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Optimal supply networks

What’s the best way to distribute stuff?
 Stuff = medical services, energy, nutrients, people,

...
 Some fundamental network problems:

1. Distribut e stuff from single source to many sinks
2. Collect stuff coming from many sources at a single

sink
3. Distribute stuff from many sources to many sinks
4. Redistribute stuff between many nodes

 Q: How do optimal solutions scale with system
size?
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Single source optimal supply

Basic Q for distribution/supply networks:
 How does flow behave given cost:

𝐶 = ∑
𝑗

𝐼 𝛾
𝑗 𝑍𝑗

where
𝐼𝑗 = current on link 𝑗
and
𝑍𝑗 = link 𝑗’s impedance?

 Example: 𝛾 = 2 for electrical networks.
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Single source optimal supply

the potential at the nodes by solving the system of linear
equations ik !

P
lRkl"Uk #Ul$, then the currents through

the links Ikl are determined. We use these currents to
determine a first approximation of the optimal conductiv-
ities on the basis of the scaling relation. Then, the currents
are recalculated with this set of conductivities, and the
scaling relation is reused for the next approximation.
These steps are repeated until the values have converged.
We check by perturbing the solution that it actually is a
minimum of the dissipation, which was always the case.

For all !> 1, independently of the initial conditions, the
same conductivity distribution is obtained, which con-
forms to the analytical result of [6]: there exists a unique
minimum which is therefore global.

Furthermore, the distribution of "kl is ‘‘smooth,’’ vary-
ing only on a ‘‘macroscopic scale,’’ as show in Fig. 2(a).
No formation of any particular structure occurs. However,
the conductivity distribution is not isotropic. We can inter-
pret the conductivity distribution as a discrete approxima-
tion of a continuous, macroscopic conductivity tensor (see
also [10]). The smooth aspect of the distribution is con-
served while approaching ! ! 1 while the local anisotropy
increases, while the values of all "kl remain finite, even if
they get very small. For ! ! 1:5 and Ndia ! 15, the con-
ductivity distribution spreads already over eight decades
and becomes still broader as ! ! 1%, in which limit the
number of iteration steps diverges as the minima becomes
less and less steep.

! ! 1 presents a marginal case. The results of the
simulation suggest that the minimum is highly degenerate;
i.e., there are a large number of conductivity distributions
yielding the same minimal dissipation.

For !< 1, the output of the relaxation algorithm is
qualitatively different [Fig. 2(b)]. A large number of con-
ductivities converge to zero so that no loop remains. The
highly redundant network is transformed to a spanning
tree topology and the currents are canalized in a hierarch-
ical manner. This, too, is predicted by the analytical results
[6]. In contrast to !> 1, the conductivity distribution
cannot be interpreted as a discrete approximation of a
conductivity tensor: for Ndia ! 1, the structure becomes
fractal.

For different initial conditions, the relaxation algorithm
yields trees with different topologies: each local minima in
the high-dimensional and continuous space of conductiv-
ities f"klg corresponds to a different tree topology. To find
the global minima with !< 1, we search consequently in
the (exponentially large) space of tree topologies using a
Monte Carlo algorithm. (We start with some initial tree and
then switch links without creating loops and without dis-
connecting a part of the network.) Note that for a tree
topology, the currents do not depend on the values "kl
and, using the scaling relation, one may directly write
down the dissipation rate for a given tree; the iterative
relaxation is not necessary here. This regime has been
widely explored in the context of river networks
[4,5,13,15], mainly for a set of parameters that corre-
sponds, in our case, to ! ! 0:5. An example of a resulting
minimal dissipation tree structure is given in Fig. 2(c).
Note also, that the scaling relations can be seen as some
kind of erosion model: the more currents flows through a
link, the better the link conducts [4].

The qualitative transition is reflected also quantitatively
in the value of the minimal dissipation [Fig. 3(a)]. The
points for !> 1 were obtained with the relaxation algo-
rithm, the points !< 1 by optimizing the tree topologies
with a Monte Carlo algorithm. For ! ! 1, Jmin=Jhomo !
1 by definition; for ! ! 0, Jmin=Jhomo ! 0, because the
vanishing "kl allow the remaining "kl ! 1.

Figure 3(b) shows the behavior of minimal dissipation
rate close to ! ! 1. For ! smaller than 1, the relaxation
method only furnishes a local minimum, the Monte Carlo
algorithm searching for the optimal tree topologies gives
lower dissipation values. The different values correspond-
ing to different realization indicate that the employed
Monte Carlo method does not find the exact global min-
ima. For !> 1, the optimal tree obtained by the
Monte Carlo algorithm is not the optimal solution since
the absolute and only minima has loops. The dissipation
rate which results from the relaxation algorithm is then, of
course, lower than the dissipation of any tree. While the
curve is continuous, the crossover at ! ! 1 shows a clear
change in the slope of Jmin"!$. One could interpret this
behavior as a second order phase transition. (The change in

 

)c()b()a(

FIG. 2. Examples of the optimized conductivity distributions obtained by the relaxation method for (a) ! ! 2:0 and (b) ! ! 0:5. For
!< 1, the relaxation leads in general only to a local minimum. The global minimum can be approached by searching in the space of
tree topologies. The result for ! ! 0:5 is shown in (c). The arrows indicate the localized inlet.

PRL 98, 088702 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 FEBRUARY 2007

088702-3

(a) 𝛾 > 1: Braided (bulk) flow
(b) 𝛾 < 1: Local minimum: Branching flow
(c) 𝛾 < 1: Global minimum: Branching flow

From Bohn and Magnasco [3]

See also Banavar et al. [1]



The PoCSverse
Optimal supply &
Structure
detection
8 of 81

Single Source

Distributed
Sources
Facility location

Size-density law

A reasonable derivation

Global redistribution
networks

Structure
Detection
Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

General structure
detection

Final words

References

Single source optimal supply

Optimal paths related to transport (Monge) problems:

March 10, 2003 19:49 WSPC/152-CCM 00094

Optimal transport paths 271

Algorithm:

(1) Given an approximating depth n, let an = An(µ) be the nth dyadic approxi-
mation of µ as in Example 3.1.

(2) For each h ∈ Zm ∩ [0, 2n−1)m, the cube Qh
n−1 of level n − 1 consisting of 2m

subcubes of level n. For any x ∈ X×[0, H ], let Gh
x be the union of (the cone over

an%Qh
n−1 with vertex x) and the line segment xp with weight µ(Qh

n−1). Then Gh
x

is a transport path in Path (an(µ)%Qh
n−1, µ(Qh

n−1)δp). Let qh ∈ X × [0, H ] be
the point at which Mα(Gh

x) achieves its minimum among all x ∈ X× [0, H ]. Let

an−1 =
∑

h∈Zm∩[0,2n−1)m

µ(Qh
n−1)δqh .

