10$c!, we have reduced the network to only the
groups. In this panel, we have drawn each group as a circle,

with size varying roughly with the number of individuals in

the group. The lines between groups indicate collaborations

between group members, with the thickness of the lines

varying in proportion to the number of pairs of scientists

who have collaborated. Now the overall structure of the net-

work becomes easy to see. The network is centered around

the large group in the middle $which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower

right of the picture $mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the

karate club study of Zachary "36#. The administrator and the in-
structor are represented by nodes 1 and 33, respectively. Shaded

squares represent individuals who ended up aligning with the club’s

administrator after the fission of the club, open circles those who

aligned with the instructor.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 $2004!

026113-9

s Zachary’s karate club [19, 12]

 The issue:
how do we
elucidate the
internal structure of
large networks
across many scales?

 Possible substructures:
hierarchies, cliques, rings, …

 Plus:
All combinations of substructures.

 Much focus on hierarchies (pyramids) …...



The PoCSverse
Structure
detection
methods
6 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

Structure detection

to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world

network data. Our first such example is taken from one of the

classic studies in social network analysis. Over the course of

two years in the early 1970s, Wayne Zachary observed social

interactions between the members of a karate club at an

American university "36#. He constructed networks of ties
between members of the club based on their social interac-

tions both within the club and outside it. By chance, a dis-

pute arose during the course of his study between the club’s

administrator and its principal karate teacher over whether to

raise club fees, and as a result the club eventually split in

two, forming two smaller clubs, centered around the admin-

istrator and the teacher.

In Fig. 8, we show a consensus network structure ex-

tracted from Zachary’s observations before the split. Feeding

this network into our algorithms, we find the results shown in

Fig. 9. In the leftmost two panels, we show the dendrograms

generated by the shortest-path and random-walk versions of

our algorithm, along with the modularity measures for the

same. As we see, both algorithms give reasonably high val-

ues for the modularity when the network is split into two

communities—around 0.4 in each case—indicating that there

is a strong natural division at this level. What is more, the

divisions in question correspond almost perfectly to the ac-

tual divisions in the club revealed by which group each club

member joined after the club split up. $The shapes of the
vertices representing the two factions are the same as those

of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-

fied by the random-walk version—the latter gets a perfect

score on this test. $On the other hand, the two-community
split fails to produce a local maximum in the modularity for

the random-walk method, unlike the shortest-path method,

for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and

modularity for an algorithm based on shortest-path between-

ness but without the crucial recalculation step discussed in

Sec. II. As the figure shows, without this step, the algorithm

fails to find the division of the network into the two known

groups. Furthermore, the modularity does not reach nearly

such high values as in the first two panels, indicating that the

divisions suggested are much poorer than in the cases with

the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network

of scientists. Figure 10$a! shows the largest component of a
network of collaborations between physicists who conduct

research on networks. $The authors of the present paper, for
instance, are among the nodes in this network.! This network
$which appeared previously in Ref. "37#! was constructed by
taking names of authors appearing in the lengthy bibliogra-

phy of Ref. "4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-

tion of the archive, where, for historical reasons, most papers

on networks have appeared. Authors appearing in both were

added to the network as vertices, and edges between them

indicate coauthorship of one or more papers appearing in the

archive. Thus the collaborative ties represented in the figure

are not limited to papers on topics concerning networks—we

were interested primarily in whether people know one an-

other, and collaboration on any topic is a reasonable indica-

tor of acquaintance.

The network as presented in Fig. 10$a! is difficult to in-
terpret. Given the names of the scientists, knowledgeable

readers with too much time on their hands could, no doubt,

pick out known groupings, for instance at particular institu-

tions, from the general confusion. But were this a network

about which we had no a priori knowledge, we would be

hard pressed to understand its underlying structure.

Applying the shortest-path version of our algorithm to this

network, we find that the modularity, Eq. $5!, has a strong
peak at 13 communities with a value of Q!0.72"0.02. Ex-
tracting the communities from the corresponding dendro-

gram, we have indicated them with colors in Fig. 10$b!. The
knowledgeable reader will again be able to discern known

groups of scientists in this rendering, and more easily now

with the help of the colors. Still, however, the structure of the

network as a whole and of the interactions between groups is

quite unclear.

In Fig. 10$c!, we have reduced the network to only the
groups. In this panel, we have drawn each group as a circle,

with size varying roughly with the number of individuals in

the group. The lines between groups indicate collaborations

between group members, with the thickness of the lines

varying in proportion to the number of pairs of scientists

who have collaborated. Now the overall structure of the net-

work becomes easy to see. The network is centered around

the large group in the middle $which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower

right of the picture $mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the

karate club study of Zachary "36#. The administrator and the in-
structor are represented by nodes 1 and 33, respectively. Shaded

squares represent individuals who ended up aligning with the club’s

administrator after the fission of the club, open circles those who

aligned with the instructor.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 $2004!

026113-9

s Zachary’s karate club [19, 12]

 The issue:
how do we
elucidate the
internal structure of
large networks
across many scales?

 Possible substructures:
hierarchies, cliques, rings, …

 Plus:
All combinations of substructures.

 Much focus on hierarchies (pyramids) …...



The PoCSverse
Structure
detection
methods
7 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

Physics Reports 486 (2010) 75–174

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Community detection in graphs
Santo Fortunato ∗
Complex Networks and Systems Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I, Italy

a r t i c l e i n f o

Article history:
Accepted 5 November 2009
Available online 4 December 2009
editor: I. Procaccia

Keywords:
Graphs
Clusters
Statistical physics

a b s t r a c t

The modern science of networks has brought significant advances to our understanding of
complex systems. One of the most relevant features of graphs representing real systems
is community structure, or clustering, i.e. the organization of vertices in clusters, with
many edges joining vertices of the same cluster and comparatively few edges joining
vertices of different clusters. Such clusters, or communities, can be considered as fairly
independent compartments of a graph, playing a similar role like, e.g., the tissues or the
organs in the human body. Detecting communities is of great importance in sociology,
biology and computer science, disciplines where systems are often represented as graphs.
This problem is very hard and not yet satisfactorily solved, despite the huge effort of a
large interdisciplinary community of scientists working on it over the past few years. We
will attempt a thorough exposition of the topic, from the definition of the main elements
of the problem, to the presentation of most methods developed, with a special focus on
techniques designed by statistical physicists, from the discussion of crucial issues like the
significance of clustering and how methods should be tested and compared against each
other, to the description of applications to real networks.
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80 S. Fortunato / Physics Reports 486 (2010) 75–174

Fig. 3. Community structure in protein–protein interaction networks. The graph pictures the interactions between proteins in cancerous cells of a rat.
Communities, labeled by colors, were detected with the Clique Percolation Method by Palla et al. (Section 11.1). Reprinted figure with permission from
Ref. [53].
© 2006, by PubMed Central.

Relationships/interactions between elements of a system need not be reciprocal. In many cases they have a precise
direction, that needs to be taken into account to understand the system as awhole. As an example we can cite predator-prey
relationships in food webs. In Fig. 4 we see another example, taken from technology. The system is the World Wide Web,
which can be seen as a graph by representing web pages as vertices and the hyperlinks that make users move from one
page to another as edges [55]. Hyperlinks are directed: if one can move from page A to page B by clicking on a hyperlink
of A, one usually does not find on B a hyperlink taking back to A. In fact, very few hyperlinks (less than 10%) are reciprocal.
Communities of the web graph are groups of pages having topical similarities. Detecting communities in the web graph
may help to identify the artificial clusters created by link farms in order to enhance the PageRank [56] value of web sites
and grant them a higher Google ranking. In this way one could discourage this unfair practice. One usually assumes that the
existence of a hyperlink between two pages implies that they are content-related, and that this similarity is independent
of the hyperlink direction. Therefore it is customary to neglect the directedness of the hyperlinks and to consider the graph
as undirected, for the purpose of community detection. On the other hand, taking properly into account the directedness of
the edges can considerably improve the quality of the partition(s), as one can handle a lot of precious information about the
system. Moreover, in some instances neglecting edge directedness may lead to strange results [57,58]. Developing methods
of community detection for directed graphs is a hard task. For instance, a directed graph is characterized by asymmetrical
matrices (adjacency matrix, Laplacian, etc.), so spectral analysis is much more complex. Only a few techniques can be easily
extended from the undirected to the directed case. Otherwise, the problem must be formulated from scratch.

Edge directedness is not the only complication to deal with when facing the problem of graph clustering. In many real
networks vertices may belong to more than one group. In this case one speaks of overlapping communities and uses the

https://pdodds.w3.uvm.edu//research/papers/others/everything/fortunato2010a.pdf
https://pdodds.w3.uvm.edu//research/papers/others/everything/fortunato2010a.pdf
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Hierarchy by aggregation—Bottom up:
 Idea: Extract hierarchical classification scheme for

𝑁 objects by an agglomeration process.

 Need a measure of distance between all pairs of
objects.

 Example: Ward’s method [17]

 Procedure:

1. Order pair-based distances.
2. Sequentially add links between nodes based on

closeness.
3. Use additional criteria to determine when clusters

are meaningful.

 Clusters gradually emerge, likely with clusters
inside of clusters.

 Call above property Modularity.
 Works well for data sets where a distance between

all objects can be specified (e.g., Aussie Rules [9]).

https://en.wikipedia.org/wiki/Ward%27s_method
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Hierarchy by aggregation

Bottom up problems:
 Tend to plainly not work on data sets representing

networks with known modular structures.

 Good at finding cores of well-connected (or
similar) nodes... but fail to cope well with
peripheral, in-between nodes.
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network !n vertices with no edges" starting with the vertex
pairs with highest similarity. The procedure can be halted at

any point, and the resulting components in the network are

taken to be the communities. Alternatively, the entire pro-

gression of the algorithm from empty graph to complete

graph can be represented in the form of a tree or dendrogram

such as that shown in Fig. 2. Horizontal cuts through the tree

represent the communities appropriate to different halting

points.

Agglomerative methods based on a wide variety of simi-

larity measures have been applied to different networks.

Some networks have natural similarity metrics built in. For

example, in the widely studied network of collaborations be-

tween film actors #21,22$, in which two actors are connected
if they have appeared in the same film, one could quantify

similarity by how many films actors have appeared in to-

gether #23$. Other networks have no natural metric, but suit-
able ones can be devised using correlation coefficients, path

lengths, or matrix methods. A well known example of an

agglomerative clustering method is the Concor algorithm of

Breiger et al. #24$.
Agglomerative methods have their problems, however.

One concern is that they fail with some frequency to find the

correct communities in networks where the community

structure is known, which makes it difficult to place much

trust in them in other cases. Another is their tendency to find

only the cores of communities and leave out the periphery.

The core nodes in a community often have strong similarity,

and hence are connected early in the agglomerative process,

but peripheral nodes that have no strong similarity to others

tend to get neglected, leading to structures like that shown in

Fig. 3. In this figure, there are a number of peripheral nodes

whose community membership is obvious to the eye—in

most cases, they have only a single link to a specific

community—but agglomerative methods often fail to place

such nodes correctly.

In this paper, therefore, we focus on divisive methods.

These methods have been relatively little studied in the pre-

vious literature, either in social network theory or elsewhere,

but, as we will see, they seem to offer a lot of promise. In a

divisive method, we start with the network of interest and

attempt to find the least similar connected pairs of vertices

and then remove the edges between them. By doing this

repeatedly, we divide the network into smaller and smaller

components, and again we can stop the process at any stage

and take the components at that stage to be the network

communities. Again, the process can be represented as a den-

drogram depicting the successive splits of the network into

smaller and smaller groups.

The approach we take follows roughly these lines, but

adopts a somewhat different philosophical viewpoint. Rather

than looking for the most weakly connected vertex pairs, our

approach will be to look for the edges in the network that are

most ‘‘between’’ other vertices, meaning that the edge is, in

some sense, responsible for connecting many pairs of others.

Such edges need not be weak at all in the similarity sense.

How this idea works out in practice will become clear in the

course of the presentation.

Briefly then, the outline of this paper is as follows. In Sec.

II we describe the crucial concepts behind our methods for

finding community structure in networks and show how

these concepts can be turned into a concrete prescription for

performing calculations. In Sec. III we describe in detail the

implementation of our methods. In Sec. IV we consider ways

of determining when a particular division of a network into

communities is a good one, allowing us to quantify the suc-

cess of our community-finding algorithms. And in Sec. V we

give a number of applications of our algorithms to particular

networks, both real and artificial. In Sec. VI we give our

conclusions. A brief report of some of the work contained in

this paper has appeared previously as Ref. #25$.

II. FINDING COMMUNITIES IN A NETWORK

In this paper, we present a class of new algorithms for

network clustering, i.e., the discovery of community struc-

ture in networks. Our discussion focuses primarily on net-

works with only a single type of vertex and a single type of

undirected, unweighted edge, although generalizations to

more complicated network types are certainly possible.

There are two central features that distinguish our algo-

rithms from those that have preceded them. First, our algo-

FIG. 2. A hierarchical tree or dendrogram illustrating the type of

output generated by the algorithms described here. The circles at the

bottom of the figure represent the individual vertices of the net-

work. As we move up the tree, the vertices join together to form

larger and larger communities, as indicated by the lines, until we

reach the top, where all are joined together in a single community.

Alternatively, the dendrogram depicts an initially connected net-

work splitting into smaller and smaller communities as we go from

top to bottom. A cross section of the tree at any level, such as that

indicated by the dotted line, will give the communities at that level.

The vertical height of the split points in the tree are indicative only

of the order in which the splits !or joins" take place, although it is
possible to construct more elaborate dendrograms in which these

heights contain other information.

FIG. 3. Agglomerative clustering methods are typically good at

discovering the strongly linked cores of communities !bold vertices
and edges" but tend to leave out peripheral vertices, even when, as
here, most of them clearly belong to one community or another.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 !2004"

026113-2
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Hierarchy by division

Top down:
 Idea: Identify global structure first and recursively

uncover more detailed structure.

 Basic objective: find dominant components that
have significantly more links within than without,
as compared to randomized version.

 We’ll first work through “Finding and evaluating
community structure in networks” by Newman
and Girvan (PRE, 2004). [12]

 See also

1. “Scientific collaboration networks. II. Shortest
paths, weighted networks, and centrality” by
Newman (PRE, 2001). [10, 11]

2. “Community structure in social and biological
networks” by Girvan and Newman (PNAS, 2002). [7]
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Finding and evaluating community structure in networks

M. E. J. Newman1,2 and M. Girvan2,3
1Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109-1120, USA

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
3Department of Physics, Cornell University, Ithaca, New York 14853-2501, USA

!Received 19 August 2003; published 26 February 2004"

We propose and study a set of algorithms for discovering community structure in networks—natural divi-

sions of network nodes into densely connected subgroups. Our algorithms all share two definitive features:

first, they involve iterative removal of edges from the network to split it into communities, the edges removed

being identified using any one of a number of possible ‘‘betweenness’’ measures, and second, these measures

are, crucially, recalculated after each removal. We also propose a measure for the strength of the community

structure found by our algorithms, which gives us an objective metric for choosing the number of communities

into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering

community structure in both computer-generated and real-world network data, and show how they can be used

to shed light on the sometimes dauntingly complex structure of networked systems.

DOI: 10.1103/PhysRevE.69.026113 PACS number!s": 89.75.Hc, 87.23.Ge, 89.20.Hh, 05.10.!a

I. INTRODUCTION

Empirical studies and theoretical modeling of networks

have been the subject of a large body of recent research in

statistical physics and applied mathematics #1–4$. Network
ideas have been applied with success to topics as diverse as
the Internet and the world wide web #5–7$, epidemiology
#8–11$, scientific citation and collaboration #12,13$, metabo-
lism #14,15$, and ecosystems #16,17$, to name but a few. A
property that seems to be common to many networks is com-
munity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to find
and analyze such groups can provide invaluable help in un-
derstanding and visualizing the structure of networks. In this
paper, we show how this can be achieved.
The study of community structure in networks has a long

history. It is closely related to the ideas of graph partitioning
in graph theory and computer science, and hierarchical clus-
tering in sociology #18,19$. Before presenting our own find-
ings, it is worth reviewing some of this preceding work to
understand its achievements and shortcomings.
Graph partitioning is a problem that arises in, for ex-

ample, parallel computing. Suppose we have a number n of
intercommunicating computer processes, which we wish to
distribute over a number g of computer processors. Processes
do not necessarily need to communicate with all others, and
the pattern of required communications can be represented as
a graph or network in which the vertices represent processes
and edges join process pairs that need to communicate. The
problem is to allocate the processes to processors in such a
way as roughly to balance the load on each processor, while
at the same time minimizing the number of edges that run
between processors, so that the amount of interprocessor
communication !which is normally slow" is minimized. In
general, finding an exact solution to a partitioning task of this
kind is believed to be an NP-hard problem, making it pro-
hibitively difficult to solve exactly for large graphs, but a
wide variety of heuristic algorithms have been developed

that give acceptably good solutions in many cases, the best
known being perhaps the Kernighan-Lin algorithm #20$,
which runs in time O(n3) on sparse graphs.
A solution to the graph partitioning problem is, however,

not particularly helpful for analyzing and understanding net-
works in general. If we merely want to find if and how a
given network breaks down into communities, we probably
do not know how many such communities there are going to
be, and there is no reason why they should be roughly the
same size. Furthermore, the number of intercommunity
edges need not be strictly minimized either, since more such
edges are admissible between large communities than be-
tween small ones.
As far as our goals in this paper are concerned, a more

useful approach is that taken by social network analysis with
the set of techniques known as hierarchical clustering. These
techniques are aimed at discovering natural divisions of !so-
cial" networks into groups, based on various metrics of simi-
larity or strength of connection between vertices. They fall
into two broad classes, agglomerative and divisive #19$, de-
pending on whether they focus on the addition or removal of
edges to or from the network. In an agglomerative method,
similarities are calculated by one method or another between
vertex pairs, and edges are then added to an initially empty

FIG. 1. A small network with community structure of the type

considered in this paper. In this case there are three communities,

denoted by the dashed circles, which have dense internal links but

between which there is only a lower density of external links.

PHYSICAL REVIEW E 69, 026113 !2004"

1063-651X/2004/69!2"/026113!15"/$22.50 ©2004 The American Physical Society69 026113-1

 Idea: Edges that connect communities have higher
betweenness than edges within communities.
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network !n vertices with no edges" starting with the vertex
pairs with highest similarity. The procedure can be halted at

any point, and the resulting components in the network are

taken to be the communities. Alternatively, the entire pro-

gression of the algorithm from empty graph to complete

graph can be represented in the form of a tree or dendrogram

such as that shown in Fig. 2. Horizontal cuts through the tree

represent the communities appropriate to different halting

points.

Agglomerative methods based on a wide variety of simi-

larity measures have been applied to different networks.

Some networks have natural similarity metrics built in. For

example, in the widely studied network of collaborations be-

tween film actors #21,22$, in which two actors are connected
if they have appeared in the same film, one could quantify

similarity by how many films actors have appeared in to-

gether #23$. Other networks have no natural metric, but suit-
able ones can be devised using correlation coefficients, path

lengths, or matrix methods. A well known example of an

agglomerative clustering method is the Concor algorithm of

Breiger et al. #24$.
Agglomerative methods have their problems, however.

One concern is that they fail with some frequency to find the

correct communities in networks where the community

structure is known, which makes it difficult to place much

trust in them in other cases. Another is their tendency to find

only the cores of communities and leave out the periphery.

The core nodes in a community often have strong similarity,

and hence are connected early in the agglomerative process,

but peripheral nodes that have no strong similarity to others

tend to get neglected, leading to structures like that shown in

Fig. 3. In this figure, there are a number of peripheral nodes

whose community membership is obvious to the eye—in

most cases, they have only a single link to a specific

community—but agglomerative methods often fail to place

such nodes correctly.

In this paper, therefore, we focus on divisive methods.

These methods have been relatively little studied in the pre-

vious literature, either in social network theory or elsewhere,

but, as we will see, they seem to offer a lot of promise. In a

divisive method, we start with the network of interest and

attempt to find the least similar connected pairs of vertices

and then remove the edges between them. By doing this

repeatedly, we divide the network into smaller and smaller

components, and again we can stop the process at any stage

and take the components at that stage to be the network

communities. Again, the process can be represented as a den-

drogram depicting the successive splits of the network into

smaller and smaller groups.

The approach we take follows roughly these lines, but

adopts a somewhat different philosophical viewpoint. Rather

than looking for the most weakly connected vertex pairs, our

approach will be to look for the edges in the network that are

most ‘‘between’’ other vertices, meaning that the edge is, in

some sense, responsible for connecting many pairs of others.

Such edges need not be weak at all in the similarity sense.

How this idea works out in practice will become clear in the

course of the presentation.

Briefly then, the outline of this paper is as follows. In Sec.

II we describe the crucial concepts behind our methods for

finding community structure in networks and show how

these concepts can be turned into a concrete prescription for

performing calculations. In Sec. III we describe in detail the

implementation of our methods. In Sec. IV we consider ways

of determining when a particular division of a network into

communities is a good one, allowing us to quantify the suc-

cess of our community-finding algorithms. And in Sec. V we

give a number of applications of our algorithms to particular

networks, both real and artificial. In Sec. VI we give our

conclusions. A brief report of some of the work contained in

this paper has appeared previously as Ref. #25$.

II. FINDING COMMUNITIES IN A NETWORK

In this paper, we present a class of new algorithms for

network clustering, i.e., the discovery of community struc-

ture in networks. Our discussion focuses primarily on net-

works with only a single type of vertex and a single type of

undirected, unweighted edge, although generalizations to

more complicated network types are certainly possible.

There are two central features that distinguish our algo-

rithms from those that have preceded them. First, our algo-

FIG. 2. A hierarchical tree or dendrogram illustrating the type of

output generated by the algorithms described here. The circles at the

bottom of the figure represent the individual vertices of the net-

work. As we move up the tree, the vertices join together to form

larger and larger communities, as indicated by the lines, until we

reach the top, where all are joined together in a single community.

Alternatively, the dendrogram depicts an initially connected net-

work splitting into smaller and smaller communities as we go from

top to bottom. A cross section of the tree at any level, such as that

indicated by the dotted line, will give the communities at that level.

The vertical height of the split points in the tree are indicative only

of the order in which the splits !or joins" take place, although it is
possible to construct more elaborate dendrograms in which these

heights contain other information.

FIG. 3. Agglomerative clustering methods are typically good at

discovering the strongly linked cores of communities !bold vertices
and edges" but tend to leave out peripheral vertices, even when, as
here, most of them clearly belong to one community or another.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 !2004"
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Red line indicates appearance
of four (4) components at a
certain level.
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Key element for division approach:
 Recomputing betweenness.

 Reason: Possible to have a low betweenness in
links that connect large communities if other links
carry majority of shortest paths.

When to stop?:

 How do we know which divisions are meaningful?
 Modularity measure: difference in fraction of

within component nodes to that expected for
randomized version:

𝑄 = ∑𝑖[𝑒𝑖𝑖 − 𝑎2
𝑖 ]

where 𝑒𝑖𝑗 is the fraction of (undirected) edges
travelling between identified communities 𝑖 and 𝑗,
and 𝑎𝑖 = ∑𝑗 𝑒𝑖𝑗 is the fraction of edges with at
least one end in community 𝑖. 
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Test case:
 Generate random community-based networks.

 𝑁 = 128 with four communities of size 32.
 Add edges randomly within and across

communities.
 Example:

⟨𝑘⟩in = 6 and ⟨𝑘⟩out = 2.



The PoCSverse
Structure
detection
methods
17 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

Hierarchy by division

Test case:
 Generate random community-based networks.
 𝑁 = 128 with four communities of size 32.

 Add edges randomly within and across
communities.

 Example:
⟨𝑘⟩in = 6 and ⟨𝑘⟩out = 2.



The PoCSverse
Structure
detection
methods
17 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

Hierarchy by division

Test case:
 Generate random community-based networks.
 𝑁 = 128 with four communities of size 32.
 Add edges randomly within and across

communities.

 Example:
⟨𝑘⟩in = 6 and ⟨𝑘⟩out = 2.



The PoCSverse
Structure
detection
methods
17 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

Hierarchy by division

Test case:
 Generate random community-based networks.
 𝑁 = 128 with four communities of size 32.
 Add edges randomly within and across

communities.
 Example:

⟨𝑘⟩in = 6 and ⟨𝑘⟩out = 2.



The PoCSverse
Structure
detection
methods
18 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

Hierarchy by division

A. Tests on computer-generated networks

First, as a controlled test of how well our algorithms per-

form, we have generated networks with known community

structure, to see if the algorithms can recognize and extract

this structure.

We have generated a large number of graphs with n

!128 vertices, divided into four communities of 32 vertices
each. Edges were placed independently at random between

vertex pairs with probability p in for an edge to fall between

vertices in the same community and pout to fall between ver-

tices in different communities. The values of p in and pout
were chosen to make the expected degree of each vertex

equal to 16. In Fig. 6, we show a typical dendrogram from

the analysis of such a graph using the shortest-path between-

ness version of our algorithm. !In fact, for the sake of clarity,
the figure is for a 64-node version of the graph." Results for
the random-walk version are similar. At the right of the fig-

ure we also show the modularity, Eq. !5", for the same cal-
culation, plotted as a function of position in the dendrogram.

