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Scale-free networks

Real networks with power-law degree distributions
became known as scale-free networks.

Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:
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Scale-free networks

Real networks with power-law degree distributions
became known as scale-free networks.

Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

P,, ~ k=7 for‘large’ k

One of the seminal works in complex networks:

“Emergence of scaling in random

_ Barabasi and Albert,
o Science, 286, 509-511, 1999. I!

Times cited: ~ 43,853 (4" (as of May 19, 2023)
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Scale-free networks

Real networks with power-law degree distributions
became known as scale-free networks.

Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

P,, ~ k=7 for‘large’ k

One of the seminal works in complex networks:

“Emergence of scaling in random

Barabasi and Albert,

, ) Science, 286, 509-511, 1999, I
Times cited: ~ 43,853 (4" (as of May 19, 2023)

Somewhat misleading nomenclature ...
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abstract, relational, informational, ...(non-physical)
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Some real data (we are feeling brave):
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
slopes (A) =23, (B) = 2.1and (C) = 4.
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Scale-free networks

We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

How does the exponent v depend on the
mechanism?
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Step 1: start with m, disconnected nodes.
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Barabasi-Albert model = BA model.

Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:

1. Growth—a new node appears at each time step
H=10,11,12,00
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Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:

1. Growth—a new node appears at each time step
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BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
e U B RN
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.
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BA model

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
e U B RN
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.

In essence, we have a rich-gets-richer scheme.
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BA model

Barabasi-Albert model = BA model.

Key ingredients:

Growth and Preferential Attachment (PA).
Step 1: start with m, disconnected nodes.
Step 2:

1. Growth—a new node appears at each time step
H=10,11,12,00

2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of
connecting to ith node is « k;.

In essence, we have a rich-gets-richer scheme.
Yes, we've seen this all before in Simon’s model.
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BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:

Definition: Pyach(k,t) is the attachment
probability.
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BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:

Definition: Pyach(k,t) is the attachment
probability.

For the original model:

k()

Pattach(nOde i:t) e e A
Zj:(l) kj<t)
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BA model

Definition: A, is the attachment kernel for a node
with degree k.

For the original model:

Definition: Pyach(k,t) is the attachment
probability.
For the original model:

; Ek;(t)
Poach(node 4,t) = T

> lE )

where N(t) = my + t is # nodes at time ¢

The PoCSverse
Scale-free
networks

15 of 57

Scale-free
networks




BA mOdel The PoCSverse

Scale-free
networks
15 of 57

Scale-free

Definition: A, is the attachment kernel for a node  networks
with degree k.

For the original model:

Analysis

Definition: Pyach(k,t) is the attachment
probability.

For the original model:

: k; (t) k,(t)
Pjttach(Node i, t) = N(t) e 1
B 2 50 DN )

where N(t) = my + t is # nodes at time ¢




The PoCSverse
BA m O d e l Scale-free

networks

15 0f 57

Scale-free

Definition: A, is the attachment kernel for a node networks
with degree k.

For the original model:

Definition: Pyach(k,t) is the attachment
probability.

For the original model:

: k; (t) k,(t)
Pjttach(Node i, t) = N(t) e 1
B 2 50 DN )

where N(t) = my + t is # nodes at time ¢
and N, (t) is # degree k nodes at time ¢.
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Approximate analysis

When (N + 1)th node is added, the expected
increase in the degree of node i is

E(k k; ) KN
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Assumes probability of being connected to is

small.
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increase in the degree of node i is Lol
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Deal with denominator: each added node brings m

new edges.

N(t)

SN Lt — 2t

Jj=1
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Deal with denominator: each added node brings m
new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

d k,(t)
g (t)
dt Zj:l kj(t)
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Deal with denominator: each added node brings m

new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

Chrogs i s TAONE e )
dt z‘,t—ﬂ”sz\,:<it> k;j(t) _m2mt
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Deal with denominator: each added node brings m
new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

d k;(t) k,;(t) 1

e RS e =m——= = —k,(t)
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Deal with denominator: each added node brings m

new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

d k;(t) k,;(t) 1

e RS e =m——= = —k,(t)
T, <t> (2

dt ijl k() 2mt 2t

Rearrange and solve:

di,(t) dt
Bt 2t
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Deal with denominator: each added node brings m
new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

d k(1) SROE
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i, O] i

dt ijl k() 2mt 2t

Rearrange and solve:
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Deal with denominator: each added node brings m
new edges.
N(t)

SN Lt — 2t

Jj=1

The node degree equation now simplifies:

d k;(t) k,;(t) 1

e RS e =m——= = —k,(t)
T, <t> (2

dt ijl k() 2mt 2t

Rearrange and solve:

dky(t) _d¢
kel e

Next find ¢, ...
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Know ith node appears at time

; [ i=mg fori>mg,
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So for i > m (exclude initial nodes), we must have
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All node degrees grow as ¢'/2 but later nodes have
larger ¢, «re Which flattens out growth curve.
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Know ith node appears at time

; [ i=mg fori>mg,
s e ) fori < m,

So for i > m (exclude initial nodes), we must have

1/2
) fort > t; star-

k() =m (

l; start

All node degrees grow as ¢'/2 but later nodes have
larger ¢, «re Which flattens out growth curve.