(3) For each k = n − 1, . . . , 1, repeatedly doing step 2 to get ak−1. In the end we
get a transport path Gn ∈ Path (an, δp) with finite Mα mass.

(4) By using Example 1, we can locally optimize the locations of the vertices of G.
One may repeatedly doing upward optimization and downward optimization
until the transport path converges to a fixed graph.

(5) Increase depth n to get better approximation.

Example 6.1. When taking µ = Lebesgue measure on [0, 1] and p = 1
2 , α = 0.95,

H = 1 and take the depth n = 6, the above algorithm gives the following graph.
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As we increase the approximating depth n, the Mα mass of approximating
paths may also be increasing. However, by Theorem 3.1, they will converge to a

March 10, 2003 19:49 WSPC/152-CCM 00094

274 Q. Xia

as follows:
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7. Transport Path Versus Transport Plan

When splitting a vertex on a transport path, information about source and target
may become unclear. However, we’ll see very soon that those information can be
traced by a transport path together with a compatible transport plan.

Recall that a transport plan for µ+, µ− ∈ M1(X) is a probability measure
γ ∈ M1(X × X) such that

πx#γ = µ+, πy#γ = µ− , (7.1)

where πx (and πy): X×X → X are the first (and the second) component projection.
Let

Plan (µ+, µ−)

be the space of all transport plan for µ+ and µ−.

7.1. Atomic case

In this subsection, we fix two given atomic probability measures

a =
m∑

i=1

miδxi and b =
n∑

j=1

njδyj

Xia (2003) [24]
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Growing networks:
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Xia (2007) [23]
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Growing networks:
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Single source optimal supply

An immensely controversial issue...
 The form of river networks and blood networks:

optimal or not? [22, 2, 7]

Two observations:
 Self-similar networks appear everywhere in nature

for single source supply/single sink collection.
 Real networks differ in details of scaling but

reasonably agree in scaling relations.
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Stream Ordering:

 Label all source streams as order 𝜔 = 1.
 Follow all labelled streams downstream
 Whenever two streams of the same order (𝜔)

meet, the resulting stream has order incremented
by 1 (𝜔 + 1).

 If streams of different
orders 𝜔1 and 𝜔2 meet, then
the resultant stream has
order equal to the largest of
the two.

 Simple rule:

𝜔3 = max(𝜔1, 𝜔2) + 𝛿𝜔1,𝜔2

where 𝛿 is the Kronecker delta.
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[21−Mar−2000 peter dodds]
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Horton’s laws in the real world:
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Many scaling laws, many connections

relation: scaling relation/parameter: [6]
ℓ ∼ 𝐿𝑑 𝑑

𝑇𝑘 = 𝑇1(𝑅𝑇 )𝑘−1 𝑇1 = 𝑅𝑛 − 𝑅𝑠 − 2 + 2𝑅𝑠/𝑅𝑛
𝑅𝑇 = 𝑅𝑠

𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 𝑅𝑛
̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 𝑅𝑎 = 𝑅𝑛̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ 𝑅ℓ = 𝑅𝑠

ℓ ∼ 𝑎ℎ ℎ = log𝑅𝑠/log𝑅𝑛
𝑎 ∼ 𝐿𝐷 𝐷 = 𝑑/ℎ

𝐿⟂ ∼ 𝐿𝐻 𝐻 = 𝑑/ℎ − 1
𝑃(𝑎) ∼ 𝑎−𝜏 𝜏 = 2 − ℎ
𝑃(ℓ) ∼ ℓ−𝛾 𝛾 = 1/ℎ

Λ ∼ 𝑎𝛽 𝛽 = 1 + ℎ
𝜆 ∼ 𝐿𝜑 𝜑 = 𝑑

Only 3 parameters are independent... [6]
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Reported parameter values: [6]

Parameter: Real networks:

𝑅𝑛 3.0–5.0
𝑅𝑎 3.0–6.0

𝑅ℓ = 𝑅𝑇 1.5–3.0
𝑇1 1.0–1.5

𝑑 1.1 ± 0.01
𝐷 1.8 ± 0.1
ℎ 0.50–0.70
𝜏 1.43 ± 0.05
𝛾 1.8 ± 0.1

𝐻 0.75–0.80
𝛽 0.50–0.70
𝜑 1.05 ± 0.05
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Data from real blood networks

Network 𝑅𝑛 𝑅−1
𝑟 𝑅−1

ℓ − ln𝑅𝑟
ln𝑅𝑛

− ln𝑅ℓ
ln𝑅𝑛

𝛼

West et al. – – – 0.5 0.33̄ 0.75

rat (PAT) 2.76 1.58 1.60 0.45 0.46 0.73

cat (PAT) 3.67 1.71 1.78 0.41 0.44 0.79
(Turcotte et al. [21])

dog (PAT) 3.69 1.67 1.52 0.39 0.32 0.90

pig (LCX) 3.57 1.89 2.20 0.50 0.62 0.62
pig (RCA) 3.50 1.81 2.12 0.47 0.60 0.65
pig (LAD) 3.51 1.84 2.02 0.49 0.56 0.65

human (PAT) 3.03 1.60 1.49 0.42 0.36 0.83
human (PAT) 3.36 1.56 1.49 0.37 0.33 0.94
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Animal power

Fundamental biological and ecological constraint:

𝑃 = 𝑐 𝑀 𝛼

𝑃 = basal metabolic rate

𝑀 = organismal body mass
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History

1964: Troon, Scotland:
3rd symposium on energy metabolism.
𝛼 = 3/4 made official … …29 to zip.
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Some data on metabolic rates
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 blue line: 2/3
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Some regressions from the ground up...

range of 𝑀 𝑁 ̂𝛼

≤ 0.1 kg 167 0.678 ± 0.038

≤ 1 kg 276 0.662 ± 0.032

≤ 10 kg 357 0.668 ± 0.019

≤ 25 kg 366 0.669 ± 0.018

≤ 35 kg 371 0.675 ± 0.018

≤ 350 kg 389 0.706 ± 0.016

≤ 3670 kg 391 0.710 ± 0.021
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Analysis of
residuals—p-values—mammals:
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0
(a)
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−1

0
(b)
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0
(c)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(d)

α’

lo
g 10

 p

 (a) 𝑀 < 3.2 kg
(b) 𝑀 < 10 kg
(c) 𝑀 < 32 kg
(d) all mammals.