That is, the plot is aligned with the dendrogram so that one

can read off modularity values for different divisions of the

network directly. As we can see, the modularity has a single

clear peak at the point where the network breaks into four

communities, as we would expect. The peak value is around

0.5, which is typical.

In Fig. 7, we show the fraction of vertices in our

computer-generated network sample classified correctly into

the four communities by our algorithms, as a function of the

mean number zout of edges from each vertex to vertices in

other communities. As the figure shows, both the shortest-

path and random-walk versions of the algorithm perform ex-

cellently, with more than 90% of all vertices classified cor-

rectly from zout!0 all the way to around zout!6. Only for
zout"6 does the classification begin to deteriorate markedly.
In other words, our algorithm correctly identifies the com-

munity structure in the network almost all the way to the

point zout!8 at which each vertex has on average the same

number of connections to vertices outside its community as it

does to those inside.

The shortest-path version of the algorithm does, however,

perform noticeably better than the random-walk version, es-

pecially for the more difficult cases where zout is large. Given

that the random-walk algorithm is also more computationally

demanding, there seems little reason to use it rather than the

shortest-path algorithm, and hence, as discussed previously,

we recommend the latter for most applications. !To be fair,
the random-walk algorithm does slightly outperform the

shortest-path algorithm in the example addressed in the fol-

lowing section, although, being only a single case, it is hard

FIG. 6. Plot of the modularity and dendrogram for a 64-vertex random community-structured graph generated as described in the text

with, in this case, z in!6 and zout!2. The shapes at the bottom denote the four communities in the graph and, as we can see, the peak in the
modularity !dotted line" corresponds to a perfect identification of the communities.

FIG. 7. The fraction of vertices correctly identified by our algo-

rithms in the computer-generated graphs described in the text. The

two curves show results for the shortest-path !circles" and random-
walk !squares" versions of the algorithm as a function of the num-

ber of edges the vertices have to others outside their own commu-

nity. The point zout!8 at the rightmost edge of the plot represents
the point at which vertices have as many connections outside their

own community as inside it. Each data point is an average over 100

graphs.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 !2004"
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 Maximum modularity 𝑄 ≃ 0.5 obtained when four
communities are uncovered.

 Further ‘discovery’ of internal structure is
somewhat meaningless, as any communities arise
accidentally.
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First, as a controlled test of how well our algorithms per-

form, we have generated networks with known community

structure, to see if the algorithms can recognize and extract

this structure.

We have generated a large number of graphs with n

!128 vertices, divided into four communities of 32 vertices
each. Edges were placed independently at random between

vertex pairs with probability p in for an edge to fall between

vertices in the same community and pout to fall between ver-

tices in different communities. The values of p in and pout
were chosen to make the expected degree of each vertex

equal to 16. In Fig. 6, we show a typical dendrogram from

the analysis of such a graph using the shortest-path between-

ness version of our algorithm. !In fact, for the sake of clarity,
the figure is for a 64-node version of the graph." Results for
the random-walk version are similar. At the right of the fig-

ure we also show the modularity, Eq. !5", for the same cal-
culation, plotted as a function of position in the dendrogram.

That is, the plot is aligned with the dendrogram so that one

can read off modularity values for different divisions of the

network directly. As we can see, the modularity has a single

clear peak at the point where the network breaks into four

communities, as we would expect. The peak value is around

0.5, which is typical.

In Fig. 7, we show the fraction of vertices in our

computer-generated network sample classified correctly into

the four communities by our algorithms, as a function of the

mean number zout of edges from each vertex to vertices in

other communities. As the figure shows, both the shortest-

path and random-walk versions of the algorithm perform ex-

cellently, with more than 90% of all vertices classified cor-

rectly from zout!0 all the way to around zout!6. Only for
zout"6 does the classification begin to deteriorate markedly.
In other words, our algorithm correctly identifies the com-

munity structure in the network almost all the way to the

point zout!8 at which each vertex has on average the same

number of connections to vertices outside its community as it

does to those inside.

The shortest-path version of the algorithm does, however,

perform noticeably better than the random-walk version, es-

pecially for the more difficult cases where zout is large. Given

that the random-walk algorithm is also more computationally

demanding, there seems little reason to use it rather than the

shortest-path algorithm, and hence, as discussed previously,

we recommend the latter for most applications. !To be fair,
the random-walk algorithm does slightly outperform the

shortest-path algorithm in the example addressed in the fol-

lowing section, although, being only a single case, it is hard

FIG. 6. Plot of the modularity and dendrogram for a 64-vertex random community-structured graph generated as described in the text

with, in this case, z in!6 and zout!2. The shapes at the bottom denote the four communities in the graph and, as we can see, the peak in the
modularity !dotted line" corresponds to a perfect identification of the communities.

FIG. 7. The fraction of vertices correctly identified by our algo-

rithms in the computer-generated graphs described in the text. The

two curves show results for the shortest-path !circles" and random-
walk !squares" versions of the algorithm as a function of the num-

ber of edges the vertices have to others outside their own commu-

nity. The point zout!8 at the rightmost edge of the plot represents
the point at which vertices have as many connections outside their

own community as inside it. Each data point is an average over 100

graphs.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 !2004"
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 Maximum modularity 𝑄 ≃ 0.5 obtained when four
communities are uncovered.

 Further ‘discovery’ of internal structure is
somewhat meaningless, as any communities arise
accidentally.
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to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world

network data. Our first such example is taken from one of the

classic studies in social network analysis. Over the course of

two years in the early 1970s, Wayne Zachary observed social

interactions between the members of a karate club at an

American university "36#. He constructed networks of ties
between members of the club based on their social interac-

tions both within the club and outside it. By chance, a dis-

pute arose during the course of his study between the club’s

administrator and its principal karate teacher over whether to

raise club fees, and as a result the club eventually split in

two, forming two smaller clubs, centered around the admin-

istrator and the teacher.

In Fig. 8, we show a consensus network structure ex-

tracted from Zachary’s observations before the split. Feeding

this network into our algorithms, we find the results shown in

Fig. 9. In the leftmost two panels, we show the dendrograms

generated by the shortest-path and random-walk versions of

our algorithm, along with the modularity measures for the

same. As we see, both algorithms give reasonably high val-

ues for the modularity when the network is split into two

communities—around 0.4 in each case—indicating that there

is a strong natural division at this level. What is more, the

divisions in question correspond almost perfectly to the ac-

tual divisions in the club revealed by which group each club

member joined after the club split up. $The shapes of the
vertices representing the two factions are the same as those

of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-

fied by the random-walk version—the latter gets a perfect

score on this test. $On the other hand, the two-community
split fails to produce a local maximum in the modularity for

the random-walk method, unlike the shortest-path method,

for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and

modularity for an algorithm based on shortest-path between-

ness but without the crucial recalculation step discussed in

Sec. II. As the figure shows, without this step, the algorithm

fails to find the division of the network into the two known

groups. Furthermore, the modularity does not reach nearly

such high values as in the first two panels, indicating that the

divisions suggested are much poorer than in the cases with

the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network

of scientists. Figure 10$a! shows the largest component of a
network of collaborations between physicists who conduct

research on networks. $The authors of the present paper, for
instance, are among the nodes in this network.! This network
$which appeared previously in Ref. "37#! was constructed by
taking names of authors appearing in the lengthy bibliogra-

phy of Ref. "4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-

tion of the archive, where, for historical reasons, most papers

on networks have appeared. Authors appearing in both were

added to the network as vertices, and edges between them

indicate coauthorship of one or more papers appearing in the

archive. Thus the collaborative ties represented in the figure

are not limited to papers on topics concerning networks—we

were interested primarily in whether people know one an-

other, and collaboration on any topic is a reasonable indica-

tor of acquaintance.

The network as presented in Fig. 10$a! is difficult to in-
terpret. Given the names of the scientists, knowledgeable

readers with too much time on their hands could, no doubt,

pick out known groupings, for instance at particular institu-

tions, from the general confusion. But were this a network

about which we had no a priori knowledge, we would be

hard pressed to understand its underlying structure.

Applying the shortest-path version of our algorithm to this

network, we find that the modularity, Eq. $5!, has a strong
peak at 13 communities with a value of Q!0.72"0.02. Ex-
tracting the communities from the corresponding dendro-

gram, we have indicated them with colors in Fig. 10$b!. The
knowledgeable reader will again be able to discern known

groups of scientists in this rendering, and more easily now

with the help of the colors. Still, however, the structure of the

network as a whole and of the interactions between groups is

quite unclear.

In Fig. 10$c!, we have reduced the network to only the
groups. In this panel, we have drawn each group as a circle,

with size varying roughly with the number of individuals in

the group. The lines between groups indicate collaborations

between group members, with the thickness of the lines

varying in proportion to the number of pairs of scientists

who have collaborated. Now the overall structure of the net-

work becomes easy to see. The network is centered around

the large group in the middle $which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower

right of the picture $mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the

karate club study of Zachary "36#. The administrator and the in-
structor are represented by nodes 1 and 33, respectively. Shaded

squares represent individuals who ended up aligning with the club’s

administrator after the fission of the club, open circles those who

aligned with the instructor.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 $2004!
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 Factions in Zachary’s karate club network. [19]



The PoCSverse
Structure
detection
methods
20 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

Betweenness for electrons:

separate component of the graph. Let Vi be the voltage at
vertex i, measured relative to any convenient point. Then for
all i we have

!
j
Ai j"Vi!V j#"$ is!$ it , "1#

where Ai j is the ij element of the adjacency matrix of the
graph, i.e., Ai j"1 if i and j are connected by an edge and
Ai j"0 otherwise. The left-hand side of Eq. "1# represents the
net current flow out of vertex i along edges of the network,
and the right-hand side represents the source and sink. De-
fining ki"! jAi j , which is the vertex degree, and creating a
diagonal matrix D with these degrees on the diagonal Dii
"ki , this equation can be written in matrix form as (D
!A)•V"s, where the source vector s has components

si"! #1 for i"s
!1 for i"t
0 otherwise.

"2#

We cannot directly invert the matrix D!A to get the volt-
age vector V, because the matrix "which is just the graph
Laplacian# is singular. This is equivalent to saying that there
is one undetermined degree of freedom corresponding to the
choice of reference potential for measuring the voltages. We
can add any constant to a solution for the vertex voltages and
get another solution—only the voltage differences matter. In
choosing the reference potential, we fix this degree of free-
dom, leaving only n!1 more to be determined. In math-
ematical terms, once any n!1 of the equations in our matrix
formulation are satisfied, the remaining one is also automati-
cally satisfied so long as current is conserved in the network
as a whole, i.e., so long as ! is i"0, which is clearly true in
this case.
Choosing any vertex v to be the reference point, there-

fore, we remove the row and column corresponding to that
vertex from D and A before inverting. Denoting the resulting
(n!1)$(n!1) matrices Dv and Av , we can then write

V""Dv!Av#!1•s. "3#

Calculation of the currents in the network thus involves
inverting Dv!Av once for any convenient choice of v , and

taking the differences of pairs of columns to get the voltage
vector V for each possible source/sink pair. "The voltage for
the one missing vertex v is always zero, by hypothesis.# The
absolute magnitudes of the differences of voltages along
each edge give us betweenness scores for the given source
and sink. Summing over all sources and sinks, we then get
our complete betweenness score.
The matrix inversion takes time O(n3) in the worst case,

while the subsequent calculation of betweennesses takes time
O(mn2), where as before m is the number of edges and n the
number of vertices in the graph. Thus, the entire community
structure algorithm, including the recalculation step, will
take O„(n#m)mn2… time to complete, or O(n4) on a sparse
graph. Although, as we will see, the algorithm is good at
finding community structure, this poor performance makes it
practical only for smaller graphs; a few hundreds of vertices
is the most that we have been able to do. It is for this reason
that we recommend using the shortest-path betweenness al-
gorithm in most cases, which gives results about as good or
better with considerably less effort.

C. Random walks

The random-walk betweenness described in Sec. II re-
quires us to calculate how often on average random walks
starting at vertex s will pass down a particular edge from
vertex v to vertex w "or vice versa# before finding their way
to a given target vertex t. To calculate this quantity, we pro-
ceed as follows for each separate component of the graph.
As before, let Ai j be an element of the adjacency matrix

such that Ai j"1 if vertices i and j are connected by an edge
and Ai j"0 otherwise. Consider a random walk that on each
step decides uniformly between the neighbors of the current
vertex j and takes a step to one of them. The number of
neighbors is just the degree of the vertex k j"! iAi j , and the
probability for the transition from j to i is Ai j /k j , which we
can regard as an element of the matrixM"A•D!1, where D
is the diagonal matrix with Dii"ki .
We are interested in walks that terminate when they reach

the target t, so that t is an absorbing state. The most conve-
nient way to represent this is just to remove entirely the
vertex t from the graph, so that no walk ever reaches any
other vertex from t. Thus let Mt"At•Dt!1 be the matrix M
with the tth row and column removed "and similarly for At
and Dt).
Now the probability that a walk starts at s, takes n steps,

and ends up at some other vertex "not t# is given by the is
element of Mt

n , which we denote %Mt
n& is . In particular,

walks end up at v and w with probabilities %Mt
n&vs and

%Mt
n&ws , and of those a fraction 1/kv and 1/kw , respectively,

then pass along the edge (v ,w) in one direction or the other,
assuming such an edge exists. "Note that they may also have
passed along this edge an arbitrary number of times before
reaching this point.# Summing over all n, the mean number
of times that a walk of any length traverses the edge from v
to w is kv

!1%(I!Mt)!1&vs , and similarly for walks that go
from w to v .
To highlight the similarity with the current-flow between-

ness of Sec. III B, let us denote these two numbers Vv and

FIG. 5. An example of the type of resistor network considered
here, in which a unit resistance is placed on each edge and unit
current flows into and out of the source and sink vertices.
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 Unit resistors on each
edge.

 For every pair of nodes
𝑠 (source) and 𝑡 (sink),
set up unit currents in
at 𝑠 and out at 𝑡.

 Measure absolute
current along each
edge ℓ, |𝐼ℓ,𝑠𝑡|.

 Sum |𝐼ℓ,𝑠𝑡| over all pairs of nodes to obtain
electronic betweenness for edge ℓ.

 (Equivalent to random walk betweenness.)
 Contributing electronic betweenness for edge

between nodes 𝑖 and 𝑗:
𝐵 elec

𝑖𝑗,𝑠𝑡 = 𝑎𝑖𝑗|𝑉𝑖,𝑠𝑡 − 𝑉𝑗,𝑠𝑡|.
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Betweenness for electrons:

separate component of the graph. Let Vi be the voltage at
vertex i, measured relative to any convenient point. Then for
all i we have

!
j
Ai j"Vi!V j#"$ is!$ it , "1#

where Ai j is the ij element of the adjacency matrix of the
graph, i.e., Ai j"1 if i and j are connected by an edge and
Ai j"0 otherwise. The left-hand side of Eq. "1# represents the
net current flow out of vertex i along edges of the network,
and the right-hand side represents the source and sink. De-
fining ki"! jAi j , which is the vertex degree, and creating a
diagonal matrix D with these degrees on the diagonal Dii
"ki , this equation can be written in matrix form as (D
!A)•V"s, where the source vector s has components

si"! #1 for i"s
!1 for i"t
0 otherwise.

"2#

We cannot directly invert the matrix D!A to get the volt-
age vector V, because the matrix "which is just the graph
Laplacian# is singular. This is equivalent to saying that there
is one undetermined degree of freedom corresponding to the
choice of reference potential for measuring the voltages. We
can add any constant to a solution for the vertex voltages and
get another solution—only the voltage differences matter. In
choosing the reference potential, we fix this degree of free-
dom, leaving only n!1 more to be determined. In math-
ematical terms, once any n!1 of the equations in our matrix
formulation are satisfied, the remaining one is also automati-
cally satisfied so long as current is conserved in the network
as a whole, i.e., so long as ! is i"0, which is clearly true in
this case.
Choosing any vertex v to be the reference point, there-

fore, we remove the row and column corresponding to that
vertex from D and A before inverting. Denoting the resulting
(n!1)$(n!1) matrices Dv and Av , we can then write

V""Dv!Av#!1•s. "3#

Calculation of the currents in the network thus involves
inverting Dv!Av once for any convenient choice of v , and

taking the differences of pairs of columns to get the voltage
vector V for each possible source/sink pair. "The voltage for
the one missing vertex v is always zero, by hypothesis.# The
absolute magnitudes of the differences of voltages along
each edge give us betweenness scores for the given source
and sink. Summing over all sources and sinks, we then get
our complete betweenness score.
The matrix inversion takes time O(n3) in the worst case,

while the subsequent calculation of betweennesses takes time
O(mn2), where as before m is the number of edges and n the
number of vertices in the graph. Thus, the entire community
structure algorithm, including the recalculation step, will
take O„(n#m)mn2… time to complete, or O(n4) on a sparse
graph. Although, as we will see, the algorithm is good at
finding community structure, this poor performance makes it
practical only for smaller graphs; a few hundreds of vertices
is the most that we have been able to do. It is for this reason
that we recommend using the shortest-path betweenness al-
gorithm in most cases, which gives results about as good or
better with considerably less effort.

C. Random walks

The random-walk betweenness described in Sec. II re-
quires us to calculate how often on average random walks
starting at vertex s will pass down a particular edge from
vertex v to vertex w "or vice versa# before finding their way
to a given target vertex t. To calculate this quantity, we pro-
ceed as follows for each separate component of the graph.
As before, let Ai j be an element of the adjacency matrix

such that Ai j"1 if vertices i and j are connected by an edge
and Ai j"0 otherwise. Consider a random walk that on each
step decides uniformly between the neighbors of the current
vertex j and takes a step to one of them. The number of
neighbors is just the degree of the vertex k j"! iAi j , and the
probability for the transition from j to i is Ai j /k j , which we
can regard as an element of the matrixM"A•D!1, where D
is the diagonal matrix with Dii"ki .
We are interested in walks that terminate when they reach

the target t, so that t is an absorbing state. The most conve-
nient way to represent this is just to remove entirely the
vertex t from the graph, so that no walk ever reaches any
other vertex from t. Thus let Mt"At•Dt!1 be the matrix M
with the tth row and column removed "and similarly for At
and Dt).
Now the probability that a walk starts at s, takes n steps,

and ends up at some other vertex "not t# is given by the is
element of Mt

n , which we denote %Mt
n& is . In particular,

walks end up at v and w with probabilities %Mt
n&vs and

%Mt
n&ws , and of those a fraction 1/kv and 1/kw , respectively,

then pass along the edge (v ,w) in one direction or the other,
assuming such an edge exists. "Note that they may also have
passed along this edge an arbitrary number of times before
reaching this point.# Summing over all n, the mean number
of times that a walk of any length traverses the edge from v
to w is kv

!1%(I!Mt)!1&vs , and similarly for walks that go
from w to v .
To highlight the similarity with the current-flow between-

ness of Sec. III B, let us denote these two numbers Vv and

FIG. 5. An example of the type of resistor network considered
here, in which a unit resistance is placed on each edge and unit
current flows into and out of the source and sink vertices.
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between nodes 𝑖 and 𝑗:
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Betweenness for electrons:

separate component of the graph. Let Vi be the voltage at
vertex i, measured relative to any convenient point. Then for
all i we have

!
j
Ai j"Vi!V j#"$ is!$ it , "1#

where Ai j is the ij element of the adjacency matrix of the
graph, i.e., Ai j"1 if i and j are connected by an edge and
Ai j"0 otherwise. The left-hand side of Eq. "1# represents the
net current flow out of vertex i along edges of the network,
and the right-hand side represents the source and sink. De-
fining ki"! jAi j , which is the vertex degree, and creating a
diagonal matrix D with these degrees on the diagonal Dii
"ki , this equation can be written in matrix form as (D
!A)•V"s, where the source vector s has components

si"! #1 for i"s
!1 for i"t
0 otherwise.

"2#

We cannot directly invert the matrix D!A to get the volt-
age vector V, because the matrix "which is just the graph
Laplacian# is singular. This is equivalent to saying that there
is one undetermined degree of freedom corresponding to the
choice of reference potential for measuring the voltages. We
can add any constant to a solution for the vertex voltages and
get another solution—only the voltage differences matter. In
choosing the reference potential, we fix this degree of free-
dom, leaving only n!1 more to be determined. In math-
ematical terms, once any n!1 of the equations in our matrix
formulation are satisfied, the remaining one is also automati-
cally satisfied so long as current is conserved in the network
as a whole, i.e., so long as ! is i"0, which is clearly true in
this case.
Choosing any vertex v to be the reference point, there-

fore, we remove the row and column corresponding to that
vertex from D and A before inverting. Denoting the resulting
(n!1)$(n!1) matrices Dv and Av , we can then write

V""Dv!Av#!1•s. "3#

Calculation of the currents in the network thus involves
inverting Dv!Av once for any convenient choice of v , and

taking the differences of pairs of columns to get the voltage
vector V for each possible source/sink pair. "The voltage for
the one missing vertex v is always zero, by hypothesis.# The
absolute magnitudes of the differences of voltages along
each edge give us betweenness scores for the given source
and sink. Summing over all sources and sinks, we then get
our complete betweenness score.
The matrix inversion takes time O(n3) in the worst case,

while the subsequent calculation of betweennesses takes time
O(mn2), where as before m is the number of edges and n the
number of vertices in the graph. Thus, the entire community
structure algorithm, including the recalculation step, will
take O„(n#m)mn2… time to complete, or O(n4) on a sparse
graph. Although, as we will see, the algorithm is good at
finding community structure, this poor performance makes it
practical only for smaller graphs; a few hundreds of vertices
is the most that we have been able to do. It is for this reason
that we recommend using the shortest-path betweenness al-
gorithm in most cases, which gives results about as good or
better with considerably less effort.

C. Random walks

The random-walk betweenness described in Sec. II re-
quires us to calculate how often on average random walks
starting at vertex s will pass down a particular edge from
vertex v to vertex w "or vice versa# before finding their way
to a given target vertex t. To calculate this quantity, we pro-
ceed as follows for each separate component of the graph.
As before, let Ai j be an element of the adjacency matrix

such that Ai j"1 if vertices i and j are connected by an edge
and Ai j"0 otherwise. Consider a random walk that on each
step decides uniformly between the neighbors of the current
vertex j and takes a step to one of them. The number of
neighbors is just the degree of the vertex k j"! iAi j , and the
probability for the transition from j to i is Ai j /k j , which we
can regard as an element of the matrixM"A•D!1, where D
is the diagonal matrix with Dii"ki .
We are interested in walks that terminate when they reach

the target t, so that t is an absorbing state. The most conve-
nient way to represent this is just to remove entirely the
vertex t from the graph, so that no walk ever reaches any
other vertex from t. Thus let Mt"At•Dt!1 be the matrix M
with the tth row and column removed "and similarly for At
and Dt).
Now the probability that a walk starts at s, takes n steps,

and ends up at some other vertex "not t# is given by the is
element of Mt

n , which we denote %Mt
n& is . In particular,

walks end up at v and w with probabilities %Mt
n&vs and

%Mt
n&ws , and of those a fraction 1/kv and 1/kw , respectively,

then pass along the edge (v ,w) in one direction or the other,
assuming such an edge exists. "Note that they may also have
passed along this edge an arbitrary number of times before
reaching this point.# Summing over all n, the mean number
of times that a walk of any length traverses the edge from v
to w is kv

!1%(I!Mt)!1&vs , and similarly for walks that go
from w to v .
To highlight the similarity with the current-flow between-

ness of Sec. III B, let us denote these two numbers Vv and

FIG. 5. An example of the type of resistor network considered
here, in which a unit resistance is placed on each edge and unit
current flows into and out of the source and sink vertices.
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Betweenness for electrons:

separate component of the graph. Let Vi be the voltage at
vertex i, measured relative to any convenient point. Then for
all i we have

!
j
Ai j"Vi!V j#"$ is!$ it , "1#

where Ai j is the ij element of the adjacency matrix of the
graph, i.e., Ai j"1 if i and j are connected by an edge and
Ai j"0 otherwise. The left-hand side of Eq. "1# represents the
net current flow out of vertex i along edges of the network,
and the right-hand side represents the source and sink. De-
fining ki"! jAi j , which is the vertex degree, and creating a
diagonal matrix D with these degrees on the diagonal Dii
"ki , this equation can be written in matrix form as (D
!A)•V"s, where the source vector s has components

si"! #1 for i"s
!1 for i"t
0 otherwise.

"2#

We cannot directly invert the matrix D!A to get the volt-
age vector V, because the matrix "which is just the graph
Laplacian# is singular. This is equivalent to saying that there
is one undetermined degree of freedom corresponding to the
choice of reference potential for measuring the voltages. We
can add any constant to a solution for the vertex voltages and
get another solution—only the voltage differences matter. In
choosing the reference potential, we fix this degree of free-
dom, leaving only n!1 more to be determined. In math-
ematical terms, once any n!1 of the equations in our matrix
formulation are satisfied, the remaining one is also automati-
cally satisfied so long as current is conserved in the network
as a whole, i.e., so long as ! is i"0, which is clearly true in
this case.
Choosing any vertex v to be the reference point, there-

fore, we remove the row and column corresponding to that
vertex from D and A before inverting. Denoting the resulting
(n!1)$(n!1) matrices Dv and Av , we can then write

V""Dv!Av#!1•s. "3#

Calculation of the currents in the network thus involves
inverting Dv!Av once for any convenient choice of v , and

taking the differences of pairs of columns to get the voltage
vector V for each possible source/sink pair. "The voltage for
the one missing vertex v is always zero, by hypothesis.# The
absolute magnitudes of the differences of voltages along
each edge give us betweenness scores for the given source
and sink. Summing over all sources and sinks, we then get
our complete betweenness score.
The matrix inversion takes time O(n3) in the worst case,

while the subsequent calculation of betweennesses takes time
O(mn2), where as before m is the number of edges and n the
number of vertices in the graph. Thus, the entire community
structure algorithm, including the recalculation step, will
take O„(n#m)mn2… time to complete, or O(n4) on a sparse
graph. Although, as we will see, the algorithm is good at
finding community structure, this poor performance makes it
practical only for smaller graphs; a few hundreds of vertices
is the most that we have been able to do. It is for this reason
that we recommend using the shortest-path betweenness al-
gorithm in most cases, which gives results about as good or
better with considerably less effort.