First-mover advantage: Early nodes do best.
Clearly, a Ponzi scheme (..
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Degree of node i is the size of the ith ranked node:

t

1/2
) fort >t; seart-

k, (t) :m<

ti,start

From before:

t S =g IO > g
(ol L ER R fori < mg

SO t; start ~ @ Which is the rank.
We then have:

D @ g i

Our connectiona=1/(y—1)ory=1+1/a then
gives

ly=1+1/(1/2)=3.|
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Degree distribution

So what's the degree distribution at time ¢?
Use fact that birth time for added nodes is

distributed uniformly between time 0 and t:
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Pr(t; start)dt; stare = 71’15
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Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

In practice, v < 3 means variance is governed by
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We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
Typical for real networks: 2 < ~ < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance (mild)
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
slopes (A) =23, (B) = 2.1and (C) = 4.
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Web

Web

Movie actors
Words (synonyms)

v =~ 2.1 for in-degree

v =~ 2.45 for out-degree
7 &2 D3

v~ 2.8
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Web ~ ~ 2.1 for in-degree
Web v =~ 2.45 for out-degree
Movie actors vy ~2.3
Words (synonyms) -~ =~ 2.8

The Internets is a different business...
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Vary attachment kernel.

Model details
Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Analysis

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks? References

Q.: How does changing the model affect ~?

Q.: Do we need preferential attachment and
growth? -

Q.: Do model details matter? Maybe ...
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Let's look at preferential attachment (PA) a little
more closely. :

Amore plausible

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

For example: If P,iocn (k) x k, we need to wperine
determine the constant of proportionality.

i f
We need to know what everyone’s degree is... il 2

PAis - an outrageous assumption of node
capability.

But a very simple mechanism saves the day...
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Assuming the existing network is random, we
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Instead of attaching preferentially, allow new Y
nodes to attach randomly.

Now add an extra step: new nodes then connect
to some of their friends’ friends.

Can also do this at random.

Assuming the existing network is random, we N

know probability of a random friend having Referoiney
degree k is

Qp x kPy

So rich-gets-richer scheme can now be seen to
work in a natural way.
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Robustness
& Albert et al., Nature, 2000:

“Error and attack tolerance of complex

networks”['!

<% Standard random networks (Erd&s-Rényi)
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All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.

Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’'s webpage)

Most connected nodes are either:

1. Physically larger nodes that may be harder to
‘target’
2. or subnetworks of smaller, normal-sized nodes. ( ]
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Robustness

“The “Robust yet Fragile” nature of the

i 83 e e
, Doyle et al.,
0 Proc. Natl. Acad. Sci., 2005, 14497-14502,
2005.

HOT networks versus scale-free networks

Same degree distributions, different
arrangements.

Doyle et al. take a look at the actual Internet.
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2001: Krapivsky & Redner (KR) “! explored the
general attachment kernel:

Pr(attach to node i) < A, = k¥

where A, is the attachment kernel and v > 0.
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2001: Krapivsky & Redner (KR)“ explored the
general attachment kernel:

Pr(attach to node i) < A, = k¥

where A, is the attachment kernel and v > 0.

KR also looked at changing the details of the
attachment kernel.
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Generalized model

We'll follow KR's approach using rate equations (4.,

Here's the set up:

dnN 1
Ttk T [Ag_1Ng_1 — AgNg] + g

where N, is the number of nodes of degree k.
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Generalized model

We'll follow KR's approach using rate equations (4.,

Here's the set up:

dnN 1
ditk Ty [Ag_1Ng_1 — AgNg] + g

where N, is the number of nodes of degree k.
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dnN 1
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where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.
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where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
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Generalized model

We'll follow KR's approach using rate equations (4.,

Here's the set up:

dN 1
Ttk T [Ag_1Ng_1 — AgNg] + g

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes
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We'll follow KR's approach using rate equations (4.,

Here's the set up:

dN 1
Ttk T A ity =AM,
where N, is the number of nodes of degree k.
1. One node with one link is added per unit time.
2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.
3. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.
A is the correct normalization (coming up).
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We'll follow KR's approach using rate equations (4.,

Here's the set up:

dN 1
Ttk T [Ag_1Ng_1 — AgNg] + g

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes

becoming degree k — 1 nodes.