 For a-d,
𝑝2/3 > 0.05 and
𝑝3/4 ≪ 10−4.
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Analysis of residuals—p-values—birds:

0.6 2/30.7 3/4 0.8

−4

−3
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−1

0
(a)

0.6 2/30.7 3/4 0.8

−4

−3
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−1

0
(b)

0.6 2/30.7 3/4 0.8

−4
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−1

0
(c)

0.6 2/30.7 3/4 0.8

−4

−3

−2

−1

0
(d)

α’

lo
g 10

 p

 (a) 𝑀 < 0.1 kg
(b) 𝑀 < 1 kg
(c) 𝑀 < 10 kg
(d) all birds.

 For a-d,
𝑝2/3 > 0.05 and
𝑝3/4 ≪ 10−4.
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Many sources, many sinks

How do we distribute sources?
 Focus on 2-d (results generalize to higher

dimensions)
 Sources = hospitals, post offices, pubs, ...
 Key problem: How do we cope with uneven

population densities?
 Obvious: if density is uniform then sources are

best distributed uniformly.
 Which lattice is optimal? The hexagonal lattice

Q1: How big should the hexagons be?
 Q2: Given population density is uneven, what do

we do?
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Optimal source allocation

Solidifying the basic problem
 Given a region with some population distribution

𝜌, most likely uneven.
 Given resources to build and maintain 𝑁 facilities.
 Q: How do we locate these 𝑁 facilities so as to

minimize the average distance between an
individual’s residence and the nearest facility?

 Problem of interested and studied by
geographers, sociologists, computer scientists,
mathematicians, ...

 See work by Stephan [19, 20] and by Gastner and
Newman (2006) [8] and work cited by them.
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Optimal source allocation
The value of s!r" is constrained by the requirement that

there be p facilities in total. Noting that s!r" is constant and
equal to s!ri" within Voronoi cell Vi, we see that the integral
of #s!r"$−1 over Vi is

%
Vi

#s!r"$−1d2r = #s!ri"$−1%
Vi

d2r = 1. !3"

Summing over all Vi, we can then express the constraint on
the number of facilities in the form

%
A

#s!r"$−1d2r = p . !4"

Subject to this constraint, optimization of the mean dis-
tance f above gives

!

!s!r"&g%
A

"!r"#s!r"$1/2d2r − #'p − %
A

#s!r"$−1d2r() = 0,

!5"

where # is a Lagrange multiplier. Performing the functional
derivatives and rearranging for s!r", we find s!r"
= #2# / !g"!r""$2/3. The Lagrange multiplier can be evaluated
by substituting into Eq. !4", and we arrive at the result

D!r" =
1

s!r"
= p

#"!r"$2/3

% #"!r"$2/3d2r

, !6"

where we have introduced the notation D!r"= #s!r"$−1 for the
density of the facilities.

Thus, if facilities are distributed optimally for the given
population distribution, their density should increase with
population density but it should do so slower than linearly, as
a power law with exponent 2

3 #29$. In addition to the argu-
ment given here, which roughly follows Ref. #10$, this result
has also been derived previously by a number of other meth-
ods #5–9$, although all are approximate.

Equation !6" places most facilities in the densely popu-
lated areas where most people live while still providing rea-
sonable service to those in sparsely populated areas where a
strictly population-proportional allocation might leave inhab-
itants with little or nothing. Its derivation makes two ap-
proximations: it assumes that the geometric factor g is the
same for all Voronoi cells and that s!r" is a continuous func-
tion. Neither assumption is strictly true, but we expect them
to be approximately valid if " varies little over the typical
size of a Voronoi cell. As a test of these assumptions, we
have optimized numerically the distribution of p=5000 fa-
cilities over the lower 48 states of the United States !Fig. 1"
using population data from the most recent U.S. Census #11$,
which counts the number of residents within more than 8
million blocks across the study region. To create a continu-
ous density function ", we convolved these data with a nor-
malized Gaussian distribution of width 20 km #30$. The fa-
cility locations were then determined by optimizing the full
p-median objective function !1" by simulated annealing #12$.

The relation D$"2/3 can be tested as follows. First, we
determine the Voronoi cell around each facility. Then we

calculate D!r" as the inverse of the area of the corresponding
cell and " as the number of people living in the cell divided
by its area. Figure 2 shows a scatter plot of the resulting data
on doubly logarithmic scales. If the anticipated 2

3-power re-
lation holds, we expect the data to fall along a line of slope
2
3 . And indeed a least-squares fit !solid line in the figure"
yields a slope 0.66 with r2=0.94.

Some statistical concerns might be raised about this
method. First, we used the Voronoi cell area to calculate both
D and ", so the measurements of x and y values in the plot
are not independent, and one might argue that a positive
slope could thus be a result of artificial correlations between
the values rather than a real result #13$. Second, it is known
that estimating the exponent of a power law such as Eq. !6"
from a log-log plot can introduce systematic biases #14,15$.
In the next section, we introduce an entirely different test of
Eq. !6" that, in addition to being of interest in its own right,
suffers from neither of these problems.

III. DENSITY-EQUALIZING PROJECTIONS

If we neglect finite-size effects, it is straightforward to
demonstrate that optimally located facilities in a uniformly

FIG. 1. !Color online" Facility locations determined by simu-
lated annealing and the corresponding Voronoi tessellation for p
=5000 facilities located in the lower 48 United States, based on
population data from the U.S. Census for the year 2000.

FIG. 2. !Color online" Facility density D from Fig. 1 vs popu-
lation density " on a log-log plot. A least-squares linear fit to the
data gives a slope of 0.66 !solid line, r2=0.94".

MICHAEL T. GASTNER AND M. E. J. NEWMAN PHYSICAL REVIEW E 74, 016117 !2006"

016117-2

From
Gastner and Newman (2006) [8]

 Approximately optimal location of 5000 facilities.

 Based on 2000 Census data.

 Simulated annealing + Voronoi tessellation.
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Optimal source allocation

The value of s!r" is constrained by the requirement that
there be p facilities in total. Noting that s!r" is constant and
equal to s!ri" within Voronoi cell Vi, we see that the integral
of #s!r"$−1 over Vi is

%
Vi

#s!r"$−1d2r = #s!ri"$−1%
Vi

d2r = 1. !3"

Summing over all Vi, we can then express the constraint on
the number of facilities in the form

%
A

#s!r"$−1d2r = p . !4"

Subject to this constraint, optimization of the mean dis-
tance f above gives

!