C. Random walks

The random-walk betweenness described in Sec. II re-
quires us to calculate how often on average random walks
starting at vertex s will pass down a particular edge from
vertex v to vertex w "or vice versa# before finding their way
to a given target vertex t. To calculate this quantity, we pro-
ceed as follows for each separate component of the graph.
As before, let Ai j be an element of the adjacency matrix

such that Ai j"1 if vertices i and j are connected by an edge
and Ai j"0 otherwise. Consider a random walk that on each
step decides uniformly between the neighbors of the current
vertex j and takes a step to one of them. The number of
neighbors is just the degree of the vertex k j"! iAi j , and the
probability for the transition from j to i is Ai j /k j , which we
can regard as an element of the matrixM"A•D!1, where D
is the diagonal matrix with Dii"ki .
We are interested in walks that terminate when they reach

the target t, so that t is an absorbing state. The most conve-
nient way to represent this is just to remove entirely the
vertex t from the graph, so that no walk ever reaches any
other vertex from t. Thus let Mt"At•Dt!1 be the matrix M
with the tth row and column removed "and similarly for At
and Dt).
Now the probability that a walk starts at s, takes n steps,

and ends up at some other vertex "not t# is given by the is
element of Mt

n , which we denote %Mt
n& is . In particular,

walks end up at v and w with probabilities %Mt
n&vs and

%Mt
n&ws , and of those a fraction 1/kv and 1/kw , respectively,

then pass along the edge (v ,w) in one direction or the other,
assuming such an edge exists. "Note that they may also have
passed along this edge an arbitrary number of times before
reaching this point.# Summing over all n, the mean number
of times that a walk of any length traverses the edge from v
to w is kv

!1%(I!Mt)!1&vs , and similarly for walks that go
from w to v .
To highlight the similarity with the current-flow between-

ness of Sec. III B, let us denote these two numbers Vv and

FIG. 5. An example of the type of resistor network considered
here, in which a unit resistance is placed on each edge and unit
current flows into and out of the source and sink vertices.
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 Unit resistors on each
edge.

 For every pair of nodes
𝑠 (source) and 𝑡 (sink),
set up unit currents in
at 𝑠 and out at 𝑡.

 Measure absolute
current along each
edge ℓ, |𝐼ℓ,𝑠𝑡|.

 Sum |𝐼ℓ,𝑠𝑡| over all pairs of nodes to obtain
electronic betweenness for edge ℓ.

 (Equivalent to random walk betweenness.)
 Contributing electronic betweenness for edge

between nodes 𝑖 and 𝑗:
𝐵 elec

𝑖𝑗,𝑠𝑡 = 𝑎𝑖𝑗|𝑉𝑖,𝑠𝑡 − 𝑉𝑗,𝑠𝑡|.
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separate component of the graph. Let Vi be the voltage at
vertex i, measured relative to any convenient point. Then for
all i we have

!
j
Ai j"Vi!V j#"$ is!$ it , "1#

where Ai j is the ij element of the adjacency matrix of the
graph, i.e., Ai j"1 if i and j are connected by an edge and
Ai j"0 otherwise. The left-hand side of Eq. "1# represents the
net current flow out of vertex i along edges of the network,
and the right-hand side represents the source and sink. De-
fining ki"! jAi j , which is the vertex degree, and creating a
diagonal matrix D with these degrees on the diagonal Dii
"ki , this equation can be written in matrix form as (D
!A)•V"s, where the source vector s has components

si"! #1 for i"s
!1 for i"t
0 otherwise.

"2#

We cannot directly invert the matrix D!A to get the volt-
age vector V, because the matrix "which is just the graph
Laplacian# is singular. This is equivalent to saying that there
is one undetermined degree of freedom corresponding to the
choice of reference potential for measuring the voltages. We
can add any constant to a solution for the vertex voltages and
get another solution—only the voltage differences matter. In
choosing the reference potential, we fix this degree of free-
dom, leaving only n!1 more to be determined. In math-
ematical terms, once any n!1 of the equations in our matrix
formulation are satisfied, the remaining one is also automati-
cally satisfied so long as current is conserved in the network
as a whole, i.e., so long as ! is i"0, which is clearly true in
this case.
Choosing any vertex v to be the reference point, there-

fore, we remove the row and column corresponding to that
vertex from D and A before inverting. Denoting the resulting
(n!1)$(n!1) matrices Dv and Av , we can then write

V""Dv!Av#!1•s. "3#

Calculation of the currents in the network thus involves
inverting Dv!Av once for any convenient choice of v , and

taking the differences of pairs of columns to get the voltage
vector V for each possible source/sink pair. "The voltage for
the one missing vertex v is always zero, by hypothesis.# The
absolute magnitudes of the differences of voltages along
each edge give us betweenness scores for the given source
and sink. Summing over all sources and sinks, we then get
our complete betweenness score.
The matrix inversion takes time O(n3) in the worst case,

while the subsequent calculation of betweennesses takes time
O(mn2), where as before m is the number of edges and n the
number of vertices in the graph. Thus, the entire community
structure algorithm, including the recalculation step, will
take O„(n#m)mn2… time to complete, or O(n4) on a sparse
graph. Although, as we will see, the algorithm is good at
finding community structure, this poor performance makes it
practical only for smaller graphs; a few hundreds of vertices
is the most that we have been able to do. It is for this reason
that we recommend using the shortest-path betweenness al-
gorithm in most cases, which gives results about as good or
better with considerably less effort.

C. Random walks

The random-walk betweenness described in Sec. II re-
quires us to calculate how often on average random walks
starting at vertex s will pass down a particular edge from
vertex v to vertex w "or vice versa# before finding their way
to a given target vertex t. To calculate this quantity, we pro-
ceed as follows for each separate component of the graph.
As before, let Ai j be an element of the adjacency matrix

such that Ai j"1 if vertices i and j are connected by an edge
and Ai j"0 otherwise. Consider a random walk that on each
step decides uniformly between the neighbors of the current
vertex j and takes a step to one of them. The number of
neighbors is just the degree of the vertex k j"! iAi j , and the
probability for the transition from j to i is Ai j /k j , which we
can regard as an element of the matrixM"A•D!1, where D
is the diagonal matrix with Dii"ki .
We are interested in walks that terminate when they reach

the target t, so that t is an absorbing state. The most conve-
nient way to represent this is just to remove entirely the
vertex t from the graph, so that no walk ever reaches any
other vertex from t. Thus let Mt"At•Dt!1 be the matrix M
with the tth row and column removed "and similarly for At
and Dt).
Now the probability that a walk starts at s, takes n steps,

and ends up at some other vertex "not t# is given by the is
element of Mt

n , which we denote %Mt
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walks end up at v and w with probabilities %Mt
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n&ws , and of those a fraction 1/kv and 1/kw , respectively,

then pass along the edge (v ,w) in one direction or the other,
assuming such an edge exists. "Note that they may also have
passed along this edge an arbitrary number of times before
reaching this point.# Summing over all n, the mean number
of times that a walk of any length traverses the edge from v
to w is kv
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from w to v .
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current along each
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 Sum |𝐼ℓ,𝑠𝑡| over all pairs of nodes to obtain
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 Contributing electronic betweenness for edge
between nodes 𝑖 and 𝑗:

𝐵 elec
𝑖𝑗,𝑠𝑡 = 𝑎𝑖𝑗|𝑉𝑖,𝑠𝑡 − 𝑉𝑗,𝑠𝑡|.
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separate component of the graph. Let Vi be the voltage at
vertex i, measured relative to any convenient point. Then for
all i we have

!
j
Ai j"Vi!V j#"$ is!$ it , "1#

where Ai j is the ij element of the adjacency matrix of the
graph, i.e., Ai j"1 if i and j are connected by an edge and
Ai j"0 otherwise. The left-hand side of Eq. "1# represents the
net current flow out of vertex i along edges of the network,
and the right-hand side represents the source and sink. De-
fining ki"! jAi j , which is the vertex degree, and creating a
diagonal matrix D with these degrees on the diagonal Dii
"ki , this equation can be written in matrix form as (D
!A)•V"s, where the source vector s has components

si"! #1 for i"s
!1 for i"t
0 otherwise.

"2#

We cannot directly invert the matrix D!A to get the volt-
age vector V, because the matrix "which is just the graph
Laplacian# is singular. This is equivalent to saying that there
is one undetermined degree of freedom corresponding to the
choice of reference potential for measuring the voltages. We
can add any constant to a solution for the vertex voltages and
get another solution—only the voltage differences matter. In
choosing the reference potential, we fix this degree of free-
dom, leaving only n!1 more to be determined. In math-
ematical terms, once any n!1 of the equations in our matrix
formulation are satisfied, the remaining one is also automati-
cally satisfied so long as current is conserved in the network
as a whole, i.e., so long as ! is i"0, which is clearly true in
this case.
Choosing any vertex v to be the reference point, there-

fore, we remove the row and column corresponding to that
vertex from D and A before inverting. Denoting the resulting
(n!1)$(n!1) matrices Dv and Av , we can then write

V""Dv!Av#!1•s. "3#

Calculation of the currents in the network thus involves
inverting Dv!Av once for any convenient choice of v , and

taking the differences of pairs of columns to get the voltage
vector V for each possible source/sink pair. "The voltage for
the one missing vertex v is always zero, by hypothesis.# The
absolute magnitudes of the differences of voltages along
each edge give us betweenness scores for the given source
and sink. Summing over all sources and sinks, we then get
our complete betweenness score.
The matrix inversion takes time O(n3) in the worst case,

while the subsequent calculation of betweennesses takes time
O(mn2), where as before m is the number of edges and n the
number of vertices in the graph. Thus, the entire community
structure algorithm, including the recalculation step, will
take O„(n#m)mn2… time to complete, or O(n4) on a sparse
graph. Although, as we will see, the algorithm is good at
finding community structure, this poor performance makes it
practical only for smaller graphs; a few hundreds of vertices
is the most that we have been able to do. It is for this reason
that we recommend using the shortest-path betweenness al-
gorithm in most cases, which gives results about as good or
better with considerably less effort.

C. Random walks

The random-walk betweenness described in Sec. II re-
quires us to calculate how often on average random walks
starting at vertex s will pass down a particular edge from
vertex v to vertex w "or vice versa# before finding their way
to a given target vertex t. To calculate this quantity, we pro-
ceed as follows for each separate component of the graph.
As before, let Ai j be an element of the adjacency matrix

such that Ai j"1 if vertices i and j are connected by an edge
and Ai j"0 otherwise. Consider a random walk that on each
step decides uniformly between the neighbors of the current
vertex j and takes a step to one of them. The number of
neighbors is just the degree of the vertex k j"! iAi j , and the
probability for the transition from j to i is Ai j /k j , which we
can regard as an element of the matrixM"A•D!1, where D
is the diagonal matrix with Dii"ki .
We are interested in walks that terminate when they reach

the target t, so that t is an absorbing state. The most conve-
nient way to represent this is just to remove entirely the
vertex t from the graph, so that no walk ever reaches any
other vertex from t. Thus let Mt"At•Dt!1 be the matrix M
with the tth row and column removed "and similarly for At
and Dt).
Now the probability that a walk starts at s, takes n steps,

and ends up at some other vertex "not t# is given by the is
element of Mt

n , which we denote %Mt
n& is . In particular,

walks end up at v and w with probabilities %Mt
n&vs and

%Mt
n&ws , and of those a fraction 1/kv and 1/kw , respectively,

then pass along the edge (v ,w) in one direction or the other,
assuming such an edge exists. "Note that they may also have
passed along this edge an arbitrary number of times before
reaching this point.# Summing over all n, the mean number
of times that a walk of any length traverses the edge from v
to w is kv

!1%(I!Mt)!1&vs , and similarly for walks that go
from w to v .
To highlight the similarity with the current-flow between-

ness of Sec. III B, let us denote these two numbers Vv and
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 Contributing electronic betweenness for edge

between nodes 𝑖 and 𝑗:
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𝑖𝑗,𝑠𝑡 = 𝑎𝑖𝑗|𝑉𝑖,𝑠𝑡 − 𝑉𝑗,𝑠𝑡|.
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Electronic betweenness
 Define some arbitrary voltage reference.

 Kirchhoff’s laws: current flowing out of node 𝑖
must balance:

𝑁
∑
𝑗=1

1
𝑅𝑖𝑗

(𝑉𝑗 − 𝑉𝑖) = 𝛿𝑖𝑠 − 𝛿𝑖𝑡.

 Between connected nodes, 𝑅𝑖𝑗 = 1 = 𝑎𝑖𝑗 = 1/𝑎𝑖𝑗.
 Between unconnected nodes, 𝑅𝑖𝑗 = ∞ = 1/𝑎𝑖𝑗.
 We can therefore write:

𝑁
∑
𝑗=1

𝑎𝑖𝑗(𝑉𝑖 − 𝑉𝑗) = 𝛿𝑖𝑠 − 𝛿𝑖𝑡.

 Some gentle jiggery-pokery on the left hand side:
∑𝑗 𝑎𝑖𝑗(𝑉𝑖 − 𝑉𝑗)

= 𝑉𝑖 ∑𝑗 𝑎𝑖𝑗 − ∑𝑗 𝑎𝑖𝑗𝑉𝑗
= 𝑉𝑖𝑘𝑖 − ∑𝑗 𝑎𝑖𝑗𝑉𝑗 = ∑𝑗 [𝑘𝑖𝛿𝑖𝑗𝑉𝑗 − 𝑎𝑖𝑗𝑉𝑗]
= [(K − A) ⃗𝑉 ]𝑖
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 Write right hand side as [𝐼ext]𝑖,𝑠𝑡 = 𝛿𝑖𝑠 − 𝛿𝑖𝑡, where

𝐼ext𝑠𝑡 holds external source and sink currents.

 Matrixingly then:

(K − A) ⃗𝑉 = 𝐼ext𝑠𝑡 .

 L = K − A is a beast of some utility—known as the
Laplacian.

 Solve for voltage vector ⃗𝑉 by LU decomposition
(Gaussian elimination).

 Do not compute an inverse!
 Note: voltage offset is arbitrary so no unique

solution.
 Presuming network has one component, null

space of K − A is one dimensional.
 In fact, 𝒩(K − A) = {𝑐 ⃗1, 𝑐 ∈ 𝑅} since (K − A) ⃗1 = ⃗0.
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 Write right hand side as [𝐼ext]𝑖,𝑠𝑡 = 𝛿𝑖𝑠 − 𝛿𝑖𝑡, where

𝐼ext𝑠𝑡 holds external source and sink currents.
 Matrixingly then:

(K − A) ⃗𝑉 = 𝐼ext𝑠𝑡 .

 L = K − A is a beast of some utility—known as the
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 Solve for voltage vector ⃗𝑉 by LU decomposition
(Gaussian elimination).

 Do not compute an inverse!
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 Do not compute an inverse!
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𝐼ext𝑠𝑡 holds external source and sink currents.
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(K − A) ⃗𝑉 = 𝐼ext𝑠𝑡 .

 L = K − A is a beast of some utility—known as the
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(Gaussian elimination).

 Do not compute an inverse!
 Note: voltage offset is arbitrary so no unique
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 Write right hand side as [𝐼ext]𝑖,𝑠𝑡 = 𝛿𝑖𝑠 − 𝛿𝑖𝑡, where

𝐼ext𝑠𝑡 holds external source and sink currents.
 Matrixingly then:

(K − A) ⃗𝑉 = 𝐼ext𝑠𝑡 .

 L = K − A is a beast of some utility—known as the
Laplacian.

 Solve for voltage vector ⃗𝑉 by LU decomposition
(Gaussian elimination).

 Do not compute an inverse!
 Note: voltage offset is arbitrary so no unique

solution.
 Presuming network has one component, null

space of K − A is one dimensional.
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Alternate betweenness measures:
Random walk betweenness:
 Asking too much: Need full knowledge of network

to travel along shortest paths.

 One of many alternatives: consider all random
walks between pairs of nodes 𝑖 and 𝑗.

 Walks starts at node 𝑖, traverses the network
randomly, ending as soon as it reaches 𝑗.

 Record the number of times an edge is followed
by a walk.

 Consider all pairs of nodes.
 Random walk betweenness of an edge = absolute

difference in probability a random walk travels
one way versus the other along the edge.

 Equivalent to electronic betweenness (see also
diffusion).
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Alternate betweenness measures:
Random walk betweenness:
 Asking too much: Need full knowledge of network

to travel along shortest paths.
 One of many alternatives: consider all random

walks between pairs of nodes 𝑖 and 𝑗.
 Walks starts at node 𝑖, traverses the network

randomly, ending as soon as it reaches 𝑗.
 Record the number of times an edge is followed

by a walk.
 Consider all pairs of nodes.
 Random walk betweenness of an edge = absolute

difference in probability a random walk travels
one way versus the other along the edge.

 Equivalent to electronic betweenness (see also
diffusion).
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to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world

network data. Our first such example is taken from one of the

classic studies in social network analysis. Over the course of

two years in the early 1970s, Wayne Zachary observed social

interactions between the members of a karate club at an

American university "36#. He constructed networks of ties
between members of the club based on their social interac-

tions both within the club and outside it. By chance, a dis-

pute arose during the course of his study between the club’s

administrator and its principal karate teacher over whether to

raise club fees, and as a result the club eventually split in

two, forming two smaller clubs, centered around the admin-

istrator and the teacher.

In Fig. 8, we show a consensus network structure ex-

tracted from Zachary’s observations before the split. Feeding

this network into our algorithms, we find the results shown in

Fig. 9. In the leftmost two panels, we show the dendrograms

generated by the shortest-path and random-walk versions of

our algorithm, along with the modularity measures for the

same. As we see, both algorithms give reasonably high val-

ues for the modularity when the network is split into two

communities—around 0.4 in each case—indicating that there

is a strong natural division at this level. What is more, the

divisions in question correspond almost perfectly to the ac-

tual divisions in the club revealed by which group each club

member joined after the club split up. $The shapes of the
vertices representing the two factions are the same as those

of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-

fied by the random-walk version—the latter gets a perfect

score on this test. $On the other hand, the two-community
split fails to produce a local maximum in the modularity for

the random-walk method, unlike the shortest-path method,

for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and

modularity for an algorithm based on shortest-path between-

ness but without the crucial recalculation step discussed in

Sec. II. As the figure shows, without this step, the algorithm

fails to find the division of the network into the two known

groups. Furthermore, the modularity does not reach nearly

such high values as in the first two panels, indicating that the

divisions suggested are much poorer than in the cases with

the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network

of scientists. Figure 10$a! shows the largest component of a
network of collaborations between physicists who conduct

research on networks. $The authors of the present paper, for
instance, are among the nodes in this network.! This network
$which appeared previously in Ref. "37#! was constructed by
taking names of authors appearing in the lengthy bibliogra-

phy of Ref. "4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-

tion of the archive, where, for historical reasons, most papers

on networks have appeared. Authors appearing in both were

added to the network as vertices, and edges between them

indicate coauthorship of one or more papers appearing in the

archive. Thus the collaborative ties represented in the figure

are not limited to papers on topics concerning networks—we

were interested primarily in whether people know one an-

other, and collaboration on any topic is a reasonable indica-

tor of acquaintance.

The network as presented in Fig. 10$a! is difficult to in-
terpret. Given the names of the scientists, knowledgeable

readers with too much time on their hands could, no doubt,

pick out known groupings, for instance at particular institu-

tions, from the general confusion. But were this a network

about which we had no a priori knowledge, we would be

hard pressed to understand its underlying structure.

Applying the shortest-path version of our algorithm to this

network, we find that the modularity, Eq. $5!, has a strong
peak at 13 communities with a value of Q!0.72"0.02. Ex-
tracting the communities from the corresponding dendro-

gram, we have indicated them with colors in Fig. 10$b!. The
knowledgeable reader will again be able to discern known

groups of scientists in this rendering, and more easily now

with the help of the colors. Still, however, the structure of the

network as a whole and of the interactions between groups is

quite unclear.

In Fig. 10$c!, we have reduced the network to only the
groups. In this panel, we have drawn each group as a circle,

with size varying roughly with the number of individuals in

the group. The lines between groups indicate collaborations

between group members, with the thickness of the lines

varying in proportion to the number of pairs of scientists

who have collaborated. Now the overall structure of the net-

work becomes easy to see. The network is centered around

the large group in the middle $which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower

right of the picture $mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the

karate club study of Zachary "36#. The administrator and the in-
structor are represented by nodes 1 and 33, respectively. Shaded

squares represent individuals who ended up aligning with the club’s

administrator after the fission of the club, open circles those who

aligned with the instructor.

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 $2004!

026113-9

 Factions in Zachary’s karate club network. [19]
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their intellectual descendants!. Other groups "including the
authors’ own! are scattered further out and more loosely con-
nected to one another.

One of the problems created by the sudden availability in

recent years of large network data sets has been our lack of

tools for visualizing their structure #4$. In the early days of
network analysis, particularly in the social sciences, it was

usually enough simply to draw a picture of a network to see

what was going on. Networks in those days had ten or

twenty nodes, not 140 as here, or several billion as in the

world wide web. We believe that methods like the one pre-

sented here, of using community structure algorithms to

make a meaningful ‘‘coarse graining’’ of a network, thereby

reducing its level of complexity to one that can be inter-

preted readily by the human eye, will be invaluable in help-

ing us to understand the large-scale structure of these new

network data.

D. Other examples

In this section, we briefly describe example applications

of our methods to three further networks. The first is a non-

human social network, a network of dolphins, the second a

network of fictional characters, and the third not a social

network at all, but a network of web pages and the links

between them.

In Fig. 11, we show the social network of a community of

62 bottlenose dolphins living in Doubtful Sound, New

Zealand. The network was compiled by Lusseau #38$ from
seven years of field studies of the dolphins, with ties between

dolphin pairs being established by observation of statistically

significant frequent association. The network splits naturally

into two large groups, represented by the circles and squares

in the figure, and the larger of the two also splits into four

smaller subgroups. The modularity is Q!0.38"0.08 for the
split into two groups, and peaks at 0.52"0.03 when the sub-

FIG. 9. Community structure in the karate club network. Left: the dendrogram extracted by the shortest-path betweenness version of our

method and the resulting modularity. The modularity has two maxima "dotted lines! corresponding to splits into two communities "which
match closely the real-world split of the club, as denoted by the shapes of the vertices! and five communities "though one of those five
contains only one individual!. Only one individual, number 3, is incorrectly classified in the two-community split. Center: the dendrogram
for the random-walk version of our method. This version classifies all 34 vertices correctly into the factions that they actually split into "first
dotted line!, although the split into four communities gets a higher modularity score "second dotted line!. Right: the dendrogram for the

shortest-path algorithm without recalculation of betweennesses after each edge removal. This version of the calculation fails to find the split

into the two factions.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 "2004!

026113-10

 Third column shows what happens if we don’t
recompute betweenness after each edge removal.
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Scientists working on networks (2004)

FIG. 10. Illustration of the use of the community-structure algorithm to make sense of a complex network. !a" The initial network is a
network of coauthorships between physicists who have published on topics related to networks. The figure shows only the largest component

of the network, which contains 145 scientists. There are 90 more scientists in smaller components, which are not shown. !b" Application of
the shortest-path betweenness version of the community-structure algorithm produces the communities indicated by the shades of the

vertices. !c" A coarse-graining of the network in which each community is represented by a single node, with edges representing collabo-
rations between communities. The thickness of the edges is proportional to the number of pairs of collaborators between communities.

Clearly panel !c" reveals much that is not easily seen in the original network of panel !a".

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 !2004"

026113-11
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Scientists working on networks (2004)

FIG. 10. Illustration of the use of the community-structure algorithm to make sense of a complex network. !a" The initial network is a
network of coauthorships between physicists who have published on topics related to networks. The figure shows only the largest component

of the network, which contains 145 scientists. There are 90 more scientists in smaller components, which are not shown. !b" Application of
the shortest-path betweenness version of the community-structure algorithm produces the communities indicated by the shades of the

vertices. !c" A coarse-graining of the network in which each community is represented by a single node, with edges representing collabo-
rations between communities. The thickness of the edges is proportional to the number of pairs of collaborators between communities.

Clearly panel !c" reveals much that is not easily seen in the original network of panel !a".

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 !2004"

026113-11
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FIG. 10. Illustration of the use of the community-structure algorithm to make sense of a complex network. !a" The initial network is a
network of coauthorships between physicists who have published on topics related to networks. The figure shows only the largest component

of the network, which contains 145 scientists. There are 90 more scientists in smaller components, which are not shown. !b" Application of
the shortest-path betweenness version of the community-structure algorithm produces the communities indicated by the shades of the

vertices. !c" A coarse-graining of the network in which each community is represented by a single node, with edges representing collabo-
rations between communities. The thickness of the edges is proportional to the number of pairs of collaborators between communities.

