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Scale-free networks

&% Real networks with power-law degree distributions
became known as scale-free networks.

& Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

P, ~ k=7 for'large’ k

<> One of the seminal works in complex networks:
“Emergence of scaling in random

Barabdasi and Albert,

: Science, 286, 509-511, 1999. %]
Times cited: ~ 43,853(4 (as of May 19, 2023)

& Somewhat misleading nomenclature ...
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Scale-free networks

Scale-free
networks

Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)

Primary example: hyperlink network of the Web

Much arguing about whether or networks are
‘scale-free’ or not...
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Some real data (we are feeling brave):
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Model deta

From Barabasi and Albert’s original paper [!:
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration

graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =

325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

SI0PES (&) Yoeror = 23 (B) Yo = 2.1 200 (C) Ypger = 4.
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Random networks: largest components
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(k)=18 (k) = 2.05333 (k) = 1.66667 (k)=1.92
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Scale-free networks

The big deal:

<& We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

&> How does the exponent v depend on the
mechanism?

&> Do the mechanism details matter?

BA model

& Barabasi-Albert model = BA model.
&> Key ingredients:
Growth and Preferential Attachment (PA).
&% Step 1: start with m, disconnected nodes.
& Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,..
2. Each new node makes m links to nodes already
present.
3. Preferential attachment—Probability of
connecting to ith node is « k;.

&% In essence, we have a rich-gets-richer scheme.
<> Yes, we've seen this all before in Simon's model.

BA model

&% Definition: A, is the attachment kernel for a node
with degree k.

&% For the original model:
Ay =k
&% Definition: Pyyaen(k, t) is the attachment
probability.
&% For the original model:

) k;(t) ki(t)
Ptach(node i, t) = N(t) T Fmalt)
TR AT

where N(t) = mg + t is # nodes at time ¢
and N, (t) is # degree k nodes at time ¢.
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Approximate analysis

When (N + 1)th node is added, the expected
increase in the degree of node i is

E(k k; n) Fi N

i, N+1 R, N) =T N
Zj:l kj(t)

Assumes probability of being connected to is

small.

Dispense with Expectation by assuming (hoping)
that over longer time frames, degree growth will
be smooth and stable.

Approximate k; n 1 — k; n with &k, ,:

d ki ()

—k; ,=m

dt S k()

where t = N(t) — m,.

Deal with denominator: each added node brings m

new edges.
N(t)

2> ky(t) =2tm

The node degree equation now simplifies:

d _ k;(t) k() 1
ditee TSN T e~

Rearrange and solve:

dky(t) _dt _
ki(t) 2t

Next find ¢, ...

Know ith node appears at time

' _Ji—mgy fori>m,
Gstart = g fori <m,

So for i > m (exclude initial nodes), we must have

1/2
) fort>t; sar-

k(1) :m( f

L start

All node degrees grow as ¢'/2 but later nodes have
larger t; e Which flattens out growth curve.

First-mover advantage: Early nodes do best.
Clearly, a Ponzi scheme(Z.
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are already at the Zipf distribution:
Degree of node i is the size of the ith ranked node:

1/2
) fort > t; seare-

k;(t)=m (

i,start

From before:

. [ i—mgy fori>mg
i,start — 0 fOFi < mo

Nutshel
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SO t; start ~ © Which is the rank.
We then have:

k, oci V2 =4,

Our connection a = 1/(y—1) or y = 1 +1/a then
gives

[v=1+1/(1/2) =3
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m=3

tz‘,start =

1,2,5, and 10. o
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So what's the degree distribution at time ¢?

Use fact that birth time for added nodes is
distributed uniformly between time 0 and t:

dt; start
Pr(ti,start)dtz‘,start O

t
Also use
1z m3t o
ki(t) =m (ti,start> =t start = PXOER feferences
Transform variables—Jacobian:
A stare __, m?t
dk, k()

Degree distribution

Pr(k;)dk; = Pr(t; sar)dt; start

dti,start

= Pr(t; sart)d; “dk,

1 m2t
RRGE
m?