!s!r"&g%
A

"!r"#s!r"$1/2d2r − #'p − %
A

#s!r"$−1d2r() = 0,

!5"

where # is a Lagrange multiplier. Performing the functional
derivatives and rearranging for s!r", we find s!r"
= #2# / !g"!r""$2/3. The Lagrange multiplier can be evaluated
by substituting into Eq. !4", and we arrive at the result

D!r" =
1

s!r"
= p

#"!r"$2/3

% #"!r"$2/3d2r

, !6"

where we have introduced the notation D!r"= #s!r"$−1 for the
density of the facilities.

Thus, if facilities are distributed optimally for the given
population distribution, their density should increase with
population density but it should do so slower than linearly, as
a power law with exponent 2

3 #29$. In addition to the argu-
ment given here, which roughly follows Ref. #10$, this result
has also been derived previously by a number of other meth-
ods #5–9$, although all are approximate.

Equation !6" places most facilities in the densely popu-
lated areas where most people live while still providing rea-
sonable service to those in sparsely populated areas where a
strictly population-proportional allocation might leave inhab-
itants with little or nothing. Its derivation makes two ap-
proximations: it assumes that the geometric factor g is the
same for all Voronoi cells and that s!r" is a continuous func-
tion. Neither assumption is strictly true, but we expect them
to be approximately valid if " varies little over the typical
size of a Voronoi cell. As a test of these assumptions, we
have optimized numerically the distribution of p=5000 fa-
cilities over the lower 48 states of the United States !Fig. 1"
using population data from the most recent U.S. Census #11$,
which counts the number of residents within more than 8
million blocks across the study region. To create a continu-
ous density function ", we convolved these data with a nor-
malized Gaussian distribution of width 20 km #30$. The fa-
cility locations were then determined by optimizing the full
p-median objective function !1" by simulated annealing #12$.

The relation D$"2/3 can be tested as follows. First, we
determine the Voronoi cell around each facility. Then we

calculate D!r" as the inverse of the area of the corresponding
cell and " as the number of people living in the cell divided
by its area. Figure 2 shows a scatter plot of the resulting data
on doubly logarithmic scales. If the anticipated 2

3-power re-
lation holds, we expect the data to fall along a line of slope
2
3 . And indeed a least-squares fit !solid line in the figure"
yields a slope 0.66 with r2=0.94.

Some statistical concerns might be raised about this
method. First, we used the Voronoi cell area to calculate both
D and ", so the measurements of x and y values in the plot
are not independent, and one might argue that a positive
slope could thus be a result of artificial correlations between
the values rather than a real result #13$. Second, it is known
that estimating the exponent of a power law such as Eq. !6"
from a log-log plot can introduce systematic biases #14,15$.
In the next section, we introduce an entirely different test of
Eq. !6" that, in addition to being of interest in its own right,
suffers from neither of these problems.

III. DENSITY-EQUALIZING PROJECTIONS

If we neglect finite-size effects, it is straightforward to
demonstrate that optimally located facilities in a uniformly

FIG. 1. !Color online" Facility locations determined by simu-
lated annealing and the corresponding Voronoi tessellation for p
=5000 facilities located in the lower 48 United States, based on
population data from the U.S. Census for the year 2000.

FIG. 2. !Color online" Facility density D from Fig. 1 vs popu-
lation density " on a log-log plot. A least-squares linear fit to the
data gives a slope of 0.66 !solid line, r2=0.94".

MICHAEL T. GASTNER AND M. E. J. NEWMAN PHYSICAL REVIEW E 74, 016117 !2006"

016117-2

From Gastner and Newman (2006) [8]

 Optimal facility density 𝐷 vs. population density 𝜌.
 Fit is 𝐷 ∝ 𝜌0.66 with 𝑟2 = 0.94.
 Looking good for a 2/3 power...
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Optimal source allocation

Size-density law:


𝐷 ∝ 𝜌2/3

 In 𝑑 dimensions:

𝐷 ∝ 𝜌𝑑/(𝑑+1)

 Why?
 Very different story to branching networks where

there is either one source or one sink.
 Now sources & sinks are distributed throughout

region...
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Optimal source allocation

 One treatment due to Stephan’s (1977) [19, 20]:
“Territorial Division: The Least-Time Constraint
Behind the Formation of Subnational Boundaries”
(Science, 1977)

 Zipf-like approach: invokes principle of minimal
effort.

 Also known as the Homer principle.
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Size-density law
Deriving the optimal source distribution:
 Stronger result obtained by Gusein-Zade

(1982). [10]

 Basic idea: Minimize the average distance from a
random individual to the nearest facility.

 Assume given a fixed population density 𝜌 defined
on a spatial region Ω.

 Formally, we want to find the locations of 𝑛
sources { ⃗𝑥1, … , ⃗𝑥𝑛} that minimizes the cost
function

𝐹({ ⃗𝑥1, … , ⃗𝑥𝑛}) = ∫
Ω

𝜌( ⃗𝑥)min𝑖|| ⃗𝑥 − ⃗𝑥𝑖||d ⃗𝑥 .

 Also known as the p-median problem.
 Not easy... in fact this one is an NP-hard

problem. [8]
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Size-density law
Can (roughly) turn into a Lagrange multiplier
story:
 By varying { ⃗𝑥1, ..., ⃗𝑥𝑛}, minimize

𝐺(𝐴) = 𝑐 ∫
Ω

𝜌( ⃗𝑥)𝐴( ⃗𝑥)1/2d ⃗𝑥 −𝜆 (𝑛 − ∫
Ω

[𝐴( ⃗𝑥)]−1 d ⃗𝑥 )

 Involves estimating typical distance from ⃗𝑥 to the
nearest source (say 𝑖) as 𝑐𝑖𝐴( ⃗𝑥)1/2 where 𝑐𝑖 is a
shape factor for the 𝑖th Voronoi cell.

 Sneakiness: set 𝑐𝑖 = 𝑐.
 Compute 𝛿𝐺/𝛿𝐴, the functional derivative.
 Solve and substitute 𝐷 = 1/𝐴, we find

𝐷( ⃗𝑥) = ( 𝑐
2𝜆𝜌)

2/3
.

http://en.wikipedia.org/wiki/Functional_derivative
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Global redistribution networks
One more thing:
 How do we supply these facilities?
 How do we best redistribute mail? People?
 How do we get beer to the pubs?
 Gaster and Newman model: cost is a function of

basic maintenance and travel time:

𝐶maint + 𝛾𝐶travel.

 Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance ℓ𝑖𝑗 and number of legs to journey:

(1 − 𝛿)ℓ𝑖𝑗 + 𝛿(#hops).

 When 𝛿 = 1, only number of hops matters.
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Global redistribution networks

l̃i j = !1 − !"lij + ! !10"

with 0"!"1. The parameter ! determines the user’s pref-
erence for measuring distance in terms of kilometers or legs.
Now we define the effective distance between two !not nec-
essarily adjacent" vertices to be the sum of the effective
lengths of all edges along a path between them, minimized
over all paths. The travel cost is then proportional to the sum
of all effective path lengths

Z = #
i#j

wijl̃ij , !11"

and the optimal network for given $ and ! is again the one
that minimizes the total cost T+$Z. Since the second term in
Eq. !10" is dimensionless, we normalize the length appearing
in the first term by setting the average “crow flies” distance
between a vertex and its nearest neighbor equal to 1.

What is a realistic value for $? We can make an order of
magnitude estimate as follows. The sum in Eq. !7" has m
nonzero terms, where m is the number of edges in the net-
work. Most real networks are sparse, with m=O!p". Further-
more, edges are of typical length 1 in our length scale, so
that T=O!p", with p$200 in the examples studied here. The
sum in Eq. !11", on the other hand, contains 1

2 p!p−1"
=O!p2" nonzero terms. If P is the total population, the
weights wij have typical value !P / p"2. Thus Z=O!P2"
$1017 for the U.S. with a current population of P$2.8
%108. Assuming that our investments in maintenance and
travel costs are of the same order of magnitude and setting
T%$Z then leads to an estimate for $ of order 10−15or 10−14.

In Fig. 6, we show the results for $=10−14. When !=0,
passengers !or cargo shippers" care only about total kilome-
ters traveled and the optimal network strongly resembles a
network of roads, such as the U.S. interstate network. As !
increases, the number of legs in a journey starts playing a
more important role and the approximate symmetry between
the vertices is broken as the network begins to form hubs.

Around !=0.5, we see networks emerging that constitute a
compromise between the convenience of direct local connec-
tions and the efficiency of hubs, while by !=0.8 the network
is dominated by a few large hubs in Philadelphia, Columbus,
Chicago, Kansas City, and Atlanta that handle the bulk of the
traffic. On the highly populated California coast, two smaller
hubs around San Francisco and Los Angeles are visible. In
the extreme case !=1, where the user cares only about num-
ber of legs and not about distance at all, the network is domi-
nated by a single central hub in Cincinnati, with a few
smaller local hubs in other locations such as Los Angeles.

V. CONCLUSIONS

We have studied the problem of optimal facility location,
also called the p-median problem, which consists of choos-
ing positions for p facilities in geographic space such that the
mean distance between a member of the population and the
nearest facility is minimized. Analytic arguments indicate
that the optimal density of facilities should be proportional to
the population density to the two-thirds power. We have con-
firmed this relation by solving the p-median problem numeri-
cally and projecting the facility locations on density-
equalizing maps. We have also considered the design of
optimal networks to connect our facilities together. Given
optimally located facilities, we have searched numerically
for the network configuration that minimizes the sum of
maintenance and travel costs. A simple two-parameter model
allows us to take different user preferences into account. The
model gives us intuition about a number of situations of
practical interest, such as the design of transportation net-
works, parcel delivery services, and the Internet backbone.
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FIG. 6. !Color online" Optimal
networks for the population distri-
bution of the United States with
p=200 vertices and $=10−14 for
different values of !.

OPTIMAL DESIGN OF SPATIAL DISTRIBUTION NETWORKS PHYSICAL REVIEW E 74, 016117 !2006"

016117-5

From Gastner and Newman (2006) [8]
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Structure detection

to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world

network data. Our first such example is taken from one of the

classic studies in social network analysis. Over the course of

two years in the early 1970s, Wayne Zachary observed social

interactions between the members of a karate club at an

American university "36#. He constructed networks of ties
between members of the club based on their social interac-

tions both within the club and outside it. By chance, a dis-

pute arose during the course of his study between the club’s

administrator and its principal karate teacher over whether to

raise club fees, and as a result the club eventually split in

two, forming two smaller clubs, centered around the admin-

istrator and the teacher.

In Fig. 8, we show a consensus network structure ex-

tracted from Zachary’s observations before the split. Feeding

this network into our algorithms, we find the results shown in

Fig. 9. In the leftmost two panels, we show the dendrograms

generated by the shortest-path and random-walk versions of

our algorithm, along with the modularity measures for the

same. As we see, both algorithms give reasonably high val-

ues for the modularity when the network is split into two

communities—around 0.4 in each case—indicating that there

is a strong natural division at this level. What is more, the

divisions in question correspond almost perfectly to the ac-

tual divisions in the club revealed by which group each club

member joined after the club split up. $The shapes of the
vertices representing the two factions are the same as those

of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-

fied by the random-walk version—the latter gets a perfect

score on this test. $On the other hand, the two-community
split fails to produce a local maximum in the modularity for

the random-walk method, unlike the shortest-path method,

for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and

modularity for an algorithm based on shortest-path between-

ness but without the crucial recalculation step discussed in

Sec. II. As the figure shows, without this step, the algorithm

fails to find the division of the network into the two known

groups. Furthermore, the modularity does not reach nearly

such high values as in the first two panels, indicating that the

divisions suggested are much poorer than in the cases with

the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network

of scientists. Figure 10$a! shows the largest component of a
network of collaborations between physicists who conduct

research on networks. $The authors of the present paper, for
instance, are among the nodes in this network.! This network
$which appeared previously in Ref. "37#! was constructed by
taking names of authors appearing in the lengthy bibliogra-

phy of Ref. "4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-

tion of the archive, where, for historical reasons, most papers

on networks have appeared. Authors appearing in both were

added to the network as vertices, and edges between them

indicate coauthorship of one or more papers appearing in the

archive. Thus the collaborative ties represented in the figure

are not limited to papers on topics concerning networks—we

were interested primarily in whether people know one an-

other, and collaboration on any topic is a reasonable indica-

tor of acquaintance.

The network as presented in Fig. 10$a! is difficult to in-
terpret. Given the names of the scientists, knowledgeable

readers with too much time on their hands could, no doubt,

pick out known groupings, for instance at particular institu-

tions, from the general confusion. But were this a network

about which we had no a priori knowledge, we would be

hard pressed to understand its underlying structure.