Clearly panel !c" reveals much that is not easily seen in the original network of panel !a".

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 !2004"

026113-11
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Dolphins!

group splitting is included also.

The split into two groups appears to correspond to a

known division of the dolphin community !39". Lusseau re-
ports that for a period of about two years during observation

of the dolphins they separated into two groups along the

lines found by our analysis, apparently because of the disap-

pearance of individuals on the boundary between the groups.

When some of these individuals later reappeared, the two

halves of the network joined together once more. As Lusseau

points out, developments of this kind illustrate that the dol-

phin network is not merely a scientific curiosity but, like

human social networks, is closely tied to the evolution of the

community. The subgroupings within the larger half of the

network also seem to correspond to real divisions among the

animals: the largest subgroup consists almost of entirely of

females and the others almost entirely of males, and it is

conjectured that the split between the male groups is gov-

erned by matrilineage !D. Lusseau #personal communica-
tion$".
Figure 12 shows the community structure of the network

of interactions between major characters in Victor Hugo’s

sprawling novel of crime and redemption in post-restoration

FIG. 11. Community structure in the bottlenose dolphins of

Doubtful Sound !38,39", extracted using the shortest-path version of
our algorithm. The squares and circles denote the primary split of

the network into two groups, and the circles are subdivided further

into four smaller groups as shown. The modularity for the split is

Q!0.52. The network has been drawn with longer edges between
vertices in different communities than between those in the same

community, to make the community groupings clearer. The same is

also true of Figs. 12 and 13.

FIG. 12. The network of interactions between major characters in the novel Les Misérables by Victor Hugo. The greatest modularity

achieved in the shortest-path version of our algorithm is Q!0.54 and corresponds to the 11 communities shown.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 #2004$

026113-12
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Les Miserables

group splitting is included also.

The split into two groups appears to correspond to a

known division of the dolphin community !39". Lusseau re-
ports that for a period of about two years during observation

of the dolphins they separated into two groups along the

lines found by our analysis, apparently because of the disap-

pearance of individuals on the boundary between the groups.

When some of these individuals later reappeared, the two

halves of the network joined together once more. As Lusseau

points out, developments of this kind illustrate that the dol-

phin network is not merely a scientific curiosity but, like

human social networks, is closely tied to the evolution of the

community. The subgroupings within the larger half of the

network also seem to correspond to real divisions among the

animals: the largest subgroup consists almost of entirely of

females and the others almost entirely of males, and it is

conjectured that the split between the male groups is gov-

erned by matrilineage !D. Lusseau #personal communica-
tion$".
Figure 12 shows the community structure of the network

of interactions between major characters in Victor Hugo’s

sprawling novel of crime and redemption in post-restoration

FIG. 11. Community structure in the bottlenose dolphins of

Doubtful Sound !38,39", extracted using the shortest-path version of
our algorithm. The squares and circles denote the primary split of

the network into two groups, and the circles are subdivided further

into four smaller groups as shown. The modularity for the split is

Q!0.52. The network has been drawn with longer edges between
vertices in different communities than between those in the same

community, to make the community groupings clearer. The same is

also true of Figs. 12 and 13.

FIG. 12. The network of interactions between major characters in the novel Les Misérables by Victor Hugo. The greatest modularity

achieved in the shortest-path version of our algorithm is Q!0.54 and corresponds to the 11 communities shown.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 #2004$

026113-12

 More network analyses for Les Miserables here
and here.

https://arxiv.org/abs/1604.03029
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Shuffling for structure

 “Extracting the hierarchical organization of
complex systems”
Sales-Pardo et al., PNAS (2007) [14, 15]

 Consider all partitions of networks into 𝑚 groups
 As for Newman and Girvan approach, aim is to

find partitions with maximum modularity:

𝑄 = ∑
𝑖

[𝑒𝑖𝑖 − (∑
𝑗

𝑒𝑖𝑗)2] = TrE − ||E2||1.
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Shuffling for structure
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Shuffling for structure

 Consider partition network, i.e., the network of all
possible partitions.

 Defn: Two partitions are connected if they differ
only by the reassignment of a single node.

 Look for local maxima in partition network.
 Construct an affinity matrix with entries 𝑀aff

𝑖𝑗 .

 𝑀aff
𝑖𝑗 = Pr random walker on modularity network

ends up at a partition with 𝑖 and 𝑗 in the same
group.

 C.f. topological overlap between 𝑖 and 𝑗 =
# matching neighbors for 𝑖 and 𝑗 divided by
maximum of 𝑘𝑖 and 𝑘𝑗.
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Corrections

APPLIED PHYSICAL SCIENCES. For the article ‘‘Extracting the
hierarchical organization of complex systems,’’ by Marta
Sales-Pardo, Roger Guimerà, André A. Moreira, and Luı́s
A. Nunes Amaral, which appeared in issue 39, September
25, 2007, of Proc Natl Acad Sci USA (104:15224–15229; first

published September 19, 2007; 10.1073!pnas.0703740104),
the authors note that, due to a printer’s error, Fig. 1B
appeared incorrectly. The corrected figure and its legend
appear below. This error does not affect the conclusions of
the article.
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Fig. 1. Schematic illustration of our method for a
simple network. (A) Example network. (B) Modularity
landscape. For the example network, there are 15 dis-
tinct groupings of nodes into modules. Each large col-
ored circle represents a partition, which we draw inside
the circle, with different colors indicating different mod-
ules. For clarity, we label each partition with a number
from1to15.Thecolorof thepartitioncircle indicates the
modularity of that partition following the color code on
the bottom right-hand side of the diagram. For simplic-
ity, we consider only single node changes; thus, we con-
nect two partitions, for instance 1 and 2, because the
change of a node to a new module in partition 1 gener-
ates partition 2. The arrows show the direction of in-
creasing modularity. Local maxima correspond to those
partitions that do not point to any other partition; that
is, the change of a single node does not increase the
modularity. In the example, there are two local maxima:
partition 1 and partition 15. To illustrate the concept of
basin of attraction, we show next to each partition a
colored bar (black and white) that represents the prob-
ability that a walker that starts from, for instance, partition 2 and only moves to partitions with larger modularity ends up in either of the local maxima. We use white
to indicate partition 15 and black to indicate partition 1. (C) Coclassification matrix. We show the number of times two nodes are classified in the same module, starting
from a random partition. Note that nodes a, c and b, d are always classified together because they are in the same module in both local maxima (partitions 1and 15).
In contrast, nodes a and b are only in the same module for one of the maxima (partition 1); therefore, the coclassification is lower than one, but larger than zero. (D)
Comparison with randomized networks. In this case, this is the only network that one can build keeping the same degree distribution and not allowing for self-loops.
Therefore, the average modularity for the local maxima of the randomized networks and that of the network under analysis are the same. Thus, our conclusion is that
this network has no internal organization. (E) Representation of the hierarchical organization for the example network. We show the ordered coclassification matrix
on the Left, and on the Right is the tree showing the organization of the nodes into modules. In this case, the network has no significant structure; thus, we show a
bar of a single color indicating that there is a single module. Note that a modularity maximization algorithm would have a certain chance (the probability depending
on the specific algorithm) of finding partition 15 as the optimal partition and would thus conclude that the network does have a modular structure.

www.pnas.org!cgi!doi!10.1073!pnas.0709460104

BIOCHEMISTRY. For the article ‘‘A surface on the androgen
receptor that allosterically regulates coactivator binding,’’ by Eva
Estébanez-Perpiñá, Alexander A. Arnold, Phuong Nguyen, Ed-
son Delgado Rodrigues, Ellena Mar, Raynard Bateman, Peter
Pallai, Kevan M. Shokat, John D. Baxter, R. Kiplin Guy, Paul
Webb, and Robert J. Fletterick, which appeared in issue 41,
October 9, 2007, of Proc Natl Acad Sci USA (104:16074–16079;
first published October 2, 2007; 10.1073!pnas.0708036104), the
author name Alexander A. Arnold should have appeared as
Leggy A. Arnold. The online version has been corrected. The
corrected author line appears below.

Eva Estébanez-Perpiñá, Leggy A. Arnold, Phuong Nguyen,
Edson Delgado Rodrigues, Ellena Mar, Raynard Bateman,
Peter Pallai, Kevan M. Shokat, John D. Baxter, R. Kiplin
Guy, Paul Webb, and Robert J. Fletterick

www.pnas.org!cgi!doi!10.1073!pnas.0709913104

18874 " PNAS " November 20, 2007 " vol. 104 " no. 47 www.pnas.org

 A: Base network; B: Partition network; C:
Coclassification matrix; D: Comparison to random
networks (all the same!); E: Ordered
coclassification matrix;

Conclusion: no structure...
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Corrections

APPLIED PHYSICAL SCIENCES. For the article ‘‘Extracting the
hierarchical organization of complex systems,’’ by Marta
Sales-Pardo, Roger Guimerà, André A. Moreira, and Luı́s
A. Nunes Amaral, which appeared in issue 39, September
25, 2007, of Proc Natl Acad Sci USA (104:15224–15229; first

published September 19, 2007; 10.1073!pnas.0703740104),
the authors note that, due to a printer’s error, Fig. 1B
appeared incorrectly. The corrected figure and its legend
appear below. This error does not affect the conclusions of
the article.
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Fig. 1. Schematic illustration of our method for a
simple network. (A) Example network. (B) Modularity
landscape. For the example network, there are 15 dis-
tinct groupings of nodes into modules. Each large col-
ored circle represents a partition, which we draw inside
the circle, with different colors indicating different mod-
ules. For clarity, we label each partition with a number
from1to15.Thecolorof thepartitioncircle indicates the
modularity of that partition following the color code on
the bottom right-hand side of the diagram. For simplic-
ity, we consider only single node changes; thus, we con-
nect two partitions, for instance 1 and 2, because the
change of a node to a new module in partition 1 gener-
ates partition 2. The arrows show the direction of in-
creasing modularity. Local maxima correspond to those
partitions that do not point to any other partition; that
is, the change of a single node does not increase the
modularity. In the example, there are two local maxima:
partition 1 and partition 15. To illustrate the concept of
basin of attraction, we show next to each partition a
colored bar (black and white) that represents the prob-
ability that a walker that starts from, for instance, partition 2 and only moves to partitions with larger modularity ends up in either of the local maxima. We use white
to indicate partition 15 and black to indicate partition 1. (C) Coclassification matrix. We show the number of times two nodes are classified in the same module, starting
from a random partition. Note that nodes a, c and b, d are always classified together because they are in the same module in both local maxima (partitions 1and 15).
In contrast, nodes a and b are only in the same module for one of the maxima (partition 1); therefore, the coclassification is lower than one, but larger than zero. (D)
Comparison with randomized networks. In this case, this is the only network that one can build keeping the same degree distribution and not allowing for self-loops.
Therefore, the average modularity for the local maxima of the randomized networks and that of the network under analysis are the same. Thus, our conclusion is that
this network has no internal organization. (E) Representation of the hierarchical organization for the example network. We show the ordered coclassification matrix
on the Left, and on the Right is the tree showing the organization of the nodes into modules. In this case, the network has no significant structure; thus, we show a
bar of a single color indicating that there is a single module. Note that a modularity maximization algorithm would have a certain chance (the probability depending
on the specific algorithm) of finding partition 15 as the optimal partition and would thus conclude that the network does have a modular structure.

www.pnas.org!cgi!doi!10.1073!pnas.0709460104

BIOCHEMISTRY. For the article ‘‘A surface on the androgen
receptor that allosterically regulates coactivator binding,’’ by Eva
Estébanez-Perpiñá, Alexander A. Arnold, Phuong Nguyen, Ed-
son Delgado Rodrigues, Ellena Mar, Raynard Bateman, Peter
Pallai, Kevan M. Shokat, John D. Baxter, R. Kiplin Guy, Paul
Webb, and Robert J. Fletterick, which appeared in issue 41,
October 9, 2007, of Proc Natl Acad Sci USA (104:16074–16079;
first published October 2, 2007; 10.1073!pnas.0708036104), the
author name Alexander A. Arnold should have appeared as
Leggy A. Arnold. The online version has been corrected. The
corrected author line appears below.

Eva Estébanez-Perpiñá, Leggy A. Arnold, Phuong Nguyen,
Edson Delgado Rodrigues, Ellena Mar, Raynard Bateman,
Peter Pallai, Kevan M. Shokat, John D. Baxter, R. Kiplin
Guy, Paul Webb, and Robert J. Fletterick

www.pnas.org!cgi!doi!10.1073!pnas.0709913104

18874 " PNAS " November 20, 2007 " vol. 104 " no. 47 www.pnas.org

 A: Base network; B: Partition network; C:
Coclassification matrix; D: Comparison to random
networks (all the same!); E: Ordered
coclassification matrix; Conclusion: no structure...
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 Method obtains a distribution of classification
hierarchies.

 Note: the hierarchy with the highest modularity score
isn’t chosen.

 Idea is to weight possible hierarchies according to their
basin of attraction’s size in the partition network.

 Next step: Given affinities, now need to sort nodes into
modules, submodules, and so on.

 Idea: permute nodes to minimize following cost

𝐶 = 1
𝑁

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝑀aff
𝑖𝑗 |𝑖 − 𝑗|.

 Use simulated annealing (slow).

 Observation: should achieve same results for more
general cost function: 𝐶 = 1

𝑁 ∑𝑁
𝑖=1 ∑𝑁

𝑗=1 𝑀aff
𝑖𝑗 𝑓(|𝑖 − 𝑗|)

where 𝑓 is a strictly monotonically increasing function
of 0, 1, 2, ...
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Shuffling for structure

Let then Pmax be the set of partitions for which the modularity M
is a local maxima, that is, partitions for which neither the change of
a single node from one module to another nor the merging of two
modules will yield a higher modularity (Fig. 1B). The most straight-
forward way to calculate Aij would be to consider all partitions P̃ !
Pmax, and find the fraction for which (i, j) are placed in the same
module. However, such a procedure would not take into consid-
eration the size of the basins of attraction of the different maxima.
To understand the importance of this fact, consider the ‘‘landscape’’
in Fig. 1 in which each node represents a partition of the network,
and for simplicity, we connect two partitions if the change of a single
node transforms one partition into the other. This landscape has
two local maxima, partitions 1 and 15. Therefore, if we were only
to consider those partitions, we would conclude that those parti-
tions are equally important. However, there is no reason to assume
that all partitions have the same importance. Actually, for networks
with a very clear modular structure, one expects that a few local
maxima will yield the most relevant information about the orga-
nization of the network. This idea is can be formalized through the
concept of basin of attraction.

Consider again the landscape in Fig. 1B. Suppose we wanted to
find a partition for which the modularity is a maximum with no a
priori information on the landscape. We would start by grouping the
nodes into a randomly chosen partition; let us say, partition 13. In

partition 13, nodes a and c are placed in one group, whereas nodes
b and d are placed into their own groups. There are two single node
changes that increase the modularity. Node b can be placed in the
same group as node d; this is partition 15, which is a local maxima.
Instead, node b can be placed in the same group as nodes a and c;
this is partition 14. Partition 14 is not a modularity maximum; thus
one would continue our random ascent of the modularity land-
scape. From partition 14, one could move to partition 1 or to
partition 15, both local maxima. This example illustrates that from
partition 13, one has a 25% chance of ending in partition 1 and a
75% chance of ending in partition 15. If one repeats this calculation
for every possible starting partition, one obtains the size of the basin
of attraction of the two local modularity maxima.

Formally, the size of the basin of attraction of P̃ is

b!P̃" ! !
P!P

b!P, P̃"

"P " [2]

where b(P, P̃) is the probability that starting from partition P one
ends at partition P̃ ! Pmax and !P! is the number of possible
partitions (Fig. 1B).

We propose that the affinity Aij of a pair of nodes (i, j) is then the
probability that when local maxima partition P̃ ! Pmax are sampled
with probabilities b(P̃), nodes (i, j) are classified in the same module.
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Fig. 2. Affinity measures and clustering methods. (A)
We generate a model network comprised of 640 nodes
with average degree 16 and with a three-level hierarchi-
cal structure (see SI Fig. 8 for results for a network with a
‘‘flat’’ organization of the nodes). We show the affinity
matrices Aij obtained for two different measures: (i) to-
pological overlap (11) and (ii) coclassification (see text
and Supplementary Information). The color scale goes
from red for an affinity of one to dark blue for an affinity
of zero. At the far right, we show the hierarchical tree
obtained by using two different methods: hierarchical
clustering and the ‘‘box clustering’’ method we propose.
In the hierarchical clustering tree, the vertical axis shows
the average distance, dij # 1 " Aij, of the matrix ele-
ments that have already merged. In the box-model clus-
tering tree, each row corresponds to one hierarchical
level. Different colors indicate different modules at that
level. To better identify which are the submodules at a
lower level, we color the nodes in the submodules with
shades of the color used for the modules in the level
above. Note that topological overlap fails to find any
modular structure beyond a locally dense connectivity
pattern. In contrast, the coclassification measure clearly
reveals the hierarchical organization of the network by
the ‘‘nested-box’’ pattern along the diagonal. Signifi-
cantly, thehierarchical treeobtainedviahierarchicalclus-
tering fails to reproduce the clear three-level hierarchical
structure that the affinity matrix displays, whereas the
box-model clustering tree accurately reproduces the
three-level hierarchical organization of the network. (B)
Accuracyof themethod.Wegeneratenetworkswith640
nodes and with built-in hierarchical structure comprising
one (Left), two (Center), and three (Right) levels. The top
level always comprises four modules of 160 nodes each.
For networks with a second level, each of the top-level
modules is organized into four submodules of 40 nodes.
For the networks with three levels, each level-two mod-
ule is further split into four submodules of 10 nodes. We
build networks with different degrees of level cohesive-
ness by tuning a single parameter # (see SI Text). For low
values of #, the levels are very cohesive, for high values of
# the levels are weakly cohesive. Because we know a priori which are the nodes that should be coclassified at each level, we measure the accuracy as the mutual
information between the empirical partition of the nodes and the theoretical one (23). We plot the mutual information versus# and, for comparison, we also plot the
accuracy of a standard community detection algorithm (24) in finding the top level of the networks (dashed green line). Each point is the average over 10different
realizations of the network. Filled circles, empty squares, and filled diamonds represent the accuracy at the top, middle, and lowest levels, respectively. Note that our
method isasgoodatdetectingcommunitiesasa standardcommunitydetectionalgorithmfornetworkswithaflatorganizationof thenodes.Additionally,ourmethod
is able to detect the top level for all cases analyzed, whereas standard modularity optimization algorithms are not.

15226 # www.pnas.org$cgi$doi$10.1073$pnas.0703740104 Sales-Pardo et al.

 𝑁 = 640,
 ⟨𝑘⟩ = 16,
 3 tiered

hierarchy.
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Shuffling for structure
 Define cost matrix as T with entries 𝑇𝑖𝑗 = 𝑓(|𝑖 − 𝑗|).

 Weird observation: if 𝑇𝑖𝑗 = (𝑖 − 𝑗)2 then T is of
rank 3, independent of 𝑁 .

 Discovered by numerical inspection …
 The eigenvalues are

𝜆1 = −1
6𝑛(𝑛2 − 1),

𝜆2 = +√𝑛𝑆𝑛,4 + 𝑆𝑛,2, and

𝜆3 = −√𝑛𝑆𝑛,4 + 𝑆𝑛,2.

where

𝑆𝑛,2 = 1
12𝑛(𝑛2 − 1), and

𝑆𝑛,4 = 1
240𝑛(𝑛2 − 1)(3𝑛2 − 7).
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 Define cost matrix as T with entries 𝑇𝑖𝑗 = 𝑓(|𝑖 − 𝑗|).
 Weird observation: if 𝑇𝑖𝑗 = (𝑖 − 𝑗)2 then T is of

rank 3, independent of 𝑁 .
 Discovered by numerical inspection …
 The eigenvalues are

𝜆1 = −1
6𝑛(𝑛2 − 1),

𝜆2 = +√𝑛𝑆𝑛,4 + 𝑆𝑛,2, and

𝜆3 = −√𝑛𝑆𝑛,4 + 𝑆𝑛,2.

where

𝑆𝑛,2 = 1
12𝑛(𝑛2 − 1), and

𝑆𝑛,4 = 1
240𝑛(𝑛2 − 1)(3𝑛2 − 7).
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 Eigenvectors

( ⃗𝑣1)𝑖 = (𝑖 − 𝑛 + 1
2 ) ,

( ⃗𝑣2)𝑖 = (𝑖 − 𝑛 + 1
2 )

2
+ √𝑆𝑛,4/𝑛, and

( ⃗𝑣3)𝑖 = (𝑖 − 𝑛 + 1
2 )

2
− √𝑆𝑛,4/𝑛.

 Remarkably,

𝑇 = 𝜆1 ̂𝑣1 ̂𝑣T1 + 𝜆2 ̂𝑣2 ̂𝑣T2 + 𝜆3 ̂𝑣3 ̂𝑣T3.

 The next step: figure out how to capitalize on
this...
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Note that, in contrast to other affinity measures proposed in refs.
9, 15, and 18, the measure we propose does not necessarily coincide
with the ‘‘optimal’’ division of nodes into modules, that is, the
partition that maximizes M (20). In fact, the modules at the top level
of the hierarchy do not necessarily correspond to the best partition
found for the global network, even for relatively simple networks
(Fig. 2C).

Statistical Significance of the Hierarchical Organization. Given a set
of elements and a matrix of affinities between them, a commonly
used tool to cluster the elements and, presumably, uncover their
hierarchical organization is hierarchical clustering (25, 26). Hier-
archical clustering methods have three major drawbacks: (i) They
are only accurate at a local level—at every step a pair of units merge
and some details of the affinity matrix are averaged with an
inevitable loss of information. (ii) The output is always a hierar-
chical tree, regardless of whether the system is indeed hierarchically
organized or not. (iii) There is no statistically sound general
criterion to determine the relevant levels on the hierarchy.

To overcome the first caveat of agglomerative methods such as
hierarchical clustering, one necessarily has to follow a top-to-
bottom approach that keeps all of the information contained in the
affinity matrix. That is the spirit of divisive methods such ask-means
or principal component analysis (25), which group nodes into
‘‘clusters’’ given an affinity matrix. However, these methods have a
significant limitation: The number of clusters is an external param-
eter, and, again, there is no sound and general criterion to objec-
tively determine the correct number of clusters.

Because of the caveats of current agglomerative and divisive
methods, we propose a ‘‘box-clustering’’ method that iteratively
identifies in an unsupervised manner the modules at each level in
the hierarchy. Starting from the top level, each iteration corre-
sponds to a different hierarchical level (Fig. 2).

First, to assess whether the network under analysis has an internal
organization, we need to compare it with the appropriate null
model, which in this case is an ensemble of ‘‘equivalent’’ networks
with no internal organization. These equivalent networks must have
the same number of nodes and an identical degree sequence. A
standard method for generating such networks is the Markov-chain
switching algorithm (27, 28). Despite their having no internal
structure, these randomized networks have numerous local mod-
ularity maxima (19). Thus, to quantify the level of organization of
a network, one needs to compare the modularities of the sampled
maxima for the original network and its corresponding random
ensemble; if the network has a nonrandom internal structure, then
local maxima in the original landscape should have significantly
larger modularities than local maxima in the landscapes of the
randomized networks.

Specifically, for a given network, we compute the average mod-
ularity Mav from {M (P̃) : P̃ ! Pmax}. Then, we compute the same
quantity Mav

i for each network in the equivalent random ensemble.
In virtue of the central limit theorem, the set of average modular-
ities for the whole ensemble {Mav

i } is normally distributed with
mean Mrand and variance !Mrand

2 (see SI Fig. 6). To quantify the level
of organization of a network, we thus compute the z-score of the
average modularity z ! (Mav " Mrand)/!Mrand.

If z is larger than a threshold value zt, then we conclude that
the network has internal structure, and we proceed to identify
the different modules; otherwise, we conclude that the network
has no structure (Fig. 1D). In what follows, we show results for
zt ! 2.3267, which corresponds to a 1% significance level‡ (SI
Text and SI Fig. 9).

Building the Hierarchical Tree. In networks organized in a hierar-
chical fashion, nodes that belong to the same module at the bottom
level of the hierarchy have greater affinity than nodes that are
together at a higher level in the hierarchy. Thus, if a network has
a hierarchical organization, one will be able to order the nodes in

such a way that groups of nodes with large affinity are close to each
other. With such an ordering, the affinity matrix will have a
‘‘nested’’ block-diagonal structure. This is indeed what we find for
networks belonging to the ensemble of hierarchically nested ran-
dom graphs (Fig. 2).

For real-world networks, we do not know a priori which nodes are
going to be coclassified together; that is, we do not know which is
the ordering of the nodes for which the affinity matrix has a nested
block-diagonal structure. To find such an ordering, we use simu-
lated annealing (29) to minimize a cost function that weighs each
matrix element with its distance to the diagonal (30)

C "
1
N !

i, j!1

N

Aij"i # j ", [3]

where N is the order of the affinity matrix (see SI Text and SI Fig.
7). This problem belongs to the general class of quadratic assign-
ment problems (31). Other particular cases of quadratic assignment
problems have been suggested to uncover different features of
similarity matrices (32). Our algorithm is able to find the proper
ordering for the affinity matrix and to accurately reveal the struc-
ture of hierarchically nested random graphs (Fig. 2).