=

~x k. dk

1 i

Degree distribution

We thus have a very specific prediction of
Pr(k) ~ k= with = 3.
Typical for real networks: 2 < v < 3.

Range true more generally for events with size
distributions that have power-law tails.

2 < v < 3: finite mean and ‘infinite’ variance (wild)
In practice, v < 3 means variance is governed by
upper cutoff.

~ > 3: finite mean and variance (mild)

Back to that real data:

From Barabasi and Albert’s original paper [:
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
slopes (A) Yacror = 2.3, (B) Yyyw = 2.1 a0d (C) Ypouer = 4
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Examples

Web

Web

Movie actors
Words (synonyms)

v =~ 2.1 for in-degree

v =~ 2.45 for out-degree
v =~23

v =~2.8

The Internets is a different business...

Things to do and questions

Vary attachment kernel.
Vary mechanisms:

1. Add edge deletion

2. Add node deletion

3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality
classes for these networks?

Q.: How does changing the model affect 4?

Q.: Do we need preferential attachment and
growth?

Q.: Do model details matter? Maybe ...

Preferential attachment

Let's look at preferential attachment (PA) a little

more closely.

PA implies arriving nodes have complete
knowledge of the existing network’s degree
distribution.

For example: If Pyoen (k) o< k, we need to
determine the constant of proportionality.

We need to know what everyone's degree is...
PAis = an outrageous assumption of node
capability.

But a very simple mechanism saves the day...
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Preferential attachment through
randomness

Instead of attaching preferentially, allow new
nodes to attach randomly.

Now add an extra step: new nodes then connect
to some of their friends’ friends.

Can also do this at random.
Assuming the existing network is random, we
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know probability of a random friend having

degree k is

References

Q. x kP,

So rich-gets-richer scheme can now be seen to

work in a natural way.

Robustness
Albert et al., Nature, 2000:

“Error and attack tolerance of complex

networks” [l

Standard random networks
versus Scale-free networks:

Exponential

from Albert et al., 2000

Robustness
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Plots of network
diameter as a function
of fraction of nodes
removed

Erd&s-Rényi versus
scale-free networks

References

blue symbols =
random removal

red symbols =
targeted removal
(most connected first)

Robustness

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.

Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’s webpage)

Most connected nodes are either:

1. Physically larger nodes that may be harder to
‘target’
2. or subnetworks of smaller, normal-sized nodes.

Need to explore cost of various targeting schemes.

Robustness

Not a robust paper:

“The “Robust yet Fragile” nature of the

Doyle et al.,
Proc. Natl. Acad. Sci., 2005, 14497-14502,
2005.

HOT networks versus scale-free networks

Same degree distributions, different
arrangements.

Doyle et al. take a look at the actual Internet.

Generalized model

Fooling with the mechanism:

2001: Krapivsky & Redner (KR)“ explored the
general attachment kernel:

Pr(attach to node i) «x A, = k¥

where A, is the attachment kernel and v > 0.

KR also looked at changing the details of the
attachment kernel.
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Generalized model

We'll follow KR's approach using rate equations (4.
Here's the set up:

dN,

1
& A [Ap1Ngy — ApNi] + 05y

where N, is the number of nodes of degree k.

1. One node with one link is added per unit time.

2. The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

3. The second term corresponds to degree k nodes
becoming degree k — 1 nodes.

4. Ais the correct normalization (coming up).

5. Seed with some initial network
(e.g., a connected pair)

6. Detail: A; =0

Generalized model

In general, probability of attaching to a specific
node of degree k at time ¢ is

Pr(attach to node i) = %

where A(t) = 37 | ANy (L)
E.g., for BAmodel, 4, =kand A= 37" kN (t).
For A,, = k, we have

A(t) = i kK Ny (t) =2t
k=1

since one edge is being added per unit time.