Applying the shortest-path version of our algorithm to this

network, we find that the modularity, Eq. $5!, has a strong
peak at 13 communities with a value of Q!0.72"0.02. Ex-
tracting the communities from the corresponding dendro-

gram, we have indicated them with colors in Fig. 10$b!. The
knowledgeable reader will again be able to discern known

groups of scientists in this rendering, and more easily now

with the help of the colors. Still, however, the structure of the

network as a whole and of the interactions between groups is

quite unclear.

In Fig. 10$c!, we have reduced the network to only the
groups. In this panel, we have drawn each group as a circle,

with size varying roughly with the number of individuals in

the group. The lines between groups indicate collaborations

between group members, with the thickness of the lines

varying in proportion to the number of pairs of scientists

who have collaborated. Now the overall structure of the net-

work becomes easy to see. The network is centered around

the large group in the middle $which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower

right of the picture $mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the

karate club study of Zachary "36#. The administrator and the in-
structor are represented by nodes 1 and 33, respectively. Shaded

squares represent individuals who ended up aligning with the club’s

administrator after the fission of the club, open circles those who

aligned with the instructor.
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s Zachary’s karate club [25, 16]

 The issue:
how do we
elucidate the
internal structure of
large networks
across many scales?

 Possible substructures:
hierarchies, cliques, rings, …

 Plus:
All combinations of substructures.

 Much focus on hierarchies...
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Top down:
 Idea: Identify global structure first and recursively

uncover more detailed structure.
 Basic objective: find dominant components that

have significantly more links within than without,
as compared to randomized version.

 Following comes from “Finding and evaluating
community structure in networks” by Newman
and Girvan (PRE, 2004). [16]

 See also
1. “Scientific collaboration networks. II. Shortest

paths, weighted networks, and centrality” by
Newman (PRE, 2001). [14, 15]

2. “Community structure in social and biological
networks” by Girvan and Newman (PNAS, 2002). [9]
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Finding and evaluating community structure in networks

M. E. J. Newman1,2 and M. Girvan2,3
1Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109-1120, USA

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
3Department of Physics, Cornell University, Ithaca, New York 14853-2501, USA

!Received 19 August 2003; published 26 February 2004"

We propose and study a set of algorithms for discovering community structure in networks—natural divi-

sions of network nodes into densely connected subgroups. Our algorithms all share two definitive features:

first, they involve iterative removal of edges from the network to split it into communities, the edges removed

being identified using any one of a number of possible ‘‘betweenness’’ measures, and second, these measures

are, crucially, recalculated after each removal. We also propose a measure for the strength of the community

structure found by our algorithms, which gives us an objective metric for choosing the number of communities

into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering

community structure in both computer-generated and real-world network data, and show how they can be used

to shed light on the sometimes dauntingly complex structure of networked systems.

DOI: 10.1103/PhysRevE.69.026113 PACS number!s": 89.75.Hc, 87.23.Ge, 89.20.Hh, 05.10.!a

I. INTRODUCTION

Empirical studies and theoretical modeling of networks

have been the subject of a large body of recent research in

statistical physics and applied mathematics #1–4$. Network
ideas have been applied with success to topics as diverse as
the Internet and the world wide web #5–7$, epidemiology
#8–11$, scientific citation and collaboration #12,13$, metabo-
lism #14,15$, and ecosystems #16,17$, to name but a few. A
property that seems to be common to many networks is com-
munity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to find
and analyze such groups can provide invaluable help in un-
derstanding and visualizing the structure of networks. In this
paper, we show how this can be achieved.
The study of community structure in networks has a long

history. It is closely related to the ideas of graph partitioning
in graph theory and computer science, and hierarchical clus-
tering in sociology #18,19$. Before presenting our own find-
ings, it is worth reviewing some of this preceding work to
understand its achievements and shortcomings.
Graph partitioning is a problem that arises in, for ex-

ample, parallel computing. Suppose we have a number n of
intercommunicating computer processes, which we wish to
distribute over a number g of computer processors. Processes
do not necessarily need to communicate with all others, and
the pattern of required communications can be represented as
a graph or network in which the vertices represent processes
and edges join process pairs that need to communicate. The
problem is to allocate the processes to processors in such a
way as roughly to balance the load on each processor, while
at the same time minimizing the number of edges that run
between processors, so that the amount of interprocessor
communication !which is normally slow" is minimized. In
general, finding an exact solution to a partitioning task of this
kind is believed to be an NP-hard problem, making it pro-
hibitively difficult to solve exactly for large graphs, but a
wide variety of heuristic algorithms have been developed

that give acceptably good solutions in many cases, the best
known being perhaps the Kernighan-Lin algorithm #20$,
which runs in time O(n3) on sparse graphs.
A solution to the graph partitioning problem is, however,

not particularly helpful for analyzing and understanding net-
works in general. If we merely want to find if and how a
given network breaks down into communities, we probably
do not know how many such communities there are going to
be, and there is no reason why they should be roughly the
same size. Furthermore, the number of intercommunity
edges need not be strictly minimized either, since more such
edges are admissible between large communities than be-
tween small ones.
As far as our goals in this paper are concerned, a more

useful approach is that taken by social network analysis with
the set of techniques known as hierarchical clustering. These
techniques are aimed at discovering natural divisions of !so-
cial" networks into groups, based on various metrics of simi-
larity or strength of connection between vertices. They fall
into two broad classes, agglomerative and divisive #19$, de-
pending on whether they focus on the addition or removal of
edges to or from the network. In an agglomerative method,
similarities are calculated by one method or another between
vertex pairs, and edges are then added to an initially empty

FIG. 1. A small network with community structure of the type

considered in this paper. In this case there are three communities,

denoted by the dashed circles, which have dense internal links but

between which there is only a lower density of external links.

PHYSICAL REVIEW E 69, 026113 !2004"
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 Idea:
Edges that connect communities have higher
betweenness than edges within communities.
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Hierarchy by division

One class of structure-detection algorithms:
1. Compute edge betweenness for whole network.
2. Remove edge with highest betweenness.
3. Recompute edge betweenness
4. Repeat steps 2 and 3 until all edges are removed.

5 Record when
components appear as
a function of # edges
removed.

6 Generate dendogram
revealing hierarchical
structure.

network !n vertices with no edges" starting with the vertex
pairs with highest similarity. The procedure can be halted at

any point, and the resulting components in the network are

taken to be the communities. Alternatively, the entire pro-

gression of the algorithm from empty graph to complete

graph can be represented in the form of a tree or dendrogram

such as that shown in Fig. 2. Horizontal cuts through the tree

represent the communities appropriate to different halting

points.

Agglomerative methods based on a wide variety of simi-

larity measures have been applied to different networks.