The computational cost of this step, the slowest one in our
algorithm, limits network sizes to #10,000 nodes. However, the cost
can be reduced by using faster, but less accurate, methods for
ordering the matrix, such as principal component analysis.

Unsupervised Extraction of the Structure. Given an ordered affinity
matrix, the last step is to partition the nodes into modules at each
relevant hierarchical level. An ansatz that follows naturally from the
considerations in the previous section and the results in Fig. 2 is
that, if a module at level ! (or the whole network at level 0) has
internal modular structure, the corresponding affinity matrix is
block-diagonal: At level !, the matrix displays boxes along the
diagonal, such that elements inside each box s have an affinity A!

s ,
whereas matrix elements outside the boxes have an affinityB! $ A!

s .
Note that the number of boxes for each affinity matrix is not fixed;
we determine the ‘‘best’’ set of boxes by least-squares fitting of the
block-diagonal model to the affinity matrix.

Importantly, we want to balance the ability of the model to
accurately describe the data with its parsimony; that is, we do not
want to over-fit the data. Thus, we use the Bayesian information
criterion to determine the best set of boxes (33).§

To find the modular organization of the nodes at the top level
(level 1), we fit the block diagonal model to the global affinity

‡Results for real networks at a 5% significance level are identical; however, the more
stringent threshold is more efficient at detecting the last level in the hierarchy for model
networks. Only for a 1–3% of the cases—depending on the cohesiveness of the levels—
does the algorithm find one more level than expected.

§We have also applied Akaike’s information criterion (34), obtaining the same results for
nearly all cases.

Table 1. Top-level structure of real-world networks

Network Nodes Edges Modules Main modules

Air transportation 3,618 28,284 57 8
E-mail 1,133 10,902 41 8
Electronic circuit 516 686 18 11
Escherichia coli KEGG 739 1,369 39 13
E. coli UCSD 507 947 28 17

We show both the total number of modules and the number of main
modules at the top level. Main modules are those composed of more than 1%
of the nodes. Note that there is no correlation between the size or number of
edges of the network and the number of main modules. KEGG, Kyoto Ency-
clopedia of Genes and Genomes; UCSD, University of California at San Diego.
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matrix. As we said previously, we assume that the information at
different levels in the hierarchy is decoupled, thus to detect
submodules beyond the first level, one needs to break the network
into the subnetworks defined by each module and apply the same
procedure from the start. The algorithm iterates these steps for each
identified box until no subnetworks are found to have internal
structure.

Method Validation
We validate our method on hierarchically nested random graphs
with one, two, and three hierarchical levels. We define the accuracy
of the method as the mutual information between the empirical
partition and the theoretical one (23). Fig. 2C shows that the
algorithm uncovers the correct number of levels in the hierarchy.

Moreover, our method always detects the top level, even for the
networks with three hierarchical levels. In contrast, because the
partition that globally maximizes M corresponds to the submodules
in the second level, even the more accurate module identification
algorithms based on modularity maximization would fail to capture
the top level organization (20).

The hierarchically nested random graphs considered above have
a homogeneous hierarchical structure; however, real-world net-
works are not likely to be so regular. In particular, for real-world
networks, one expects that some modules will have deeper hierar-
chical structures than others. We thus have verified that our method
is also able to correctly uncover the organization of model networks
with heterogeneous hierarchical structures (see SI Fig. 10).

Analysis of Real-World Networks
Having validated our method, we next analyze different types of
real-world networks for which we have some insight into the
network structure: the worldwide air-transportation network (35–
37), an e-mail exchange network of a Catalan university (13), and
an electronic circuit (4).

In the air-transportation network, nodes correspond to cities
(that is, all airports around major cities would be merged into a
single node), and two nodes are connected if there is a nonstop
flight connecting them. In the e-mail network, nodes are people and
two people are connected if they send e-mails to each other. In the
electronic network, nodes are transistors and two transistors are
connected if the output of one transistor is the input of the other
(Table 1).

We find that the air-transportation network is strongly modular
and has a deep hierarchical organization (Fig. 3). This finding does

not come as a surprise because historical, economic, political, and
geographical constraints shape the topology of the network (35–
37). We find eight main modules that closely match major conti-
nents and subcontinents and major political divisions, and thus they
truly represent the highest level of the hierarchy.¶

The electronic circuit network is comprised of eight D-flip-flops
and 58 logic gates (4). Our method identifies two levels in the
network (SI Fig. 12A). At the top level, modules comprise either a
D-flip-flop plus some additional gates, or a group of logic gates. At
the second level, the majority of modules comprise single gates.

For the e-mail network, five of the seven major modules at the
top level (SI Fig. 12B) correspond to schools in the university, with
!70% of the nodes in each of those modules affiliated with the
corresponding school. The remaining two major modules at the top
level are a mixture of schools and administration offices (often
collocated on campus), which are distinctly separated at the second
level. The second level also identifies major departments and
groups within a school, as well as research centers closely related to
individual schools.

Application to Metabolic Networks
Finally, we analyze the metabolic networks of E. coli obtained
from three different sources! (Fig. 4 and SI Fig. 13): the KEGG
database (40, 41), the Ma-Zeng database (42), and the recon-
struction compiled by Palsson’s Systems Biology Laboratory at
the UCSD (43). In these networks, nodes are metabolites and
two metabolites are connected if there is a reaction that
transforms one into the other (44).

To quantify the plausibility of our classification scheme, we
analyze the within-module consistency of metabolite pathway clas-
sification for the top and the second levels of the metabolic network
of E. coli (43). For each module, we first identify the pathways
represented; then, we compute the fraction of metabolites that are
classified in the most abundant pathway. We find that there is a
clear correlation between modules and known pathways: At the top
level, for all of the modules except one (the central metabolism

¶The ability of the present method to detect the top level is significant. A previous study
coauthored by two of us identified 19 modules in the worldwide air-transportation
network (37) by using the most accurate modularity maximization algorithm in the
literature (38).

!In the SI Text, we also show the organization obtained for the UCSD reconstruction of the
metabolic network for Helicobacter pylori (39).

DC

A B

Fig. 3. Hierarchical organization of the air-
transportation network. (A) Global-level af-
finity matrix and hierarchical tree (the repre-
sentation is the same used in Fig. 2). (B) Top-
level modules. Each dot represents a city and
different colors represent different modules.
Note that the top level in the hierarchy cor-
responds to major geopolitical units. (C) The
‘‘Eurasian’’module (which is composedof the
majority of European countries, ex-Soviet
Union countries, Middle-Eastern countries,
India, and countries in Northern half of Af-
rica) splits for levels ! " 2 into five submod-
ules. (D)The ‘‘NearandMiddleEast’’ submod-
ule further splits into seven submodules for
! " 3 (D). Note that the air-transportation
network is large and very dense (Table 1), and
thus the organization of the network is not at
all apparent (SI Fig. 11). Remarkably, the
modules our method detects show a clear
agreement with geopolitical units.

15228 " www.pnas.org#cgi#doi#10.1073#pnas.0703740104 Sales-Pardo et al.

 Modules found match up with geopolitical units.
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module), we find that the most abundant pathway comprises!50%
of the metabolites in the module.

For the second level, we find that for most of the modules, all of
the metabolites are classified in the same pathway. We also detect
smaller pathways that are not visible at the top level (such as those
for polyketides and nonribosomal peptides, and for secondary
metabolites).

Conclusion
Our analysis of model and real-world networks demonstrates that
our algorithm is able to provide an objective multiscale description
of complex systems that, although not affected by human subjec-
tivity, captures our current understanding of these systems. For
example, for the air-transportation network, our method extracts
features all the way from continents to country boundaries. Further,
our algorithm can be easily generalized to other classes of graphs
such as bipartite graphs (e.g., collaboration networks or protein
interaction networks obtained from bait–prey data) and directed
graphs (e.g., citation networks, food webs, or gene-regulatory
networks). The steps of the method would remain unchanged; one
would only have to replace Eq. 1 by a suitable measure of
modularity for the graph under analysis (45).

Interestingly, for metabolic networks, the algorithm reveals that
‘‘known’’ pathways do not correspond to a single module at the top
level, implying that large pathways are in fact composed of smaller
units. Intriguingly, these units are not necessarily uniform in
‘‘pathway composition’’ but are a mixture of submodules associated
to different pathways. Our results thus prompt the question of how
the modules we identify relate to metabolism evolution (46).

More generally, our results have significant implications for
systems level approach to the study of cellular processes. A systems
approach will only be successful if we are able to develop methods
that enable us to extract the small set of information that is
significant at the chosen scale of observation, whether this scale is
molecular or organismal. A scalable multiscale representation of a
biological process, such as the one we demonstrate here, will guide
the purposeful design and re-engineering of biological systems for
therapeutic purposes.

We thank U. Alon, A. Arenas, and S. Itzkovitz for providing network data
and W. Jiang for advice with the statistical analysis. M.S.-P. and R.G. thank
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38. Guimerà R, Amaral LAN (2005) Nature 433:895–900.
39. Thiele I, Vo TD, Price ND, Palsson BØ (2005) J Bacteriol 187:5818–5830.
40. Goto S, Nishioka T, Kanehisa M (1998) Bioinformatics 14:591–599.
41. Kanehisa M, Goto S (2000) Nucleic Acids Res 28:27–30.
42. Ma H, Zeng A-P (2003) Bioinformatics 19:270–277.
43. Reed JL, Vo TD, Schilling CH, Palsson BØ (2003) Genome Biol 4:R54.
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Fig. 4. Hierarchical structure of metabolic networks. (A) Global-level
affinity matrices and hierarchical trees for the UCSD reconstruction of the
metabolic network of E. coli (43). The overall organization of the network
is similar and independent of the reconstruction used to build the network
(see SI Fig. 11). (B) We analyze the within-module consistency of metabolite
pathway classification for the first (Upper plot) and the second (Lower plot)
levels. For each module, we first identify the pathway classifications of the
corresponding metabolites; then, we compute the fraction of metabolites
that are classified in the most abundant pathway. In the plots, each bar
represents one module, its width being proportional to the number of
nodes it contains. We color each bar according to its most abundant
pathway following the color code on the right-hand side. At the second
level (Lower plot), we show each submodule directly below its correspond-
ing top level module. Again, the width of each submodule is proportional
to its size. Note that, at the first level (Upper), for all modules except one,
the most abundant pathway is composed of more than 50% of the metab-
olites in the module. Remarkably, at the second level (Lower), for most of
the modules all of the metabolites are classified in the same pathway.
Moreover, at the second level, we detect smaller pathways that are not
visible at the top level.
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General structure detection

 “Detecting communities in large networks”
Capocci et al. (2005) [4]

 Consider normal matrix K−1𝐴, random walk
matrix 𝐴TK−1, Laplacian K − A, and 𝐴𝐴T.

 Basic observation is that eigenvectors associated
with secondary eigenvalues reveal evidence of
structure.

 Builds on Kleinberg’s HITS algorithm.
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 “Detecting communities in large networks”
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 Consider normal matrix K−1𝐴, random walk
matrix 𝐴TK−1, Laplacian K − A, and 𝐴𝐴T.

 Basic observation is that eigenvectors associated
with secondary eigenvalues reveal evidence of
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 Consider normal matrix K−1𝐴, random walk
matrix 𝐴TK−1, Laplacian K − A, and 𝐴𝐴T.
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 Example network:

Thus, solving the eigenproblem is equivalent to minimizing function (1) with
constraint (2), where the xi’s are eigenvectors components. The absolute minimum
corresponds to the trivial eigenvector, which is constant. The other stationary points
correspond to eigenvectors where components associated to well connected nodes
assume similar values.

In order to compute cluster sizes and distribution, methods such as bisection or
edge-betweenness based ones are very poor in detecting the end of the recursive
splitting. Our approach, instead, immediately detects the number of clear clusters
from the eigenvectors profile.

As an illustrative example, we show in Fig. 2 the profile of the second eigenvectors
of D!1W corresponding to the simple graph shown in Fig. 1 with S ¼ 19 nodes,
where random weights between 1 and 10 were assigned to the links (Figs. 1 and 2).
The components of the eigenvectors assume approximately constant values on nodes
belonging to the same community. Thus, the number of communities emerges
naturally and it is not needed as input.

However, as aforementioned, when dealing with large networks with no clear
partitioning, the precise value of the eigenvector components is of little use. In such
situations, the typical eigenvector profile is not step-like, but resembles a continuous
curve. Nevertheless, our method can still be applied, and efficiently detects sets of
well connected nodes. In fact, components corresponding to nodes belonging to the
same communities are still strongly correlated taking, in each eigenvector, similar
values among themselves. Thus, a natural way to identify communities in an
automatic manner, is to measure the correlation

rij ¼
hxixji!h xiihxji

½ðhx2i i!h xii2Þðhx2j i!h xji2Þ&1=2
, (4)

where the average h'i is over the first few nontrivial eigenvectors. The quantity rij
measures the community closeness between nodes i and j: Though the performance
may be improved by averaging over more and more eigenvectors, with increased
computational effort, we find that indeed a small number of eigenvectors suffices to
identify the community to which nodes belong, even in large networks.

ARTICLE IN PRESS

Fig. 1. Network employed as an example, with S ¼ 19 and random weights between 1 and 10 assigned to
the links. Three clear clusters appear, composed by nodes 0–6, 7–12 and 13–19.

A. Capocci et al. / Physica A 352 (2005) 669–676672
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 Second eigenvector’s components:

When dealing with a directed network, links do not correspond to any equivalence
relation. Rather, pointing to common neighbors is a significant relation, as suggested
in the sociologists’ literature where this quantity measures the so-called structural
equivalence of nodes [18]. Accordingly, in a directed network, clusters should be
composed by nodes pointing to a high number of common neighbors, no matter
their direct linkage. For directed networks, we thus modify our method in the
streamline of the HITS algorithm [17]. The HITS algorithm was proposed on
empirical bases to find the main communities in large oriented networks. It assumes
that the largest components (in the absolute value) of eigenvectors of the matrices
AAT and ATA correspond to highly clustered nodes belonging to a single
community. Such algorithm efficiently detects the main communities, even when
these are not sharply defined. However, it becomes computationally heavy when one
is interested in minor communities, which correspond to smaller eigenvalues. As
explained in the undirected case, we tackle this issue by combining information from
the first few eigenvectors of the normal matrix and extracting the community
structure from correlations between the same components in different eigenvectors.

To detect the community structure in a directed network, we therefore replace, in
the previous analysis, the matrix W with a matrix Y ¼ WWT: This corresponds to
replacing the directed network with an undirected weighted network, where nodes
pointing to common neighbors are connected by a link, whose intensity is
proportional to the total sum of the weights of the links pointing from the two
original nodes to the common neighbors. Then, one performs the analysis on the
undirected network as described previously. Thus, the function to minimize in this
case is

yðxÞ ¼
X1;S

ijl

ðxi $ xjÞ2wilwjl . (5)

ARTICLE IN PRESS

Fig. 2. Values of the 2nd eigenvector components for matrix D$1W relative to the graph depicted
in Fig. 1.

A. Capocci et al. / Physica A 352 (2005) 669–676 673
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 Network of word associations for 10616 words.
 Average in-degree of 7.
 Using 2nd to 11th evectors of a modified version

of AAT:

experiments. The algorithm proves to be successful in clustering nodes (in this case,
words) according to reasonable criteria, and provides an automatic way to extract
the most connected sets of nodes to a given one in a set of over 104: Given the broad
range of applicability, such method suggests a reliable way of clustering large-scale
networks occurring in different fields, including biology, computer science and
sociology.

We enjoyed useful discussion and suggestions by Ramon Ferrer i Cancho and
Miguel-Angel Muñoz.

We acknowledge partial support from the FET Open Project IST-2001-33555
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Table 1

Words most correlated to science, literature and piano in the eigenvectors of Q!1WWT

Science 1 Literature 1 Piano 1

Scientific 0.994 Dictionary 0.994 Cello 0.993
Chemistry 0.990 Editorial 0.990 Fiddle 0.992
Physics 0.988 Synopsis 0.988 Viola 0.990
Concentrate 0.973 Words 0.987 Banjo 0.988
Thinking 0.973 Grammar 0.986 Saxophone 0.985
Test 0.973 Adjective 0.983 Director 0.984
Lab 0.969 Chapter 0.982 Violin 0.983
Brain 0.965 Prose 0.979 Clarinet 0.983
Equation 0.963 Topic 0.976 Oboe 0.983
Examine 0.962 English 0.975 Theater 0.982

Values indicate the correlation.
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LETTERS

Hierarchical structure and the prediction of missing
links in networks
Aaron Clauset1,3, Cristopher Moore1,2,3 & M. E. J. Newman3,4

Networks have in recent years emerged as an invaluable tool for
describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth overmultiple
scales. Inmany cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr
(Fig. 1).

This model, which we call a hierarchical random graph, is similar
in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one.Wewish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random

1Department of Computer Science, and 2Department of Physics andAstronomy, University of NewMexico, Albuquerque, NewMexico 87131, USA. 3Santa Fe Institute, 1399Hyde Park
Road, Santa Fe, New Mexico 87501, USA. 4Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA.

Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth overmultiple
scales. Inmany cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr
(Fig. 1).

This model, which we call a hierarchical random graph, is similar
in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one.Wewish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random
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Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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 Idea: Shades indicate probability that nodes in left
and right subtrees of dendogram are connected.

 Handle: Hierarchical random graph models.
 Plan: Infer consensus dendogram for a given real

network.
 Obtain probability that links are missing (big

problem...).
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Networks have in recent years emerged as an invaluable tool for
describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth overmultiple
scales. Inmany cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr
(Fig. 1).

This model, which we call a hierarchical random graph, is similar
in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one.Wewish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random
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Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
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Vol 453 | 1 May 2008 |doi:10.1038/nature06830

98
Nature   Publishing Group©2008

LETTERS

Hierarchical structure and the prediction of missing
links in networks
Aaron Clauset1,3, Cristopher Moore1,2,3 & M. E. J. Newman3,4

Networks have in recent years emerged as an invaluable tool for
describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth overmultiple
scales. Inmany cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr
(Fig. 1).

This model, which we call a hierarchical random graph, is similar
in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one.Wewish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random
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Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
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Networks have in recent years emerged as an invaluable tool for
describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth overmultiple
scales. Inmany cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr
(Fig. 1).

This model, which we call a hierarchical random graph, is similar
in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one.Wewish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random
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Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth overmultiple
scales. Inmany cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.
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are lower in the tree than those of more distantly related pairs (see
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tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr
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in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
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nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one.Wewish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
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Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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Networks have in recent years emerged as an invaluable tool for
describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth overmultiple
scales. Inmany cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr
(Fig. 1).

This model, which we call a hierarchical random graph, is similar
in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one.Wewish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random
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Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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Networks have in recent years emerged as an invaluable tool for
describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth overmultiple
scales. Inmany cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr
(Fig. 1).

This model, which we call a hierarchical random graph, is similar
in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one.Wewish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random
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Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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graph can capture behaviour of this kind using probabilities pr that
decrease as wemove higher up the tree. Conversely, probabilities that
increase as we move up the tree correspond to ‘disassortative’ struc-
tures in which vertices are less likely to be connected on small scales
than on large ones. By letting the pr values vary arbitrarily throughout
the dendrogram, the hierarchical random graph can capture both
assortative and disassortative structure, as well as arbitrary mixtures
of the two, at all scales and in all parts of the network.

To demonstrate ourmethod we have used it to construct hierarch-
ical decompositions of three example networks drawn fromdisparate
fields: the metabolic network of the spirochaete Treponema palli-
dum18, a network of associations between terrorists19, and a food
web of grassland species20. To test whether these decompositions
accurately capture the important structural features of the networks,
we use the sampled dendrograms to generate new networks, different
in detail from the originals but, by definition, having similar hier-
archical structure (see Supplementary Information for more details).
We find that these ‘resampled’ networks match the statistical pro-
perties of the originals closely, including their degree distributions,
clustering coefficients, and distributions of shortest path lengths
between pairs of vertices, despite the fact that none of these properties
is explicitly represented in the hierarchical random graph (Table 1,
and Supplementary Fig. 3). It therefore seems that a network’s hier-
archical structure is capable of explaining a wide variety of other
network features as well.

The dendrograms produced by our method are also of interest in
themselves, as a graphical representation and summary of the hier-
archical structure of the observed network. As discussed above, our
method can generate not just a single dendrogram but a set of den-
drograms, each of which is a good fit to the data. From this set we can,
by using techniques from phylogeny reconstruction21, create a single
consensus dendrogram, which captures the topological features that
appear consistently across all or a large fraction of the dendrograms
and typically is a better summary of the network’s structure than any
individual dendrogram. Figure 2a shows such a consensus dendro-
gram for the grassland species network, which clearly reveals com-
munities and subcommunities of plants, herbivores, parasitoids and
hyperparasitoids.

Another application of the hierarchical decomposition is the pre-
diction of missing interactions in networks. In many settings, the
discovery of interactions in a network requires significant experi-
mental effort in the laboratory or the field. As a result, our current
pictures of many networks are substantially incomplete22–28. An
alternative to checking exhaustively for a connection between every
pair of vertices in a network is to try to predict, in advance and on the
basis of the connections already observed, which vertices are most
likely to be connected, so that scarce experimental resources can be
focused on testing for those interactions. If our predictions are good,
we can in this way substantially reduce the effort required to establish
the network’s topology.

The hierarchical decomposition can be used as the basis for an
effective method of predicting missing interactions as follows.
Given an observed but incomplete network, we generate, as described
above, a set of hierarchical random graphs—dendrograms and the
associated probabilities pr—that fit that network. Then we look for
pairs of vertices that have a high average probability of connection
within these hierarchical random graphs but are unconnected in the

observed network. These pairs we consider themost likely candidates
formissing connections. (Technical details of the procedure are given
in Supplementary Information.)

We demonstrate the method by using our three example networks
again. For each network we remove a subset of connections chosen
uniformly at random and then attempt to predict, on the basis of the
remaining connections, which have been removed. A standardmetric
for quantifying the accuracy of prediction algorithms, commonly
used in the medical and machine learning communities, is the
AUC statistic, which is equivalent to the area under the receiver
operating characteristic (ROC) curve29. In the present context, the
AUC statistic can be interpreted as the probability that a randomly
chosenmissing connection (a true positive) is given a higher score by
our method than a randomly chosen pair of unconnected vertices (a
true negative). Thus, the degree to which the AUC exceeds 0.5 indi-
cates how much better our predictions are than chance. Figure 2
shows the AUC statistic for the three networks as a function of the
fraction of the connections known to the algorithm. For all three
networks our algorithm does far better than chance, indicating that
hierarchy is a strong general predictor of missing structure. It is also
instructive to compare the performance of our method with that of
other methods for link prediction8. Previously proposed methods
include assuming that vertices are likely to be connected if they have
many common neighbours, if there are short paths between them, or
if the product of their degrees is large. These approaches work well
for strongly assortative networks such as collaboration and citation

Table 1 | Comparison of original and resampled networks

Network Ækæreal Ækæsamp Creal Csamp dreal dsamp

T. pallidum 4.8 3.7(1) 0.0625 0.0444(2) 3.690 3.940(6)
Terrorists 4.9 5.1(2) 0.361 0.352(1) 2.575 2.794(7)
Grassland 3.0 2.9(1) 0.174 0.168(1) 3.29 3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by
resampling from our hierarchical model. The generated networks closely match the average
degree Ækæ, clustering coefficient C and average vertex–vertex distance d in each case,
suggesting that they capture much of the structure of the real networks. Parenthetical values
indicate standard errors on the final digits.

b

a

Figure 2 | Application of the hierarchical decomposition to the network of
grassland species interactions. a, Consensus dendrogram reconstructed
from the sampled hierarchical models. b, A visualization of the network in
which the upper few levels of the consensus dendrogram are shown as boxes
around species (plants, herbivores, parasitoids, hyperparasitoids and hyper-
hyperparasitoids are shown as circles, boxes, down triangles, up triangles
and diamonds, respectively). Note that in several cases a set of parasitoids is
grouped into a disassortative community by the algorithm, not because they
prey on each other but because they prey on the same herbivore.
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graph can capture behaviour of this kind using probabilities pr that
decrease as wemove higher up the tree. Conversely, probabilities that
increase as we move up the tree correspond to ‘disassortative’ struc-
tures in which vertices are less likely to be connected on small scales
than on large ones. By letting the pr values vary arbitrarily throughout
the dendrogram, the hierarchical random graph can capture both
assortative and disassortative structure, as well as arbitrary mixtures
of the two, at all scales and in all parts of the network.

To demonstrate ourmethod we have used it to construct hierarch-
ical decompositions of three example networks drawn fromdisparate
fields: the metabolic network of the spirochaete Treponema palli-
dum18, a network of associations between terrorists19, and a food
web of grassland species20. To test whether these decompositions
accurately capture the important structural features of the networks,
we use the sampled dendrograms to generate new networks, different
in detail from the originals but, by definition, having similar hier-
archical structure (see Supplementary Information for more details).
We find that these ‘resampled’ networks match the statistical pro-
perties of the originals closely, including their degree distributions,
clustering coefficients, and distributions of shortest path lengths
between pairs of vertices, despite the fact that none of these properties
is explicitly represented in the hierarchical random graph (Table 1,
and Supplementary Fig. 3). It therefore seems that a network’s hier-
archical structure is capable of explaining a wide variety of other
network features as well.