Detail: we are ignoring initial seed network’s
edges.

Generalized model

So now

dn, 1

Ttk =2 [Ap_1Np_1 — ApNy] + 01
becomes

dn, 1

ditk =5 [(k—1)Np_q — kN + 0pq

As for BA method, look for steady-state growing
solution: N, = n,t.

We replace dN,, /dt with dn,t/dt = n,,.
We arrive at a difference equation:

ny, = 2% [0k = Dngeaf = knel] + 00
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Universality?
As expected, we have the same result as for the
BA model:
N, (t) = ny,(t)t oc k3t for large k.

Now: what happens if we start playing around
with the attachment kernel A,?

Again, we're asking if the result v = 3 universal (5?

KR's natural modification: A, = k¥ with v # 1.

But we'll first explore a more subtle modification
of A, made by Krapivsky/Redner [*!

Keep 4, linear in k but tweak details.
|dea: Relax from A, = kto A;, ~kas k — oo.

Universality?

Recall we used the normalization:
o0
A(t) = > K Ny (t) = 2t for large t.
k’'=1
We now have
A(t) =Y Ap Ny (t)
k’'=1

where we only know the asymptotic behavior of
Ay
We assume that A = pt

We'll find  later and make sure that our
assumption is consistent.

As before, also assume N, (t) = nt.

Universality?
For A,, = k we had
1
e =5 (k= Dng_y — kng] + 0pq
This now becomes

1
= [Ap-1np1 — Apngl + 0py
= (A +png = Ap_1np_q + pdgy

Again two cases:

14

_ . Ap—1
p+ Ay

k=1:my /1+Ak‘

k>1m, =ng 4
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Universality?

Time for pure excitement: Find asymptotic
behavior of n,, given A, — k as k — oo.

For large k, we find:

K
Iz L 1
= | | L H
N Ak o 1+ : X

Since u depends on A, details matter...

Universality?

Now we need to find p.
Our assumption again: A = ut = Z:’il N (t)A,
Since N,, = n,t, we have the simplification
oo
=35 g Ay
Now subsitute in our expression for n;;:

= Yz Y
a3 lhe
Closed form expression for u.

We can solve for x in some cases.

Our assumption that A = ut looks to be not too
horrible.

Universality?

Consider tunable A; = aand 4, =k for k > 2.
Again, we can find v = . + 1 by finding p.
Closed form expression for u:

n_ i D(k+ 12+ p)

a = DEk+p+l)
#mathisfun
14+vV1+8a
pp-l)=2a=p=—"—.

Since v = p+ 1, we have
I<a<x=2<y<

Craziness...
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Sublinear attachment kernels

&% Rich-get-somewhat-richer:
A ~ kY with0o <v < 1.
<& General finding by Krapivsky and Redner: !

ny, ~ J—Ve—c1k' ¥correction terms

&% Stretched exponentials (truncated power laws).
&% aka Weibull distributions.
&5 Universality: now details of kernel do not matter.

&% Distribution of degree is universal providing v < 1.

Sublinear attachment kernels

Details:
& Forl/2<v< i

N
Ny ~ kve MU

& For1/3<v<1/2:

plov a2 plo2v
Ny, ~ k Ve HiotE T

& Andfor1/(r + 1) < v < 1/r, we have r pieces in
exponential.
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&% Rich-get-much-richer:
Ay ~ kY withw > 1.

&> Now a winner-take-all mechanism.

S & One single node ends up being connected to
almost all other nodes.

&> Forv > 2, all but a finite # of nodes connect to one
node.
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Nutshell:

Overview Key Points for Models of Networks:

&% Obvious connections with the vast extant field of
graph theory.

&% But focus on dynamics is more of a
physics/stat-mech/comp-sci flavor.

&% Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story = Macro features

References

&> Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...

&% Still much work to be done, especially with respect
to dynamics... #excitement
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