Some networks have natural similarity metrics built in. For

example, in the widely studied network of collaborations be-

tween film actors #21,22$, in which two actors are connected
if they have appeared in the same film, one could quantify

similarity by how many films actors have appeared in to-

gether #23$. Other networks have no natural metric, but suit-
able ones can be devised using correlation coefficients, path

lengths, or matrix methods. A well known example of an

agglomerative clustering method is the Concor algorithm of

Breiger et al. #24$.
Agglomerative methods have their problems, however.

One concern is that they fail with some frequency to find the

correct communities in networks where the community

structure is known, which makes it difficult to place much

trust in them in other cases. Another is their tendency to find

only the cores of communities and leave out the periphery.

The core nodes in a community often have strong similarity,

and hence are connected early in the agglomerative process,

but peripheral nodes that have no strong similarity to others

tend to get neglected, leading to structures like that shown in

Fig. 3. In this figure, there are a number of peripheral nodes

whose community membership is obvious to the eye—in

most cases, they have only a single link to a specific

community—but agglomerative methods often fail to place

such nodes correctly.

In this paper, therefore, we focus on divisive methods.

These methods have been relatively little studied in the pre-

vious literature, either in social network theory or elsewhere,

but, as we will see, they seem to offer a lot of promise. In a

divisive method, we start with the network of interest and

attempt to find the least similar connected pairs of vertices

and then remove the edges between them. By doing this

repeatedly, we divide the network into smaller and smaller

components, and again we can stop the process at any stage

and take the components at that stage to be the network

communities. Again, the process can be represented as a den-

drogram depicting the successive splits of the network into

smaller and smaller groups.

The approach we take follows roughly these lines, but

adopts a somewhat different philosophical viewpoint. Rather

than looking for the most weakly connected vertex pairs, our

approach will be to look for the edges in the network that are

most ‘‘between’’ other vertices, meaning that the edge is, in

some sense, responsible for connecting many pairs of others.

Such edges need not be weak at all in the similarity sense.

How this idea works out in practice will become clear in the

course of the presentation.

Briefly then, the outline of this paper is as follows. In Sec.

II we describe the crucial concepts behind our methods for

finding community structure in networks and show how

these concepts can be turned into a concrete prescription for

performing calculations. In Sec. III we describe in detail the

implementation of our methods. In Sec. IV we consider ways

of determining when a particular division of a network into

communities is a good one, allowing us to quantify the suc-

cess of our community-finding algorithms. And in Sec. V we

give a number of applications of our algorithms to particular

networks, both real and artificial. In Sec. VI we give our

conclusions. A brief report of some of the work contained in

this paper has appeared previously as Ref. #25$.

II. FINDING COMMUNITIES IN A NETWORK

In this paper, we present a class of new algorithms for

network clustering, i.e., the discovery of community struc-

ture in networks. Our discussion focuses primarily on net-

works with only a single type of vertex and a single type of

undirected, unweighted edge, although generalizations to

more complicated network types are certainly possible.

There are two central features that distinguish our algo-

rithms from those that have preceded them. First, our algo-

FIG. 2. A hierarchical tree or dendrogram illustrating the type of

output generated by the algorithms described here. The circles at the

bottom of the figure represent the individual vertices of the net-

work. As we move up the tree, the vertices join together to form

larger and larger communities, as indicated by the lines, until we

reach the top, where all are joined together in a single community.

Alternatively, the dendrogram depicts an initially connected net-

work splitting into smaller and smaller communities as we go from

top to bottom. A cross section of the tree at any level, such as that

indicated by the dotted line, will give the communities at that level.

The vertical height of the split points in the tree are indicative only

of the order in which the splits !or joins" take place, although it is
possible to construct more elaborate dendrograms in which these

heights contain other information.

FIG. 3. Agglomerative clustering methods are typically good at

discovering the strongly linked cores of communities !bold vertices
and edges" but tend to leave out peripheral vertices, even when, as
here, most of them clearly belong to one community or another.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 !2004"

026113-2

Red line indicates appearance
of four (4) components at a
certain level.
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Key element:
 Recomputing betweenness.
 Reason: Possible to have a low betweenness in

links that connect large communities if other links
carry majority of shortest paths.

When to stop?:
 How do we know which divisions are meaningful?
 Modularity measure: difference in fraction of

within component nodes to that expected for
randomized version:
𝑄 = ∑𝑖[𝑒𝑖𝑖 − (∑𝑗 𝑒𝑖𝑗)2] = Tr𝐸 − ||𝐸2||1,
where 𝑒𝑖𝑗 is the fraction of edges between
identified communities 𝑖 and 𝑗.
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Test case:
 Generate random community-based networks.
 𝑁 = 128 with four communities of size 32.
 Add edges randomly within and across

communities.
 Example:

⟨𝑘⟩in = 6 and ⟨𝑘⟩out = 2.
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A. Tests on computer-generated networks

First, as a controlled test of how well our algorithms per-

form, we have generated networks with known community

structure, to see if the algorithms can recognize and extract

this structure.

We have generated a large number of graphs with n

!128 vertices, divided into four communities of 32 vertices
each. Edges were placed independently at random between

vertex pairs with probability p in for an edge to fall between

vertices in the same community and pout to fall between ver-

tices in different communities. The values of p in and pout
were chosen to make the expected degree of each vertex

equal to 16. In Fig. 6, we show a typical dendrogram from

the analysis of such a graph using the shortest-path between-

ness version of our algorithm. !In fact, for the sake of clarity,
the figure is for a 64-node version of the graph." Results for
the random-walk version are similar. At the right of the fig-

ure we also show the modularity, Eq. !5", for the same cal-
culation, plotted as a function of position in the dendrogram.

That is, the plot is aligned with the dendrogram so that one

can read off modularity values for different divisions of the

network directly. As we can see, the modularity has a single

clear peak at the point where the network breaks into four

communities, as we would expect. The peak value is around

0.5, which is typical.

In Fig. 7, we show the fraction of vertices in our

computer-generated network sample classified correctly into

the four communities by our algorithms, as a function of the

mean number zout of edges from each vertex to vertices in

other communities. As the figure shows, both the shortest-

path and random-walk versions of the algorithm perform ex-

cellently, with more than 90% of all vertices classified cor-

rectly from zout!0 all the way to around zout!6. Only for
zout"6 does the classification begin to deteriorate markedly.
In other words, our algorithm correctly identifies the com-

munity structure in the network almost all the way to the

point zout!8 at which each vertex has on average the same

number of connections to vertices outside its community as it

does to those inside.