The dendrograms produced by our method are also of interest in
themselves, as a graphical representation and summary of the hier-
archical structure of the observed network. As discussed above, our
method can generate not just a single dendrogram but a set of den-
drograms, each of which is a good fit to the data. From this set we can,
by using techniques from phylogeny reconstruction21, create a single
consensus dendrogram, which captures the topological features that
appear consistently across all or a large fraction of the dendrograms
and typically is a better summary of the network’s structure than any
individual dendrogram. Figure 2a shows such a consensus dendro-
gram for the grassland species network, which clearly reveals com-
munities and subcommunities of plants, herbivores, parasitoids and
hyperparasitoids.

Another application of the hierarchical decomposition is the pre-
diction of missing interactions in networks. In many settings, the
discovery of interactions in a network requires significant experi-
mental effort in the laboratory or the field. As a result, our current
pictures of many networks are substantially incomplete22–28. An
alternative to checking exhaustively for a connection between every
pair of vertices in a network is to try to predict, in advance and on the
basis of the connections already observed, which vertices are most
likely to be connected, so that scarce experimental resources can be
focused on testing for those interactions. If our predictions are good,
we can in this way substantially reduce the effort required to establish
the network’s topology.

The hierarchical decomposition can be used as the basis for an
effective method of predicting missing interactions as follows.
Given an observed but incomplete network, we generate, as described
above, a set of hierarchical random graphs—dendrograms and the
associated probabilities pr—that fit that network. Then we look for
pairs of vertices that have a high average probability of connection
within these hierarchical random graphs but are unconnected in the

observed network. These pairs we consider themost likely candidates
formissing connections. (Technical details of the procedure are given
in Supplementary Information.)

We demonstrate the method by using our three example networks
again. For each network we remove a subset of connections chosen
uniformly at random and then attempt to predict, on the basis of the
remaining connections, which have been removed. A standardmetric
for quantifying the accuracy of prediction algorithms, commonly
used in the medical and machine learning communities, is the
AUC statistic, which is equivalent to the area under the receiver
operating characteristic (ROC) curve29. In the present context, the
AUC statistic can be interpreted as the probability that a randomly
chosenmissing connection (a true positive) is given a higher score by
our method than a randomly chosen pair of unconnected vertices (a
true negative). Thus, the degree to which the AUC exceeds 0.5 indi-
cates how much better our predictions are than chance. Figure 2
shows the AUC statistic for the three networks as a function of the
fraction of the connections known to the algorithm. For all three
networks our algorithm does far better than chance, indicating that
hierarchy is a strong general predictor of missing structure. It is also
instructive to compare the performance of our method with that of
other methods for link prediction8. Previously proposed methods
include assuming that vertices are likely to be connected if they have
many common neighbours, if there are short paths between them, or
if the product of their degrees is large. These approaches work well
for strongly assortative networks such as collaboration and citation

Table 1 | Comparison of original and resampled networks

Network Ækæreal Ækæsamp Creal Csamp dreal dsamp

T. pallidum 4.8 3.7(1) 0.0625 0.0444(2) 3.690 3.940(6)
Terrorists 4.9 5.1(2) 0.361 0.352(1) 2.575 2.794(7)
Grassland 3.0 2.9(1) 0.174 0.168(1) 3.29 3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by
resampling from our hierarchical model. The generated networks closely match the average
degree Ækæ, clustering coefficient C and average vertex–vertex distance d in each case,
suggesting that they capture much of the structure of the real networks. Parenthetical values
indicate standard errors on the final digits.
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Figure 2 | Application of the hierarchical decomposition to the network of
grassland species interactions. a, Consensus dendrogram reconstructed
from the sampled hierarchical models. b, A visualization of the network in
which the upper few levels of the consensus dendrogram are shown as boxes
around species (plants, herbivores, parasitoids, hyperparasitoids and hyper-
hyperparasitoids are shown as circles, boxes, down triangles, up triangles
and diamonds, respectively). Note that in several cases a set of parasitoids is
grouped into a disassortative community by the algorithm, not because they
prey on each other but because they prey on the same herbivore.
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graph can capture behaviour of this kind using probabilities pr that
decrease as wemove higher up the tree. Conversely, probabilities that
increase as we move up the tree correspond to ‘disassortative’ struc-
tures in which vertices are less likely to be connected on small scales
than on large ones. By letting the pr values vary arbitrarily throughout
the dendrogram, the hierarchical random graph can capture both
assortative and disassortative structure, as well as arbitrary mixtures
of the two, at all scales and in all parts of the network.

To demonstrate ourmethod we have used it to construct hierarch-
ical decompositions of three example networks drawn fromdisparate
fields: the metabolic network of the spirochaete Treponema palli-
dum18, a network of associations between terrorists19, and a food
web of grassland species20. To test whether these decompositions
accurately capture the important structural features of the networks,
we use the sampled dendrograms to generate new networks, different
in detail from the originals but, by definition, having similar hier-
archical structure (see Supplementary Information for more details).
We find that these ‘resampled’ networks match the statistical pro-
perties of the originals closely, including their degree distributions,
clustering coefficients, and distributions of shortest path lengths
between pairs of vertices, despite the fact that none of these properties
is explicitly represented in the hierarchical random graph (Table 1,
and Supplementary Fig. 3). It therefore seems that a network’s hier-
archical structure is capable of explaining a wide variety of other
network features as well.

The dendrograms produced by our method are also of interest in
themselves, as a graphical representation and summary of the hier-
archical structure of the observed network. As discussed above, our
method can generate not just a single dendrogram but a set of den-
drograms, each of which is a good fit to the data. From this set we can,
by using techniques from phylogeny reconstruction21, create a single
consensus dendrogram, which captures the topological features that
appear consistently across all or a large fraction of the dendrograms
and typically is a better summary of the network’s structure than any
individual dendrogram. Figure 2a shows such a consensus dendro-
gram for the grassland species network, which clearly reveals com-
munities and subcommunities of plants, herbivores, parasitoids and
hyperparasitoids.

Another application of the hierarchical decomposition is the pre-
diction of missing interactions in networks. In many settings, the
discovery of interactions in a network requires significant experi-
mental effort in the laboratory or the field. As a result, our current
pictures of many networks are substantially incomplete22–28. An
alternative to checking exhaustively for a connection between every
pair of vertices in a network is to try to predict, in advance and on the
basis of the connections already observed, which vertices are most
likely to be connected, so that scarce experimental resources can be
focused on testing for those interactions. If our predictions are good,
we can in this way substantially reduce the effort required to establish
the network’s topology.

The hierarchical decomposition can be used as the basis for an
effective method of predicting missing interactions as follows.
Given an observed but incomplete network, we generate, as described
above, a set of hierarchical random graphs—dendrograms and the
associated probabilities pr—that fit that network. Then we look for
pairs of vertices that have a high average probability of connection
within these hierarchical random graphs but are unconnected in the

observed network. These pairs we consider themost likely candidates
formissing connections. (Technical details of the procedure are given
in Supplementary Information.)

We demonstrate the method by using our three example networks
again. For each network we remove a subset of connections chosen
uniformly at random and then attempt to predict, on the basis of the
remaining connections, which have been removed. A standardmetric
for quantifying the accuracy of prediction algorithms, commonly
used in the medical and machine learning communities, is the
AUC statistic, which is equivalent to the area under the receiver
operating characteristic (ROC) curve29. In the present context, the
AUC statistic can be interpreted as the probability that a randomly
chosenmissing connection (a true positive) is given a higher score by
our method than a randomly chosen pair of unconnected vertices (a
true negative). Thus, the degree to which the AUC exceeds 0.5 indi-
cates how much better our predictions are than chance. Figure 2
shows the AUC statistic for the three networks as a function of the
fraction of the connections known to the algorithm. For all three
networks our algorithm does far better than chance, indicating that
hierarchy is a strong general predictor of missing structure. It is also
instructive to compare the performance of our method with that of
other methods for link prediction8. Previously proposed methods
include assuming that vertices are likely to be connected if they have
many common neighbours, if there are short paths between them, or
if the product of their degrees is large. These approaches work well
for strongly assortative networks such as collaboration and citation

Table 1 | Comparison of original and resampled networks

Network Ækæreal Ækæsamp Creal Csamp dreal dsamp

T. pallidum 4.8 3.7(1) 0.0625 0.0444(2) 3.690 3.940(6)
Terrorists 4.9 5.1(2) 0.361 0.352(1) 2.575 2.794(7)
Grassland 3.0 2.9(1) 0.174 0.168(1) 3.29 3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by
resampling from our hierarchical model. The generated networks closely match the average
degree Ækæ, clustering coefficient C and average vertex–vertex distance d in each case,
suggesting that they capture much of the structure of the real networks. Parenthetical values
indicate standard errors on the final digits.

b

a

Figure 2 | Application of the hierarchical decomposition to the network of
grassland species interactions. a, Consensus dendrogram reconstructed
from the sampled hierarchical models. b, A visualization of the network in
which the upper few levels of the consensus dendrogram are shown as boxes
around species (plants, herbivores, parasitoids, hyperparasitoids and hyper-
hyperparasitoids are shown as circles, boxes, down triangles, up triangles
and diamonds, respectively). Note that in several cases a set of parasitoids is
grouped into a disassortative community by the algorithm, not because they
prey on each other but because they prey on the same herbivore.
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 Consensus dendogram for grassland species.

 Copes with disassortative and assortative
communities.
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of the two, at all scales and in all parts of the network.

To demonstrate ourmethod we have used it to construct hierarch-
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fields: the metabolic network of the spirochaete Treponema palli-
dum18, a network of associations between terrorists19, and a food
web of grassland species20. To test whether these decompositions
accurately capture the important structural features of the networks,
we use the sampled dendrograms to generate new networks, different
in detail from the originals but, by definition, having similar hier-
archical structure (see Supplementary Information for more details).
We find that these ‘resampled’ networks match the statistical pro-
perties of the originals closely, including their degree distributions,
clustering coefficients, and distributions of shortest path lengths
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alternative to checking exhaustively for a connection between every
pair of vertices in a network is to try to predict, in advance and on the
basis of the connections already observed, which vertices are most
likely to be connected, so that scarce experimental resources can be
focused on testing for those interactions. If our predictions are good,
we can in this way substantially reduce the effort required to establish
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effective method of predicting missing interactions as follows.
Given an observed but incomplete network, we generate, as described
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pairs of vertices that have a high average probability of connection
within these hierarchical random graphs but are unconnected in the
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for quantifying the accuracy of prediction algorithms, commonly
used in the medical and machine learning communities, is the
AUC statistic, which is equivalent to the area under the receiver
operating characteristic (ROC) curve29. In the present context, the
AUC statistic can be interpreted as the probability that a randomly
chosenmissing connection (a true positive) is given a higher score by
our method than a randomly chosen pair of unconnected vertices (a
true negative). Thus, the degree to which the AUC exceeds 0.5 indi-
cates how much better our predictions are than chance. Figure 2
shows the AUC statistic for the three networks as a function of the
fraction of the connections known to the algorithm. For all three
networks our algorithm does far better than chance, indicating that
hierarchy is a strong general predictor of missing structure. It is also
instructive to compare the performance of our method with that of
other methods for link prediction8. Previously proposed methods
include assuming that vertices are likely to be connected if they have
many common neighbours, if there are short paths between them, or
if the product of their degrees is large. These approaches work well
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Statistics are shown for the three example networks studied and for new networks generated by
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degree Ækæ, clustering coefficient C and average vertex–vertex distance d in each case,
suggesting that they capture much of the structure of the real networks. Parenthetical values
indicate standard errors on the final digits.
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Figure 2 | Application of the hierarchical decomposition to the network of
grassland species interactions. a, Consensus dendrogram reconstructed
from the sampled hierarchical models. b, A visualization of the network in
which the upper few levels of the consensus dendrogram are shown as boxes
around species (plants, herbivores, parasitoids, hyperparasitoids and hyper-
hyperparasitoids are shown as circles, boxes, down triangles, up triangles
and diamonds, respectively). Note that in several cases a set of parasitoids is
grouped into a disassortative community by the algorithm, not because they
prey on each other but because they prey on the same herbivore.
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tures in which vertices are less likely to be connected on small scales
than on large ones. By letting the pr values vary arbitrarily throughout
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To demonstrate ourmethod we have used it to construct hierarch-
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fields: the metabolic network of the spirochaete Treponema palli-
dum18, a network of associations between terrorists19, and a food
web of grassland species20. To test whether these decompositions
accurately capture the important structural features of the networks,
we use the sampled dendrograms to generate new networks, different
in detail from the originals but, by definition, having similar hier-
archical structure (see Supplementary Information for more details).
We find that these ‘resampled’ networks match the statistical pro-
perties of the originals closely, including their degree distributions,
clustering coefficients, and distributions of shortest path lengths
between pairs of vertices, despite the fact that none of these properties
is explicitly represented in the hierarchical random graph (Table 1,
and Supplementary Fig. 3). It therefore seems that a network’s hier-
archical structure is capable of explaining a wide variety of other
network features as well.

The dendrograms produced by our method are also of interest in
themselves, as a graphical representation and summary of the hier-
archical structure of the observed network. As discussed above, our
method can generate not just a single dendrogram but a set of den-
drograms, each of which is a good fit to the data. From this set we can,
by using techniques from phylogeny reconstruction21, create a single
consensus dendrogram, which captures the topological features that
appear consistently across all or a large fraction of the dendrograms
and typically is a better summary of the network’s structure than any
individual dendrogram. Figure 2a shows such a consensus dendro-
gram for the grassland species network, which clearly reveals com-
munities and subcommunities of plants, herbivores, parasitoids and
hyperparasitoids.

Another application of the hierarchical decomposition is the pre-
diction of missing interactions in networks. In many settings, the
discovery of interactions in a network requires significant experi-
mental effort in the laboratory or the field. As a result, our current
pictures of many networks are substantially incomplete22–28. An
alternative to checking exhaustively for a connection between every
pair of vertices in a network is to try to predict, in advance and on the
basis of the connections already observed, which vertices are most
likely to be connected, so that scarce experimental resources can be
focused on testing for those interactions. If our predictions are good,
we can in this way substantially reduce the effort required to establish
the network’s topology.

The hierarchical decomposition can be used as the basis for an
effective method of predicting missing interactions as follows.
Given an observed but incomplete network, we generate, as described
above, a set of hierarchical random graphs—dendrograms and the
associated probabilities pr—that fit that network. Then we look for
pairs of vertices that have a high average probability of connection
within these hierarchical random graphs but are unconnected in the

observed network. These pairs we consider themost likely candidates
formissing connections. (Technical details of the procedure are given
in Supplementary Information.)

We demonstrate the method by using our three example networks
again. For each network we remove a subset of connections chosen
uniformly at random and then attempt to predict, on the basis of the
remaining connections, which have been removed. A standardmetric
for quantifying the accuracy of prediction algorithms, commonly
used in the medical and machine learning communities, is the
AUC statistic, which is equivalent to the area under the receiver
operating characteristic (ROC) curve29. In the present context, the
AUC statistic can be interpreted as the probability that a randomly
chosenmissing connection (a true positive) is given a higher score by
our method than a randomly chosen pair of unconnected vertices (a
true negative). Thus, the degree to which the AUC exceeds 0.5 indi-
cates how much better our predictions are than chance. Figure 2
shows the AUC statistic for the three networks as a function of the
fraction of the connections known to the algorithm. For all three
networks our algorithm does far better than chance, indicating that
hierarchy is a strong general predictor of missing structure. It is also
instructive to compare the performance of our method with that of
other methods for link prediction8. Previously proposed methods
include assuming that vertices are likely to be connected if they have
many common neighbours, if there are short paths between them, or
if the product of their degrees is large. These approaches work well
for strongly assortative networks such as collaboration and citation

Table 1 | Comparison of original and resampled networks

Network Ækæreal Ækæsamp Creal Csamp dreal dsamp

T. pallidum 4.8 3.7(1) 0.0625 0.0444(2) 3.690 3.940(6)
Terrorists 4.9 5.1(2) 0.361 0.352(1) 2.575 2.794(7)
Grassland 3.0 2.9(1) 0.174 0.168(1) 3.29 3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by
resampling from our hierarchical model. The generated networks closely match the average
degree Ækæ, clustering coefficient C and average vertex–vertex distance d in each case,
suggesting that they capture much of the structure of the real networks. Parenthetical values
indicate standard errors on the final digits.
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Figure 2 | Application of the hierarchical decomposition to the network of
grassland species interactions. a, Consensus dendrogram reconstructed
from the sampled hierarchical models. b, A visualization of the network in
which the upper few levels of the consensus dendrogram are shown as boxes
around species (plants, herbivores, parasitoids, hyperparasitoids and hyper-
hyperparasitoids are shown as circles, boxes, down triangles, up triangles
and diamonds, respectively). Note that in several cases a set of parasitoids is
grouped into a disassortative community by the algorithm, not because they
prey on each other but because they prey on the same herbivore.
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 Consensus dendogram for grassland species.
 Copes with disassortative and assortative

communities.
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From PoCS:
Small-worldness and social searchability

Social networks and identity:

Identity is formed from attributes such as:
 Geographic location
 Type of employment
 Religious beliefs
 Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.
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Dealing with community overlap:
 Earlier structure detection algorithms,

agglomerative or divisive, force communities to be
purely distinct.

 Overlap: Acknowledge nodes can belong to
multiple communities.

 Palla et al. [13] detect communities as sets of
adjacent 𝑘-cliques (must share 𝑘 − 1 nodes).

 One of several issues: how to choose 𝑘?
 Four new quantities:

 𝑚, number of a communities a node belongs to.
 𝑠ov𝛼,𝛽, number of nodes shared between two given

communities, 𝛼 and 𝛽.
 𝑑com

𝛼 , degree of community 𝛼.
 𝑠com𝛼 , community 𝛼’s size.

 Associated distributions:
𝑃>(𝑚), 𝑃>(𝑠ov𝛼,𝛽), 𝑃>(𝑑com𝛼 ), and 𝑃>(𝑠com𝛼 ).
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Uncovering the overlapping community structure of
complex networks in nature and society
Gergely Palla1,2, Imre Derényi2, Illés Farkas1 & Tamás Vicsek1,2

Many complex systems in nature and society can be described in
terms of networks capturing the intricate web of connections
among the units they are made of1–4. A key question is how to
interpret the global organization of such networks as the co-
existence of their structural subunits (communities) associated
with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins5,6,
industrial sectors7 and groups of people8,9) is crucial to the
understanding of the structural and functional properties of
networks. The existing deterministic methods used for large net-
works find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of
nodes. Here we introduce an approach to analysing the main
statistical features of the interwoven sets of overlapping commu-
nities that makes a step towards uncovering the modular structure
of complex systems. After defining a set of new characteristic
quantities for the statistics of communities, we apply an efficient
technique for exploring overlapping communities on a large scale.
We find that overlaps are significant, and the distributions we
introduce reveal universal features of networks. Our studies of
collaboration, word-association and protein interaction graphs
show that the web of communities has non-trivial correlations and
specific scaling properties.

Most real networks typically contain parts in which the nodes
(units) are more highly connected to each other than to the rest of
the network. The sets of such nodes are usually called clusters,
communities, cohesive groups or modules8,10,11–13; they have no
widely accepted, unique definition. In spite of this ambiguity,
the presence of communities in networks is a signature of the
hierarchical nature of complex systems5,14. The existing methods
for finding communities in large networks are useful if the commu-
nity structure is such that it can be interpreted in terms of separated
sets of communities (see Fig. 1b and refs 10, 15, 16–18). However,
most real networks are characterized by well-defined statistics of
overlapping and nested communities. This can be illustrated by the
numerous communities that each of us belongs to, including those
related to our scientific activities or personal life (school, hobby,
family) and so on, as shown in Fig. 1a. Furthermore, members of our
communities have their own communities, resulting in an extremely
complicated web of the communities themselves. This has long been
understood by sociologists19 but has never been studied system-
atically for large networks. Another, biological, example is that a
large fraction of proteins belong to several protein complexes
simultaneously20.

In general, each node i of a network can be characterized by a
membership number mi, which is the number of communities that
the node belongs to. In turn, any two communities a and b can share
sov
a;b nodes, which we define as the overlap size between these

communities. Naturally, the communities also constitute a network,

with the overlaps being their links. The number of such links of
community a can be called its community degree, dcom

a : Finally, the
size scom

a of any community a can most naturally be defined as the
number of its nodes. To characterize the community structure of a
large network we introduce the distributions of these four basic
quantities. In particular we focus on their cumulative distribution

LETTERS

Figure 1 | Illustration of the concept of overlapping communities. a, The
black dot in the middle represents either of the authors of this paper, with
several of his communities around. Zooming in on the scientific community
demonstrates the nested and overlapping structure of the communities, and
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.
b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. c, An example of overlapping
k-clique communities at k ¼ 4. The yellow community overlaps the blue one
in a single node, whereas it shares two nodes and a link with the green one.
These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k 2 1 nodes.
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functions denoted by P(m), P(sov), P(d com) and P(s com). For the
overlap size, for example, P(sov) means the proportion of those
overlaps that are larger than sov. Further relevant statistical features
will be introduced later.
The basic observation onwhich our community definition relies is

that a typical community consists of several complete (fully con-
nected) subgraphs that tend to share many of their nodes. Thus, we
define a community, or more precisely a k-clique community, as a
union of all k-cliques (complete subgraphs of size k) that can be
reached from each other through a series of adjacent k-cliques (where
adjacency means sharing k 2 1 nodes)21–23. This definition seeks to
represent the fact that it is an essential feature of a community that its
members can be reached through well-connected subsets of nodes.
There are other parts of the whole network that are not reachable
from a particular k-clique, but they potentially contain further
k-clique communities. In turn, a single node can belong to several
communities. All these can be explored systematically and can result
in many overlapping communities (illustrated in Fig. 1c). In most
cases, relaxing this definition (for example, by allowing incomplete
k-cliques) is practically equivalent to decreasing k. For finding
meaningful communities, the way in which they are identified is
expected to satisfy several basic requirements: it cannot be too
restrictive, it should be based on the density of links, it is required
to be local, it should not yield any cut-node or cut-link (whose
removal would disjoin the community) and, of course, it should
allow overlaps. We employ the community definition specified
above, because none of the others in the literature satisfy all these
requirements simultaneously21,24.

Although the numerical determination of the full set of k-clique
communities is a polynomial problem, we use an algorithm (which
can be downloaded from http://angel.elte.hu/clustering/) that is
exponential, because it is significantly more efficient for the graphs
corresponding to real data. This method is based on first locating all
cliques (maximal complete subgraphs) of the network and then
identifying the communities by carrying out a standard component
analysis of the clique–clique overlap matrix21. More details about the
method and its speed are given in Supplementary Information.
We use our method for binary networks (that is, with undirected

and unweighted links). An arbitrary network can always be trans-
formed into a binary one by ignoring any directionality in the links
and keeping only those that are stronger than a threshold weight w*.
Changing the threshold is like changing the resolution (as in a
microscope) with which the community structure is investigated:
by increasing w* the communities start to shrink and fall apart. A
similar effect can be observed by changing the value of k as well:
increasing kmakes the communities smaller and more disintegrated
but also at the same time more cohesive.
When we are interested in the community structure around a

particular node, it is advisable to scan through some ranges of k and
w* and monitor how its communities change. As an illustration, in
Fig. 2 we show diagrams of the communities of three selected nodes
of three large networks: the social network of scientific collabo-
rators25 (Fig. 2a), the network of word associations26 related to
cognitive sciences (Fig. 2b) and the molecular-biological network
of protein–protein interactions27 (Fig. 2c). These pictures can serve as
tests or validations of the efficiency of our algorithm. In particular,

Figure 2 | The community structure around a particular node in three
different networks. The communities are colour coded, the overlapping
nodes and links between them are emphasized in red, and the volume of the
balls and the width of the links are proportional to the total number of
communities they belong to. For each network the value of k has been set to
4. a, The communities of G. Parisi in the co-authorship network of the
Los Alamos CondensedMatter archive (for threshold weightw* ¼ 0.75) can

be associated with his fields of interest. b, The communities of the word
‘bright’ in the South Florida Free Association norms list (for w* ¼ 0.025)
represent the different meanings of this word. c, The communities of the
protein Zds1 in the DIP core list of the protein–protein interactions of S.
cerevisiae can be associated with either protein complexes or certain
functions.

NATURE|Vol 435|9 June 2005 LETTERS

815
© 2005 Nature Publishing Group 

 

 Two tunable parameters: 𝑤∗, the link weight
threshold, and 𝑘, the clique size.