A is the correct normalization (coming up).

Seed with some initial network

(e.g., a connected pair)
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In general, probability of attaching to a specific
node of degree k at time t is

Pr(attach to node i) = 2

A
where A(t) = Y07 ApNy(t).

E.g., for BAmodel, A, =kand A=3""_ kN(t).

For A, = k, we have

oo

A) =D K Ny (t) =2t

k'=1

since one edge is being added per unit time.

The PoCSverse
Scale-free
networks

40 of 57

Scale-free
networks

Nutshell

References

Fe——3



Generalized model

In general, probability of attaching to a specific
node of degree k at time t is

Pr(attach to node i) = 2

A
where A(t) = Y07 ApNy(t).

E.g., for BAmodel, A, =kand A=3""_ kN(t).

For A, = k, we have

oo

A) =D K Ny (t) =2t
k’=1
since one edge is being added per unit time.

Detail: we are ignoring initial seed network’s
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Generalized model

So now

dnN 1

Ttk it [ N AN | o0y
becomes

dnN 1

Ttk T W= LYNG e kNl oy

As for BA method, look for steady-state growing
solution: N, = ngt.

We replace dN,, /dt with dnt/dt = n,,.
We arrive at a difference equation:

Ny = 2111 [(k— Dng_1f — kngf] + 051
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Recall we used the normalization: Scale-free
networks

A(t) = Y KNy (t) ~ 2t for large t.
k’=1

We now have

Alt) = Z A Ny (t)

o
References

where we only know the asymptotic behavior of

A,.

We assume that A = it

We'll find p later and make sure that our
assumption is consistent.

As before, also assume N (t) = n,t.
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Now we need to find pu.

Our assumption again: A = ut =Y.~ N.(t)A,
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Closed form expression for L
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Now we need to find p.

Our assumption again: A = ut = 37" N, (t)A, ass

Since N, = n,t, we have the simplification
(e o]

B = Zkzl ny Ay

Now subsitute in our expression for n,:

w-Si g

Closed form expression for L

\?\

L
A

We can solve for i in some cases.

Our assumption that A = ut looks to be not too
horrible.
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Consider tunable A; = aand A4, = k for k > 2.

Again, we can find v = p + 1 by finding p.
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Consider tunable A; = aand A4, = k for k > 2.

Again, we can find v = p + 1 by finding p.
Closed form expression for u:
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Consider tunable A; = aand A4, = k for k > 2.

Again, we can find v = p + 1 by finding p.
Closed form expression for u:

i (k+ 12+ p)
IF'k+p+1)

#mathisfun

14+ v1+ 8«

b L= o= = 3

Since v = p + 1, we have

0<a<oo=2<y<
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Universality?

Consider tunable A; = aand A4, = k for k > 2.

Again, we can find v = p + 1 by finding p.
Closed form expression for u:

i (k+ 12+ p)
IF'k+p+1)

#mathisfun

14+ v1+ 8«

b L= o= = 3

Since v = p + 1, we have
0<a<oo=2<y<

Craziness...
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Sublinear attachment kernels

Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.

General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).
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Sublinear attachment kernels

Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.

General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).

aka Weibull distributions.
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Sublinear attachment kernels

Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.
General finding by Krapivsky and Redner:

ny, ~ L~V e—c1k! V+correction terms

Stretched exponentials (truncated power laws).
aka Weibull distributions.

Universality: now details of kernel do not matter.
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Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.

General finding by Krapivsky and Redner:

—v —c, k'Y+correction terms
n, ~ k= Ve 1 :

Stretched exponentials (truncated power laws). References
aka Weibull distributions.

Universality: now details of kernel do not matter.
Distribution of degree is universal providing v < 1.
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Details:
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Details:
o0 -Foril2iciv- <o

o Forl/8i<v <1/2
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Sublinear attachment kernels

Fori 2 <<t il

B <k1*l’,21*V>
AT el 20 e ST

Foril/si=ir <1 /2

pl-v 2 rl—2v
Ny ~ k Ve Hiw E ST

And for 1/(r +1) < v < 1/r, we have r pieces in
exponential.
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Now a winner-take-all mechanism.
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Rich-get-much-richer:

Robustness

Ak} (7 ky Wlth V1= 1.

Now a winner-take-all mechanism.

One single node ends up being connected to
almost all other nodes.

For v > 2, all but a finite # of nodes connect to one
node.
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graph theory.

But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.
Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story = Macro features

Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...
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Two main areas of focus:

1. Description: Characterizing very large networks R
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2. Explanation: Micro story = Macro features %<

Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...

Still much work to be done, especially with respect
to dynamics... #excitement
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

https://www.youtube.com/watch?v=axrTxEVQqN4?rel=0
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