The PoCSverse
Structure
detection
methods
60 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

and use only those values of k for which f * is not too small (not
smaller than 0.5). This has led us to k ¼ 6 and k ¼ 5 with f* ¼ 0.93
and 0.75, respectively, for the collaboration network, and k ¼ 4 with
f* ¼ 0.67 for the word-association network. For the former network
both sets of parameters result in very similar communities (see
Supplementary Information). Because for unweighted networks no
threshold weight can be set, for these we simply select the smallest
value of k for which no giant community appears. For the protein
interaction network this gives k ¼ 4, resulting in 82 communities.
Because of this relatively low number, we can depict the entire
network of protein communities as in Fig. 3.
The four distributions characterizing the global community

structure of these networks are shown in Fig. 4. Although the scaling
of the size of non-overlapping communities has already been shown

for social networks17,18, it is striking to observe how this aspect of
large real networks is preserved even when a more complete picture
(allowing overlaps) is investigated. In Fig. 4a the power-law depen-
dence P(s com) / (s com)2t with an exponent ranging between t ¼ 1
and t ¼ 1.6 is well pronounced and is valid over nearly the entire
range of community sizes.
It is well known2–4 that the nodes of large real networks have a

power-law degree distribution. Will the same kind of distribution
hold whenwemove to the next level of organization and consider the
degrees of the communities?We find that it is not so. The community
degrees (Fig. 4b) have a unique distribution, consisting of two
distinct parts: an exponential decay PðdcomÞ/ expð2dcom=dcom0 Þ
with a characteristic community degree dcom0 (which is of the order
of kd coml shown in Table 1), followed by a power-law tail pro-
portional to (d com)2t. This new kind of behaviour is consistent with
the community size distribution if we assume that, on average, each
node of a community has a contribution d to the community degree.
The tail of the community degree distribution is therefore simply
proportional to that of the community size distribution. At the first
part of P(d com), in contrast, a characteristic scale dcom0 < kd appears,
because most of the communities have a size of the order of k (see
Fig. 4a) and their distribution around dcom0 dominates this part of the
curve. Thus, the degree to which P(d com) deviates from a simple
scaling depends on k or, in other words, on the prescribed minimum
cohesiveness of the communities.
The extent to which different communities overlap is also a

relevant property of a network. Although the range of overlap sizes
is limited, the behaviour of the cumulative overlap size distribution
P(sov), shown in Fig. 4c, is close to a power law for each network, with
a rather large exponent. We can conclude that there is no character-
istic overlap size in the networks. Finally, in Fig. 4d we display the
cumulative distribution of the membership number P(m). These
plots demonstrate that a node can belong to several communities. In
the collaboration and word-association networks there seems to be
no characteristic value for the membership number: the data are
close to a power-law dependence, with a large exponent. However, in
the protein interaction network the largest membership number is
only 4, which is consistent with the also rather short distribution of
its community degree. To show that the communities we find are not
due to an artefact of our method, we have also determined the above
distributions for ‘randomized’ graphs with parameters (size, degree
sequence, k and f*) the same as in our three examples but with
links stochastically redistributed between the nodes. We have found
that the distributions are indeed extremely truncated, signifying a
complete lack of the rich community structure determined for the
original data.
In Table 1 we have collected a few statistical properties of the

network of communities. It should be pointed out that the average
clustering coefficients kC coml are relatively high, indicating that two
communities overlapping with a given community are likely to
overlap with each other as well, mostly because they all share the
same overlapping region. The high fraction of shared nodes is yet
another indication of the importance of overlaps between the
communities.
The specific scaling of the community degree distribution is a

hitherto undescribed signature of the hierarchical nature of the
systems we study. We find that if we consider the network of
communities instead of the nodes themselves, we still observe a
degree distribution with a fat tail, but a characteristic scale appears,
below which the distribution is exponential. This is consistent with
our understanding of a complex system having different levels of
organization with units specific to each level. In the present case the
principle of organization (scaling) is preserved (with some specific
modifications) when going to the next level, in good agreement with
the recent finding of the self-similarity of many complex networks30.
With recent technological advances, huge sets of data are accumu-

lating at a tremendous pace in various fields of human activity

  

  

Figure 4 | Statistics of the k-clique communities for three large
networks. The networks are the co-authorship network of the Los Alamos
Condensed Matter archive (triangles, k ¼ 6, f* ¼ 0.93), the word-
association network of the South Florida Free Association norms (squares,
k ¼ 4, f* ¼ 0.67), and the protein interaction network of the yeast S.
cerevisiae from the DIP database (circles, k ¼ 4). a, The cumulative
distribution function of the community size follows a power law with
exponents between 21 (upper line) and 21.6 (lower line). b, The
cumulative distribution of the community degree starts exponentially and
then crosses over to a power law (with the same exponent as for the
community size distribution). c, The cumulative distribution of the overlap
size. d, The cumulative distribution of the membership number.
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A link-based approach:
 What we know now: Many network analyses profit

from focusing on links.

 Idea: form communities of links rather than
communities of nodes.

 Observation: Links typically of one flavor, while
nodes may have many flavors.

 Link communities induce overlapping and still
hierarchically structured communities of nodes.

 [Applause.]
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“Link communities reveal multiscale
complexity in networks”
Ahn, Bagrow, and Lehmann,
Nature, 466, 761–764, 2010. [1]

most comprehensive proxy of a large-scale social network currently
in existence17,18; the metabolic network iAF1260, from Escherichia coli
K-12 MG1655 strain, is one of the most elaborate reconstructions
currently available16; and the three protein–protein interaction net-
works of Saccharomyces cerevisiae are the most recent and complete
protein–protein interaction data yet published14.

These networks possess rich metadata that allow us to describe the
structural and functional roles of each node. For example, the bio-
logical roles of each protein in the protein–protein interaction net-
work can be described by a controlled vocabulary (Gene Ontology
terms28). By calculating metadata-based similarity measures between
nodes (Methods and Supplementary Information, section 5), we can
determine the quality of communities by the similarity of the nodes
they contain (‘community quality’). Likewise, we can use metadata to
estimate the expected amount of overlap around a node, testing the
quality of the discovered overlap according to the metadata (‘overlap
quality’). For example, metabolites that participate in more meta-
bolic pathways are expected to belong to more communities than
metabolites that participate in fewer pathways. Some methods may
find high-quality communities but only for a small fraction of the
network; coverage measures describe how much of the network was
classified by each algorithm (‘community coverage’) and how much
overlap was discovered (‘overlap coverage’). Each community algo-
rithm is tested by comparing its output with the metadata, to deter-
mine how well the discovered community structure reflects the
metadata, according to the four measures. Each measure is normalized
such that the best method attains a value of one. ‘Composite perfor-
mance’ is the sum of these four normalized measures, such that the
maximum achievable score is four. Full details are in Methods and
Supplementary Information, sections 5 and 6.

Figure 2 displays the results of this quantitative comparison, show-
ing that link communities reveal more about every network’s meta-
data than other tested methods. Not only is our approach the overall
leader in every network, it is also the winner in most individual aspects
of the composite performance for all networks, particularly the quality
measures. The performance of link communities stands out for dense
networks, such as the metabolic and word association networks,
which are expected to have pervasively overlapping structure.
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Figure 2 | Assessing the relevance of link communities using real-world
networks. Composite performance (Methods and Supplementary
Information) is a data-driven measure of the quality (relevance of discovered
memberships) and coverage (fraction of network classified) of community
and overlap. Tested algorithms are link clustering, introduced here; clique
percolation9; greedy modularity optimization26; and Infomap21. Test

networks were chosen for their varied sizes and topologies and to represent
the different domains where network analysis is used. Shown for each are the
number of nodes, N, and the average number of neighbours per node, Ækæ.
Link clustering finds the most relevant community structure in real-world
networks. AP/MS, affinity-purification/mass spectrometry; LC, literature
curated; PPI, protein–protein interaction; Y2H, yeast two-hybrid.

Figure 1 | Overlapping communities lead to dense networks and prevent
the discovery of a single node hierarchy. a, Local structure in many
networks is simple: an individual node sees the communities it belongs to.
b, Complex global structure emerges when every node is in the situation
displayed in a. c, Pervasive overlap hinders the discovery of hierarchical
organization because nodes cannot occupy multiple leaves of a node
dendrogram, preventing a single tree from encoding the full hierarchy.
d, e, An example showing link communities (colours in d), the link similarity
matrix (e; darker entries show more similar pairs of links) and the link
dendrogram (e). f, Link communities from the full word association network
around the word ‘Newton’. Link colours represent communities and filled
regions provide a guide for the eye. Link communities capture concepts
related to science and allow substantial overlap. Note that the words were
produced by experiment participants during free word associations.
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most comprehensive proxy of a large-scale social network currently
in existence17,18; the metabolic network iAF1260, from Escherichia coli
K-12 MG1655 strain, is one of the most elaborate reconstructions
currently available16; and the three protein–protein interaction net-
works of Saccharomyces cerevisiae are the most recent and complete
protein–protein interaction data yet published14.

These networks possess rich metadata that allow us to describe the
structural and functional roles of each node. For example, the bio-
logical roles of each protein in the protein–protein interaction net-
work can be described by a controlled vocabulary (Gene Ontology
terms28). By calculating metadata-based similarity measures between
nodes (Methods and Supplementary Information, section 5), we can
determine the quality of communities by the similarity of the nodes
they contain (‘community quality’). Likewise, we can use metadata to
estimate the expected amount of overlap around a node, testing the
quality of the discovered overlap according to the metadata (‘overlap
quality’). For example, metabolites that participate in more meta-
bolic pathways are expected to belong to more communities than
metabolites that participate in fewer pathways. Some methods may
find high-quality communities but only for a small fraction of the
network; coverage measures describe how much of the network was
classified by each algorithm (‘community coverage’) and how much
overlap was discovered (‘overlap coverage’). Each community algo-
rithm is tested by comparing its output with the metadata, to deter-
mine how well the discovered community structure reflects the
metadata, according to the four measures. Each measure is normalized
such that the best method attains a value of one. ‘Composite perfor-
mance’ is the sum of these four normalized measures, such that the
maximum achievable score is four. Full details are in Methods and
Supplementary Information, sections 5 and 6.

Figure 2 displays the results of this quantitative comparison, show-
ing that link communities reveal more about every network’s meta-
data than other tested methods. Not only is our approach the overall
leader in every network, it is also the winner in most individual aspects
of the composite performance for all networks, particularly the quality
measures. The performance of link communities stands out for dense
networks, such as the metabolic and word association networks,
which are expected to have pervasively overlapping structure.
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Figure 2 | Assessing the relevance of link communities using real-world
networks. Composite performance (Methods and Supplementary
Information) is a data-driven measure of the quality (relevance of discovered
memberships) and coverage (fraction of network classified) of community
and overlap. Tested algorithms are link clustering, introduced here; clique
percolation9; greedy modularity optimization26; and Infomap21. Test

networks were chosen for their varied sizes and topologies and to represent
the different domains where network analysis is used. Shown for each are the
number of nodes, N, and the average number of neighbours per node, Ækæ.
Link clustering finds the most relevant community structure in real-world
networks. AP/MS, affinity-purification/mass spectrometry; LC, literature
curated; PPI, protein–protein interaction; Y2H, yeast two-hybrid.

Figure 1 | Overlapping communities lead to dense networks and prevent
the discovery of a single node hierarchy. a, Local structure in many
networks is simple: an individual node sees the communities it belongs to.
b, Complex global structure emerges when every node is in the situation
displayed in a. c, Pervasive overlap hinders the discovery of hierarchical
organization because nodes cannot occupy multiple leaves of a node
dendrogram, preventing a single tree from encoding the full hierarchy.
d, e, An example showing link communities (colours in d), the link similarity
matrix (e; darker entries show more similar pairs of links) and the link
dendrogram (e). f, Link communities from the full word association network
around the word ‘Newton’. Link colours represent communities and filled
regions provide a guide for the eye. Link communities capture concepts
related to science and allow substantial overlap. Note that the words were
produced by experiment participants during free word associations.
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most comprehensive proxy of a large-scale social network currently
in existence17,18; the metabolic network iAF1260, from Escherichia coli
K-12 MG1655 strain, is one of the most elaborate reconstructions
currently available16; and the three protein–protein interaction net-
works of Saccharomyces cerevisiae are the most recent and complete
protein–protein interaction data yet published14.

These networks possess rich metadata that allow us to describe the
structural and functional roles of each node. For example, the bio-
logical roles of each protein in the protein–protein interaction net-
work can be described by a controlled vocabulary (Gene Ontology
terms28). By calculating metadata-based similarity measures between
nodes (Methods and Supplementary Information, section 5), we can
determine the quality of communities by the similarity of the nodes
they contain (‘community quality’). Likewise, we can use metadata to
estimate the expected amount of overlap around a node, testing the
quality of the discovered overlap according to the metadata (‘overlap
quality’). For example, metabolites that participate in more meta-
bolic pathways are expected to belong to more communities than
metabolites that participate in fewer pathways. Some methods may
find high-quality communities but only for a small fraction of the
network; coverage measures describe how much of the network was
classified by each algorithm (‘community coverage’) and how much
overlap was discovered (‘overlap coverage’). Each community algo-
rithm is tested by comparing its output with the metadata, to deter-
mine how well the discovered community structure reflects the
metadata, according to the four measures. Each measure is normalized
such that the best method attains a value of one. ‘Composite perfor-
mance’ is the sum of these four normalized measures, such that the
maximum achievable score is four. Full details are in Methods and
Supplementary Information, sections 5 and 6.

Figure 2 displays the results of this quantitative comparison, show-
ing that link communities reveal more about every network’s meta-
data than other tested methods. Not only is our approach the overall
leader in every network, it is also the winner in most individual aspects
of the composite performance for all networks, particularly the quality
measures. The performance of link communities stands out for dense
networks, such as the metabolic and word association networks,
which are expected to have pervasively overlapping structure.
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Figure 2 | Assessing the relevance of link communities using real-world
networks. Composite performance (Methods and Supplementary
Information) is a data-driven measure of the quality (relevance of discovered
memberships) and coverage (fraction of network classified) of community
and overlap. Tested algorithms are link clustering, introduced here; clique
percolation9; greedy modularity optimization26; and Infomap21. Test

networks were chosen for their varied sizes and topologies and to represent
the different domains where network analysis is used. Shown for each are the
number of nodes, N, and the average number of neighbours per node, Ækæ.
Link clustering finds the most relevant community structure in real-world
networks. AP/MS, affinity-purification/mass spectrometry; LC, literature
curated; PPI, protein–protein interaction; Y2H, yeast two-hybrid.

Figure 1 | Overlapping communities lead to dense networks and prevent
the discovery of a single node hierarchy. a, Local structure in many
networks is simple: an individual node sees the communities it belongs to.
b, Complex global structure emerges when every node is in the situation
displayed in a. c, Pervasive overlap hinders the discovery of hierarchical
organization because nodes cannot occupy multiple leaves of a node
dendrogram, preventing a single tree from encoding the full hierarchy.
d, e, An example showing link communities (colours in d), the link similarity
matrix (e; darker entries show more similar pairs of links) and the link
dendrogram (e). f, Link communities from the full word association network
around the word ‘Newton’. Link colours represent communities and filled
regions provide a guide for the eye. Link communities capture concepts
related to science and allow substantial overlap. Note that the words were
produced by experiment participants during free word associations.
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most comprehensive proxy of a large-scale social network currently
in existence17,18; the metabolic network iAF1260, from Escherichia coli
K-12 MG1655 strain, is one of the most elaborate reconstructions
currently available16; and the three protein–protein interaction net-
works of Saccharomyces cerevisiae are the most recent and complete
protein–protein interaction data yet published14.

These networks possess rich metadata that allow us to describe the
structural and functional roles of each node. For example, the bio-
logical roles of each protein in the protein–protein interaction net-
work can be described by a controlled vocabulary (Gene Ontology
terms28). By calculating metadata-based similarity measures between
nodes (Methods and Supplementary Information, section 5), we can
determine the quality of communities by the similarity of the nodes
they contain (‘community quality’). Likewise, we can use metadata to
estimate the expected amount of overlap around a node, testing the
quality of the discovered overlap according to the metadata (‘overlap
quality’). For example, metabolites that participate in more meta-
bolic pathways are expected to belong to more communities than
metabolites that participate in fewer pathways. Some methods may
find high-quality communities but only for a small fraction of the
network; coverage measures describe how much of the network was
classified by each algorithm (‘community coverage’) and how much
overlap was discovered (‘overlap coverage’). Each community algo-
rithm is tested by comparing its output with the metadata, to deter-
mine how well the discovered community structure reflects the
metadata, according to the four measures. Each measure is normalized
such that the best method attains a value of one. ‘Composite perfor-
mance’ is the sum of these four normalized measures, such that the
maximum achievable score is four. Full details are in Methods and
Supplementary Information, sections 5 and 6.

Figure 2 displays the results of this quantitative comparison, show-
ing that link communities reveal more about every network’s meta-
data than other tested methods. Not only is our approach the overall
leader in every network, it is also the winner in most individual aspects
of the composite performance for all networks, particularly the quality
measures. The performance of link communities stands out for dense
networks, such as the metabolic and word association networks,
which are expected to have pervasively overlapping structure.
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Figure 2 | Assessing the relevance of link communities using real-world
networks. Composite performance (Methods and Supplementary
Information) is a data-driven measure of the quality (relevance of discovered
memberships) and coverage (fraction of network classified) of community
and overlap. Tested algorithms are link clustering, introduced here; clique
percolation9; greedy modularity optimization26; and Infomap21. Test

networks were chosen for their varied sizes and topologies and to represent
the different domains where network analysis is used. Shown for each are the
number of nodes, N, and the average number of neighbours per node, Ækæ.
Link clustering finds the most relevant community structure in real-world
networks. AP/MS, affinity-purification/mass spectrometry; LC, literature
curated; PPI, protein–protein interaction; Y2H, yeast two-hybrid.

Figure 1 | Overlapping communities lead to dense networks and prevent
the discovery of a single node hierarchy. a, Local structure in many
networks is simple: an individual node sees the communities it belongs to.
b, Complex global structure emerges when every node is in the situation
displayed in a. c, Pervasive overlap hinders the discovery of hierarchical
organization because nodes cannot occupy multiple leaves of a node
dendrogram, preventing a single tree from encoding the full hierarchy.
d, e, An example showing link communities (colours in d), the link similarity
matrix (e; darker entries show more similar pairs of links) and the link
dendrogram (e). f, Link communities from the full word association network
around the word ‘Newton’. Link colours represent communities and filled
regions provide a guide for the eye. Link communities capture concepts
related to science and allow substantial overlap. Note that the words were
produced by experiment participants during free word associations.
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 Note: See details of paper on how to choose link
communities well based on partition density 𝐷.
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most comprehensive proxy of a large-scale social network currently
in existence17,18; the metabolic network iAF1260, from Escherichia coli
K-12 MG1655 strain, is one of the most elaborate reconstructions
currently available16; and the three protein–protein interaction net-
works of Saccharomyces cerevisiae are the most recent and complete
protein–protein interaction data yet published14.

These networks possess rich metadata that allow us to describe the
structural and functional roles of each node. For example, the bio-
logical roles of each protein in the protein–protein interaction net-
work can be described by a controlled vocabulary (Gene Ontology
terms28). By calculating metadata-based similarity measures between
nodes (Methods and Supplementary Information, section 5), we can
determine the quality of communities by the similarity of the nodes
they contain (‘community quality’). Likewise, we can use metadata to
estimate the expected amount of overlap around a node, testing the
quality of the discovered overlap according to the metadata (‘overlap
quality’). For example, metabolites that participate in more meta-
bolic pathways are expected to belong to more communities than
metabolites that participate in fewer pathways. Some methods may
find high-quality communities but only for a small fraction of the
network; coverage measures describe how much of the network was
classified by each algorithm (‘community coverage’) and how much
overlap was discovered (‘overlap coverage’). Each community algo-
rithm is tested by comparing its output with the metadata, to deter-
mine how well the discovered community structure reflects the
metadata, according to the four measures. Each measure is normalized
such that the best method attains a value of one. ‘Composite perfor-
mance’ is the sum of these four normalized measures, such that the
maximum achievable score is four. Full details are in Methods and
Supplementary Information, sections 5 and 6.

Figure 2 displays the results of this quantitative comparison, show-
ing that link communities reveal more about every network’s meta-
data than other tested methods. Not only is our approach the overall
leader in every network, it is also the winner in most individual aspects
of the composite performance for all networks, particularly the quality
measures. The performance of link communities stands out for dense
networks, such as the metabolic and word association networks,
which are expected to have pervasively overlapping structure.
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Figure 2 | Assessing the relevance of link communities using real-world
networks. Composite performance (Methods and Supplementary
Information) is a data-driven measure of the quality (relevance of discovered
memberships) and coverage (fraction of network classified) of community
and overlap. Tested algorithms are link clustering, introduced here; clique
percolation9; greedy modularity optimization26; and Infomap21. Test

networks were chosen for their varied sizes and topologies and to represent
the different domains where network analysis is used. Shown for each are the
number of nodes, N, and the average number of neighbours per node, Ækæ.
Link clustering finds the most relevant community structure in real-world
networks. AP/MS, affinity-purification/mass spectrometry; LC, literature
curated; PPI, protein–protein interaction; Y2H, yeast two-hybrid.

Figure 1 | Overlapping communities lead to dense networks and prevent
the discovery of a single node hierarchy. a, Local structure in many
networks is simple: an individual node sees the communities it belongs to.
b, Complex global structure emerges when every node is in the situation
displayed in a. c, Pervasive overlap hinders the discovery of hierarchical
organization because nodes cannot occupy multiple leaves of a node
dendrogram, preventing a single tree from encoding the full hierarchy.
d, e, An example showing link communities (colours in d), the link similarity
matrix (e; darker entries show more similar pairs of links) and the link
dendrogram (e). f, Link communities from the full word association network
around the word ‘Newton’. Link colours represent communities and filled
regions provide a guide for the eye. Link communities capture concepts
related to science and allow substantial overlap. Note that the words were
produced by experiment participants during free word associations.
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 Comparison of structure detection algorithms
using four measures over many networks.

 Revealed communities are matched against
‘known’ communities recorded in network
metadata.

 Link approach particularly good for dense,
overlapful networks.
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It is instructive to examine further the statistics of link communities
in the metabolic and mobile phone networks (Fig. 3). The community
size distribution at the optimum value of D is heavy tailed for both
networks, whereas the number of communities per node distinguishes
them (Fig. 3, insets): Mobile phone users are limited to a smaller range
of community memberships, most likely as a result of social and time
constraints. Meanwhile, the membership distribution of the metabolic
network displays the universality of currency metabolites (water, ATP
and so on) through the large number of communities they participate
in. Notable previous work11,15 removed currency metabolites before
identifying meaningful community structure. The statistics presented
here match current knowledge about the two systems, further con-
firming the communities’ relevance.

Having established that link communities at the maximal partition
density are meaningful and relevant, we now show that the link
dendrogram reveals meaningful communities at different scales.
Figure 4a–c shows that mobile phone users in a community are
spatially co-located. Figure 4a maps the most likely geographic loca-
tions of all users in the network; several cities are present. In Fig. 4b,
we show (insets) several communities at different cuts above the
optimum threshold, revealing small, intra-city communities. Below
the optimum threshold, larger, yet still spatially correlated, com-
munities exist (Fig. 4c). Because we expect a tight-knit community
to have only small geographical dispersion, the clustered structures
on the map indicate that the communities are meaningful. The geo-
graphical correlation of each community does not suddenly break
down, but is sustained over a wide range of thresholds. In Fig. 4d, we
look more closely at the social network of the largest community in
Fig. 4c, extracting the structure of its largest subcommunity along
with its remaining hierarchy and revealing the small-scale structures
encoded in the link dendrogram. This example provides evidence for
the presence of spatial, hierarchical organization at a societal scale. To
validate the hierarchical organization of communities quantitatively

throughout the dendrogram, we use a randomized control dendro-
gram that quantifies how community quality would evolve if there
were no hierarchical organization beyond a certain point. Figure 4e
shows that the quality of the actual communities decays much more
slowly than the control, indicating that real link dendrograms possess
a large range of high quality community structures. The quantitative
results of Fig. 4 are typical for the full test group, implying that rich,
meaningful community structure is contained within the link den-
drogram. Additional results supporting these conclusions are pre-
sented in Supplementary Information, section 7.

Many cutting-edge networks are far from complete. For example,
an ambitious project to map all protein–protein interactions in yeast
is currently estimated to detect approximately 20% of connections14.
As the rate of data collection continues to increase, networks become
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Figure 3 | Community and membership distributions for the metabolic and
mobile phone networks. The distribution of community sizes and node
memberships (insets). Community size shows a heavy tail. The number of
memberships per node is reasonable for both networks: we do not observe
phone users that belong to large numbers of communities and we correctly
identify currency metabolites, such as water, ATP and inorganic phosphate
(Pi), that are prevalently used throughout metabolism. The appearance of
currency metabolites in many metabolic reactions is naturally incorporated
into link communities, whereas their presence hindered community
identification in previous work11,15.
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Figure 4 | Meaningful communities at multiple levels of the link
dendrogram. a–c, The social network of mobile phone users displays co-
located, overlapping communities on multiple scales. a, Heat map of the
most likely locations of all users in the region, showing several cities.
b, Cutting the dendrogram above the optimum threshold yields small, intra-
city communities (insets). c, Below the optimum threshold, the largest
communities become spatially extended but still show correlation. d, The
social network within the largest community in c, with its largest
subcommunity highlighted. The highlighted subcommunity is shown along
with its link dendrogram and partition density, D, as a function of threshold,
t. Link colours correspond to dendrogram branches. e, Community quality,
Q, as a function of dendrogram level, compared with random control
(Methods).
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It is instructive to examine further the statistics of link communities
in the metabolic and mobile phone networks (Fig. 3). The community
size distribution at the optimum value of D is heavy tailed for both
networks, whereas the number of communities per node distinguishes
them (Fig. 3, insets): Mobile phone users are limited to a smaller range
of community memberships, most likely as a result of social and time
constraints. Meanwhile, the membership distribution of the metabolic
network displays the universality of currency metabolites (water, ATP
and so on) through the large number of communities they participate
in. Notable previous work11,15 removed currency metabolites before
identifying meaningful community structure. The statistics presented
here match current knowledge about the two systems, further con-
firming the communities’ relevance.

Having established that link communities at the maximal partition
density are meaningful and relevant, we now show that the link
dendrogram reveals meaningful communities at different scales.
Figure 4a–c shows that mobile phone users in a community are
spatially co-located. Figure 4a maps the most likely geographic loca-
tions of all users in the network; several cities are present. In Fig. 4b,
we show (insets) several communities at different cuts above the
optimum threshold, revealing small, intra-city communities. Below
the optimum threshold, larger, yet still spatially correlated, com-
munities exist (Fig. 4c). Because we expect a tight-knit community
to have only small geographical dispersion, the clustered structures
on the map indicate that the communities are meaningful. The geo-
graphical correlation of each community does not suddenly break
down, but is sustained over a wide range of thresholds. In Fig. 4d, we
look more closely at the social network of the largest community in
Fig. 4c, extracting the structure of its largest subcommunity along
with its remaining hierarchy and revealing the small-scale structures
encoded in the link dendrogram. This example provides evidence for
the presence of spatial, hierarchical organization at a societal scale. To
validate the hierarchical organization of communities quantitatively

throughout the dendrogram, we use a randomized control dendro-
gram that quantifies how community quality would evolve if there
were no hierarchical organization beyond a certain point. Figure 4e
shows that the quality of the actual communities decays much more
slowly than the control, indicating that real link dendrograms possess
a large range of high quality community structures. The quantitative
results of Fig. 4 are typical for the full test group, implying that rich,
meaningful community structure is contained within the link den-
drogram. Additional results supporting these conclusions are pre-
sented in Supplementary Information, section 7.

Many cutting-edge networks are far from complete. For example,
an ambitious project to map all protein–protein interactions in yeast
is currently estimated to detect approximately 20% of connections14.
As the rate of data collection continues to increase, networks become

N
um

be
r o

f c
om

m
un

iti
es

Number of users per community

106

105

104

103

102

101

100
0 5 10 15 20 25 30 35

N
um

be
r o

f u
se

rs

Number of communities
per user

103

102

101

106

105

104

103

102

101

100

100

101 102 103

101 102 103

N
um

be
r o

f c
om

m
un

iti
es

Number of metabolites per community

103

102

101

100
0 50 100 150 200

N
um

be
r o

f
m

et
ab

ol
ite

s 

Number of communities
per metabolite 

Mobile phone

Metabolic

H2O, H+

ATP
ADP

Pi

Figure 3 | Community and membership distributions for the metabolic and
mobile phone networks. The distribution of community sizes and node
memberships (insets). Community size shows a heavy tail. The number of
memberships per node is reasonable for both networks: we do not observe
phone users that belong to large numbers of communities and we correctly
identify currency metabolites, such as water, ATP and inorganic phosphate
(Pi), that are prevalently used throughout metabolism. The appearance of
currency metabolites in many metabolic reactions is naturally incorporated
into link communities, whereas their presence hindered community
identification in previous work11,15.
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Figure 4 | Meaningful communities at multiple levels of the link
dendrogram. a–c, The social network of mobile phone users displays co-
located, overlapping communities on multiple scales. a, Heat map of the
most likely locations of all users in the region, showing several cities.
b, Cutting the dendrogram above the optimum threshold yields small, intra-
city communities (insets). c, Below the optimum threshold, the largest
communities become spatially extended but still show correlation. d, The
social network within the largest community in c, with its largest
subcommunity highlighted. The highlighted subcommunity is shown along
with its link dendrogram and partition density, D, as a function of threshold,
t. Link colours correspond to dendrogram branches. e, Community quality,
Q, as a function of dendrogram level, compared with random control
(Methods).
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It is instructive to examine further the statistics of link communities
in the metabolic and mobile phone networks (Fig. 3). The community
size distribution at the optimum value of D is heavy tailed for both
networks, whereas the number of communities per node distinguishes
them (Fig. 3, insets): Mobile phone users are limited to a smaller range
of community memberships, most likely as a result of social and time
constraints. Meanwhile, the membership distribution of the metabolic
network displays the universality of currency metabolites (water, ATP
and so on) through the large number of communities they participate
in. Notable previous work11,15 removed currency metabolites before
identifying meaningful community structure. The statistics presented
here match current knowledge about the two systems, further con-
firming the communities’ relevance.

Having established that link communities at the maximal partition
density are meaningful and relevant, we now show that the link
dendrogram reveals meaningful communities at different scales.
Figure 4a–c shows that mobile phone users in a community are
spatially co-located. Figure 4a maps the most likely geographic loca-
tions of all users in the network; several cities are present. In Fig. 4b,
we show (insets) several communities at different cuts above the
optimum threshold, revealing small, intra-city communities. Below
the optimum threshold, larger, yet still spatially correlated, com-
munities exist (Fig. 4c). Because we expect a tight-knit community
to have only small geographical dispersion, the clustered structures
on the map indicate that the communities are meaningful. The geo-
graphical correlation of each community does not suddenly break
down, but is sustained over a wide range of thresholds. In Fig. 4d, we
look more closely at the social network of the largest community in
Fig. 4c, extracting the structure of its largest subcommunity along
with its remaining hierarchy and revealing the small-scale structures
encoded in the link dendrogram. This example provides evidence for
the presence of spatial, hierarchical organization at a societal scale. To
validate the hierarchical organization of communities quantitatively

throughout the dendrogram, we use a randomized control dendro-
gram that quantifies how community quality would evolve if there
were no hierarchical organization beyond a certain point. Figure 4e
shows that the quality of the actual communities decays much more
slowly than the control, indicating that real link dendrograms possess
a large range of high quality community structures. The quantitative
results of Fig. 4 are typical for the full test group, implying that rich,
meaningful community structure is contained within the link den-
drogram. Additional results supporting these conclusions are pre-
sented in Supplementary Information, section 7.

Many cutting-edge networks are far from complete. For example,
an ambitious project to map all protein–protein interactions in yeast
is currently estimated to detect approximately 20% of connections14.
As the rate of data collection continues to increase, networks become
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Figure 3 | Community and membership distributions for the metabolic and
mobile phone networks. The distribution of community sizes and node
memberships (insets). Community size shows a heavy tail. The number of
memberships per node is reasonable for both networks: we do not observe
phone users that belong to large numbers of communities and we correctly
identify currency metabolites, such as water, ATP and inorganic phosphate
(Pi), that are prevalently used throughout metabolism. The appearance of
currency metabolites in many metabolic reactions is naturally incorporated
into link communities, whereas their presence hindered community
identification in previous work11,15.
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Figure 4 | Meaningful communities at multiple levels of the link
dendrogram. a–c, The social network of mobile phone users displays co-
located, overlapping communities on multiple scales. a, Heat map of the
most likely locations of all users in the region, showing several cities.
b, Cutting the dendrogram above the optimum threshold yields small, intra-
city communities (insets). c, Below the optimum threshold, the largest
communities become spatially extended but still show correlation. d, The
social network within the largest community in c, with its largest
subcommunity highlighted. The highlighted subcommunity is shown along
with its link dendrogram and partition density, D, as a function of threshold,
t. Link colours correspond to dendrogram branches. e, Community quality,
Q, as a function of dendrogram level, compared with random control
(Methods).
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General structure detection

 “The discovery of structural form”
Kemp and Tenenbaum, PNAS (2008) [8]

the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F!D) # P(D!S)P(S!F)P(F).
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grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
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a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.

10688 ! www.pnas.org"cgi"doi"10.1073"pnas.0802631105 Kemp and Tenenbaum
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General structure detection

the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the

crocodile

bat
gorilla

ostrich
robin

turtle
snakePCA,

MDS

Hierarchical
clustering

robin
ostrich

crocodile
snake
turtle

bat
gorilla

Unidimensional
scaling

ostrich

gorilla

crocodile

turtle

robin

bat

snake

bat
ostrich
robin

turtle

gorilla
crocodile

snake

crocodile

turtlesnake

robin
ostrich

gorilla
bat

gorillasnake

turtle batrobin

ostrichcrocodile

gorilla 
bat 

turtle 
snake 

crocodile 
robi n 

ostrich 

f  1 f  2 f  3 f  4 f  5 f 100 . . .
. . .

. . .

gorilla 
bat 

turtle 
snake 

crocodile 
robi n 

ostric h 

f  1 f  2 f  3 f  4 f  5 f 100 . . .
. . .

. . .

Clustering

Data

Structure

Form Tree

Circumplex
models

A

Minimum

B

spanning
tree

robin
ostrich

crocodile
snake
turtle

bat
gorilla

Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F!D) # P(D!S)P(S!F)P(F).
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F!D) # P(D!S)P(S!F)P(F).
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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Example learned structures:

extent to which graphs with many clusters are penalized, and is
fixed for all of our experiments. The normalizing constant for
P(S!F) depends on the number of structures compatible with a
given form, and ensures that simpler forms are preferred when-

ever possible. For example, any chain Sc is a special case of a grid,
but P(Sc!F ! chain) " P(Sc!F ! grid) because there are more
possible grids than chains given a fixed number of entities. It
follows that P(Sc, F ! chain!D) " P(Sc, F ! grid!D) for any

New
York

Bombay

Buenos Aires

Moscow

Sao Paulo

Mexico City

Jakarta

Tokyo

Lima

London

Bangkok

SantiagoLos Angeles

Berlin

Madrid

Chicago
VancouverToronto

Sydney

Perth

Anchorage

Cape Town

Nairobi

Vladivostok

Dakar

Kinshasa

Bogota

Honolulu

Wellington

Cairo
Shanghai

Teheran

Irkutsk

Manila

Budapest

GinsburgBrennan
Scalia

Thomas

O'Connor

Kennedy

White
Souter

BreyerMarshall
Blackmun Stevens Rehnquist

B

C

Elephant
Rhino Horse

Cow

CamelGiraffe

Chimp
Gorilla

Mouse
Squirrel Tiger

Lion
Cat

Dog
Wolf

Seal
Dolphin

Robin
Eagle

Chicken

Salmon Trout

Bee

Iguana

Alligator

Butterfly

AntFinch

Penguin

Cockroach

Whale

Ostrich

Deer

E

A

D

Fig. 3. Structures learned from biological features (A), Supreme Court votes (B), judgments of the similarity between pure color wavelengths (C), Euclidean
distances between faces represented as pixel vectors (D), and distances between world cities (E). For A–C, the edge lengths represent maximum a posteriori edge
lengths under our generative model.

4

3

5

2
1

Wolfowitz
Rice
Powell
Ashcroft
Cheney
Card

1

Bush

Myers
Feith

Armitage

Libby

DC

Whitman

Rumsfeld

1
11 321

2
3

A

P CAB R WL CA
B
R
M
W
R
P

WFMR

6

C
L
CW

A

F

A B

Fig. 4. Structures learned from relational data (Upper) and the raw data organized according to these structures (Lower). (A) Dominance relationships among a troop
of sooty mangabeys. The sorted data matrix has most of its entries above the diagonal, indicating that animals tend to dominate only the animals below them in the
order. (B) A hierarchy representing interactions between members of the Bush administration. (C ) Social cliques representing friendship relations between prisoners.
The sorted matrix has most of its entries along the diagonal, indicating that prisoners tend only to be friends with prisoners in the same cluster. (D) The Kula ring
representing armshell trade between New Guinea communities. The relative positions of the communities correspond approximately to their geographic locations.

Kemp and Tenenbaum PNAS ! August 5, 2008 ! vol. 105 ! no. 31 ! 10689

CO
M

PU
TE

R
SC

IE
N

CE
S

PS
YC

HO
LO

G
Y

SE
E

CO
M

M
EN

TA
RY

 Biological features; Supreme Court votes; perceived
color differences; face differences; & distances
between cities.



The PoCSverse
Structure
detection
methods
71 of 78

Overview

Methods
Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

Overlapping communities

Link-based methods

General structure
detection

References

General structure detection
dataset D, and that the grid form will only be chosen if the best
grid is substantially better than the best chain.

The remaining term in Eq. 1, P(D!S), measures how well the
structure S accounts for the data D. Suppose that D is a feature
matrix like the matrix in Fig. 1. P(D!S) will be high if the features
in D vary smoothly over the graph S, that is, if entities nearby in
S tend to have similar feature values. For instance, feature f1 is
smooth over the tree in Fig. 1B, but f100 is not. Even though Fig.
1 shows binary features, we treat all features as continuous
features and capture the expectation of smoothness by assuming
that these features are independently generated from a multi-
variate Gaussian distribution with a dimension for each node in
graph S. As described in SI Appendix, the covariance of this
distribution is defined in a way that encourages nearby nodes in
graph S to have similar feature values, and the term P(D!S) favors
graphs that meet this condition.

In principle, our approach can be used to identify the form F
that maximizes P(F!D), but we are also interested in discovering
the structure S that best accounts for the data. We therefore
search for the structure S and form F that jointly maximize the
scoring function P(S, F!D) (Eq. 1). To identify these elements, we
run a separate greedy search for each candidate form. Each
search begins with all entities assigned to a single cluster, and the
algorithm splits a cluster at each iteration, using the production
for the current form (Fig. 2). After each split, the algorithm
attempts to improve the score, using several proposals, including
proposals that move an entity from one cluster to another and
proposals that swap two clusters. The search concludes once the
score can no longer be improved. A more detailed description of
the search algorithm is provided in SI Appendix.

We generated synthetic data to test this algorithm on cases
where the true structure was known. The SI Appendix shows
graphs used to generate five datasets, and the structures found
by fitting five different forms to the data. In each case, the model
recovers the true underlying form of the data.

Next, we applied the model to several real-world datasets, in
each case considering all forms in Fig. 2. The first dataset is a
matrix of animal species and their biological and ecological
properties. It consists of human judgments about 33 species and
106 features and amounts to a larger and noisier version of the
dataset shown schematically in Fig. 1. The best scoring form for
this dataset is the tree, and the best tree (Fig. 3A) includes
subtrees that correspond to categories at several levels of
resolution (e.g., mammals, primates, rodents, birds, insects, and
flying insects). The second dataset is a matrix of votes from the
United States Supreme Court, including 13 judges and their
votes on 1,596 cases. Some political scientists (35) have argued
that a unidimensional structure best accounts for variation in
Supreme Court data and in political beliefs more generally,
although other structural forms [including higher-dimensional
spaces (36) and sets of clusters (37)] have also been proposed.
Consistent with the unidimensional hypothesis, our model iden-
tifies the chain as the best-scoring form for the Supreme Court
data. The best chain (Fig. 3B) organizes the 13 judges from
liberal (Marshall and Brennan) to conservative (Thomas and
Scalia).

If similarity is assumed to be a measure of covariance, our
model can also discover structure in similarity data. Under our
generative model for features, the expression for P(D!S) includes
only two components that depend on D: the number of features
observed and the covariance of the data. As long as both
components are provided, Eq. 1 can be used even if none of the
features is directly observed. We applied the model to a matrix
containing human judgments of the similarity between all pairs
of 14 pure-wavelength hues (38). The ring in Fig. 3C is the best
structure for these data and corresponds to the color circle
described by Newton. Next, we analyzed a similarity dataset
where the entities are faces that vary along two dimensions:

masculinity and race. The model chooses a grid structure that
recovers these dimensions (Fig. 3D). Finally, we applied the
model to a dataset of distances between 35 world cities. Our
model chooses a cylinder where the chain component corre-
sponds approximately to latitude, and the ring component
corresponds approximately to longitude.

The same algorithm can be used to discover structure in
relational data, but we must modify the distribution P(D!S).
Suppose that D is a square frequency matrix, where D(i, j)
indicates the number of times a certain relation has been
observed between entities i and j (Fig. 4). We define a model
where P(D!S) is high if the large entries in D correspond to edges
in the graph S. A similar model can be defined if D is a binary
relation rather than a frequency matrix. Given a relation D, it is
important to discover whether the relation tends to hold between
elements in the same cluster or only between different clusters,
and whether the relation is directed or not. The forms in Fig. 2 A
all have directed edges and nodes without self-links, and we
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Fig. 5. Developmental changes as more data are observed for a fixed set of
objects. After observing only five features of each animal species, the model
chooses a partition, or a set of clusters. As the number of observed features
grows from 5 to 20, the model makes a qualitative shift between a partition
and a tree. As the number of features grows even further, the tree becomes
increasingly complex, with subtrees that correspond more closely to adult
taxonomic intuitions: For instance, the canines (dog, wolf) split off from the
other carnivorous land mammals; the songbirds (robin, finch), flying birds
(robin, finch, eagle), and walking birds (chicken, ostrich) form distinct subcat-
egories; and the flying insects (butterfly, bee) and walking insects (ant,
cockroach) form distinct subcategories. More information about these simu-
lations can be found in SI Appendix.
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dataset D, and that the grid form will only be chosen if the best
grid is substantially better than the best chain.

The remaining term in Eq. 1, P(D!S), measures how well the
structure S accounts for the data D. Suppose that D is a feature
matrix like the matrix in Fig. 1. P(D!S) will be high if the features
in D vary smoothly over the graph S, that is, if entities nearby in
S tend to have similar feature values. For instance, feature f1 is
smooth over the tree in Fig. 1B, but f100 is not. Even though Fig.
1 shows binary features, we treat all features as continuous
features and capture the expectation of smoothness by assuming
that these features are independently generated from a multi-
variate Gaussian distribution with a dimension for each node in
graph S. As described in SI Appendix, the covariance of this
distribution is defined in a way that encourages nearby nodes in
graph S to have similar feature values, and the term P(D!S) favors
graphs that meet this condition.

In principle, our approach can be used to identify the form F
that maximizes P(F!D), but we are also interested in discovering
the structure S that best accounts for the data. We therefore
search for the structure S and form F that jointly maximize the
scoring function P(S, F!D) (Eq. 1). To identify these elements, we
run a separate greedy search for each candidate form. Each
search begins with all entities assigned to a single cluster, and the
algorithm splits a cluster at each iteration, using the production
for the current form (Fig. 2). After each split, the algorithm
attempts to improve the score, using several proposals, including
proposals that move an entity from one cluster to another and
proposals that swap two clusters. The search concludes once the
score can no longer be improved. A more detailed description of
the search algorithm is provided in SI Appendix.

We generated synthetic data to test this algorithm on cases
where the true structure was known. The SI Appendix shows
graphs used to generate five datasets, and the structures found
by fitting five different forms to the data. In each case, the model
recovers the true underlying form of the data.

Next, we applied the model to several real-world datasets, in
each case considering all forms in Fig. 2. The first dataset is a
matrix of animal species and their biological and ecological
properties. It consists of human judgments about 33 species and
106 features and amounts to a larger and noisier version of the
dataset shown schematically in Fig. 1. The best scoring form for
this dataset is the tree, and the best tree (Fig. 3A) includes
subtrees that correspond to categories at several levels of
resolution (e.g., mammals, primates, rodents, birds, insects, and
flying insects). The second dataset is a matrix of votes from the
United States Supreme Court, including 13 judges and their
votes on 1,596 cases. Some political scientists (35) have argued
that a unidimensional structure best accounts for variation in
Supreme Court data and in political beliefs more generally,
although other structural forms [including higher-dimensional
spaces (36) and sets of clusters (37)] have also been proposed.
Consistent with the unidimensional hypothesis, our model iden-
tifies the chain as the best-scoring form for the Supreme Court
data. The best chain (Fig. 3B) organizes the 13 judges from
liberal (Marshall and Brennan) to conservative (Thomas and
Scalia).

If similarity is assumed to be a measure of covariance, our
model can also discover structure in similarity data. Under our
generative model for features, the expression for P(D!S) includes
only two components that depend on D: the number of features
observed and the covariance of the data. As long as both
components are provided, Eq. 1 can be used even if none of the
features is directly observed. We applied the model to a matrix
containing human judgments of the similarity between all pairs
of 14 pure-wavelength hues (38). The ring in Fig. 3C is the best
structure for these data and corresponds to the color circle
described by Newton. Next, we analyzed a similarity dataset
where the entities are faces that vary along two dimensions:

masculinity and race. The model chooses a grid structure that
recovers these dimensions (Fig. 3D). Finally, we applied the
model to a dataset of distances between 35 world cities. Our
model chooses a cylinder where the chain component corre-
sponds approximately to latitude, and the ring component
corresponds approximately to longitude.

The same algorithm can be used to discover structure in
relational data, but we must modify the distribution P(D!S).
Suppose that D is a square frequency matrix, where D(i, j)
indicates the number of times a certain relation has been
observed between entities i and j (Fig. 4). We define a model
where P(D!S) is high if the large entries in D correspond to edges
in the graph S. A similar model can be defined if D is a binary
relation rather than a frequency matrix. Given a relation D, it is
important to discover whether the relation tends to hold between
elements in the same cluster or only between different clusters,
and whether the relation is directed or not. The forms in Fig. 2 A
all have directed edges and nodes without self-links, and we
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Fig. 5. Developmental changes as more data are observed for a fixed set of
objects. After observing only five features of each animal species, the model
chooses a partition, or a set of clusters. As the number of observed features
grows from 5 to 20, the model makes a qualitative shift between a partition
and a tree. As the number of features grows even further, the tree becomes
increasingly complex, with subtrees that correspond more closely to adult
taxonomic intuitions: For instance, the canines (dog, wolf) split off from the
other carnivorous land mammals; the songbirds (robin, finch), flying birds
(robin, finch, eagle), and walking birds (chicken, ostrich) form distinct subcat-
egories; and the flying insects (butterfly, bee) and walking insects (ant,
cockroach) form distinct subcategories. More information about these simu-
lations can be found in SI Appendix.
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Fig. S5. Structure discovery results for synthetic data. Five sets of features were generated over the graphs in the left column, and five forms were fit to each dataset. The
structures found are drawn so that entity positions correspond to positions in the picture of the true structure. Each entity has been connected to the cluster node to which it
belongs: for instance, all graphs in the top row have six clusters. The final column shows log posteriors log(P (S, F |D)) for the best structures found, and the best scoring
structure is marked with an asterisk. The difference between the scores for the top two structures ranges from 0.63 (indicating that the chain is about twice as likely as the
grid on the chain-structured data) to 2245 (indicating that the grid is many orders of magnitude more likely than the ring on the grid-structured data). A constant has been
added to the log probabilities along each y axis so that the worst performing structure receives a score close to zero.

{0.05, 0.15, . . . , 0.95}. We sample uniformly from all points on
this grid where α0

α0+β0
≤ α1

α1+β1
, which captures the assump-

tion that relation D is most likely to be true of pairs (i, j)
that correspond to edges in graph S.

As for the frequency model, we integrate out the parame-
ters:

P (D|S) =
X

(α0,β0,α1,β1)

P (D|S, α0, β0, α1, β1)P (α0, β0, α1, β1)

=
X

(α0,β0,α1,β1)

P (D0|α0, β0)P (D1|α1, β1)P (α0, β0, α1, β1)

where D1 represents the entries in D that correspond to edges
in the graph S, and D0 represents the remaining entries in D.
As before, the terms P (D0|α0, β0) and P (D1|α1, β1) are com-
puted by integrating out θ:

P (D1|α1, β1) =

Z

P (D1|θ1)p(θ1|α1, β1)dθ1

where θ1 is a vector containing parameters θab for all pairs
(a, b) such that there is an edge between cluster a and cluster
b. P (D0|α0, β0) is computed similarly.

Model Implementation
The hierarchical generative model in Fig. 1 can be used for
many purposes. If the form of a data set is already known, we
can search for the structure S that maximizes P (S|F ). If the
form of the data is not known, at least two strategies might be
tried. For some applications it may be desirable to integrate
over the space of structures S and compare forms according
to their posterior probabilities P (F |D). Here, however, we

search for the structure S and form F that jointly maximize
P (S, F |D) (Equation 1). Two considerations motivate this
approach. First, we are interested in discovering the structure
S that best accounts for the data. Maintaining a posterior
distribution over structures may lead to optimal predictions
about unobserved features, but human learners often appear
to choose just one representation for a problem. Second, even
if we wanted to integrate over the space of structures, comput-
ing the integral P (F |D) =

R

P (F, S|D)P (S|D)dS is a difficult
challenge.

Our method for identifying the S and F that maximize
P (S, F |D) involves a separate search for each form. Given
data D, for each form F we search for the best structure S

that is consistent with that form. Since the prior on the space
of forms is uniform, the winning structure is the best candi-
date encountered in any of these searches.

The algorithm used for each of these searches is related
to top-down methods for constructing trees and sets of clus-
ters [9, 10], and to the general idea of coarse-to-fine process-
ing [11]. We begin with all the entities in a single cluster,
then use graph grammars like those in Fig. 2 to split the en-
tities into multiple clusters. Whenever a cluster node is split,
the entities previously assigned to this cluster must be dis-
tributed between the two new cluster nodes. We choose two
of these entities at random, assign one to each of the new
clusters, then go through the remaining entities in a random
order, making a greedy assignment for each one. Since this
procedure for splitting a cluster node is not deterministic, the
search algorithm as a whole is not deterministic. At each it-
eration, we attempt to split each cluster node several times,

Kemp and Tenenbaum www.pnas.org/cgi/content/short/0802631105 5 of 10
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