The shortest-path version of the algorithm does, however,

perform noticeably better than the random-walk version, es-

pecially for the more difficult cases where zout is large. Given

that the random-walk algorithm is also more computationally

demanding, there seems little reason to use it rather than the

shortest-path algorithm, and hence, as discussed previously,

we recommend the latter for most applications. !To be fair,
the random-walk algorithm does slightly outperform the

shortest-path algorithm in the example addressed in the fol-

lowing section, although, being only a single case, it is hard

FIG. 6. Plot of the modularity and dendrogram for a 64-vertex random community-structured graph generated as described in the text

with, in this case, z in!6 and zout!2. The shapes at the bottom denote the four communities in the graph and, as we can see, the peak in the
modularity !dotted line" corresponds to a perfect identification of the communities.

FIG. 7. The fraction of vertices correctly identified by our algo-

rithms in the computer-generated graphs described in the text. The

two curves show results for the shortest-path !circles" and random-
walk !squares" versions of the algorithm as a function of the num-

ber of edges the vertices have to others outside their own commu-

nity. The point zout!8 at the rightmost edge of the plot represents
the point at which vertices have as many connections outside their

own community as inside it. Each data point is an average over 100

graphs.
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 Maximum modularity 𝑄 ≃ 0.5 obtained when four
communities are uncovered.

 Further ‘discovery’ of internal structure is
somewhat meaningless, as any communities arise
accidentally.



The PoCSverse
Optimal supply &
Structure
detection
45 of 81

Single Source

Distributed
Sources
Facility location

Size-density law

A reasonable derivation

Global redistribution
networks

Structure
Detection
Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

General structure
detection

Final words

References

Hierarchy by division

to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-world

network data. Our first such example is taken from one of the

classic studies in social network analysis. Over the course of

two years in the early 1970s, Wayne Zachary observed social

interactions between the members of a karate club at an

American university "36#. He constructed networks of ties
between members of the club based on their social interac-

tions both within the club and outside it. By chance, a dis-

pute arose during the course of his study between the club’s

administrator and its principal karate teacher over whether to

raise club fees, and as a result the club eventually split in

two, forming two smaller clubs, centered around the admin-

istrator and the teacher.

In Fig. 8, we show a consensus network structure ex-

tracted from Zachary’s observations before the split. Feeding

this network into our algorithms, we find the results shown in

Fig. 9. In the leftmost two panels, we show the dendrograms

generated by the shortest-path and random-walk versions of

our algorithm, along with the modularity measures for the

same. As we see, both algorithms give reasonably high val-

ues for the modularity when the network is split into two

communities—around 0.4 in each case—indicating that there

is a strong natural division at this level. What is more, the

divisions in question correspond almost perfectly to the ac-

tual divisions in the club revealed by which group each club

member joined after the club split up. $The shapes of the
vertices representing the two factions are the same as those

of Fig. 8.! Only one vertex, vertex 3, is misclassified by the
shortest-path version of the method, and none are misclassi-

fied by the random-walk version—the latter gets a perfect

score on this test. $On the other hand, the two-community
split fails to produce a local maximum in the modularity for

the random-walk method, unlike the shortest-path method,

for which there is a local maximum precisely at this point.!

In the last panel of Fig. 9, we show the dendrogram and

modularity for an algorithm based on shortest-path between-

ness but without the crucial recalculation step discussed in

Sec. II. As the figure shows, without this step, the algorithm

fails to find the division of the network into the two known

groups. Furthermore, the modularity does not reach nearly

such high values as in the first two panels, indicating that the

divisions suggested are much poorer than in the cases with

the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network

of scientists. Figure 10$a! shows the largest component of a
network of collaborations between physicists who conduct

research on networks. $The authors of the present paper, for
instance, are among the nodes in this network.! This network
$which appeared previously in Ref. "37#! was constructed by
taking names of authors appearing in the lengthy bibliogra-

phy of Ref. "4# and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-

tion of the archive, where, for historical reasons, most papers

on networks have appeared. Authors appearing in both were

added to the network as vertices, and edges between them

indicate coauthorship of one or more papers appearing in the

archive. Thus the collaborative ties represented in the figure

are not limited to papers on topics concerning networks—we

were interested primarily in whether people know one an-

other, and collaboration on any topic is a reasonable indica-

tor of acquaintance.

The network as presented in Fig. 10$a! is difficult to in-
terpret. Given the names of the scientists, knowledgeable

readers with too much time on their hands could, no doubt,

pick out known groupings, for instance at particular institu-

tions, from the general confusion. But were this a network

about which we had no a priori knowledge, we would be

hard pressed to understand its underlying structure.

Applying the shortest-path version of our algorithm to this

network, we find that the modularity, Eq. $5!, has a strong
peak at 13 communities with a value of Q!0.72"0.02. Ex-
tracting the communities from the corresponding dendro-

gram, we have indicated them with colors in Fig. 10$b!. The
knowledgeable reader will again be able to discern known

groups of scientists in this rendering, and more easily now

with the help of the colors. Still, however, the structure of the

network as a whole and of the interactions between groups is

quite unclear.

In Fig. 10$c!, we have reduced the network to only the
groups. In this panel, we have drawn each group as a circle,

with size varying roughly with the number of individuals in

the group. The lines between groups indicate collaborations

between group members, with the thickness of the lines

varying in proportion to the number of pairs of scientists

who have collaborated. Now the overall structure of the net-

work becomes easy to see. The network is centered around

the large group in the middle $which consists of researchers
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the lower

right of the picture $mostly Boston University physicists and

FIG. 8. The network of friendships between individuals in the

karate club study of Zachary "36#. The administrator and the in-
structor are represented by nodes 1 and 33, respectively. Shaded

squares represent individuals who ended up aligning with the club’s

administrator after the fission of the club, open circles those who

aligned with the instructor.
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 Factions in Zachary’s karate club network. [25]
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Betweenness for electrons:

separate component of the graph. Let Vi be the voltage at
vertex i, measured relative to any convenient point. Then for
all i we have

!
j
Ai j"Vi!V j#"$ is!$ it , "1#

where Ai j is the ij element of the adjacency matrix of the
graph, i.e., Ai j"1 if i and j are connected by an edge and
Ai j"0 otherwise. The left-hand side of Eq. "1# represents the
net current flow out of vertex i along edges of the network,
and the right-hand side represents the source and sink. De-
fining ki"! jAi j , which is the vertex degree, and creating a
diagonal matrix D with these degrees on the diagonal Dii
"ki , this equation can be written in matrix form as (D
!A)•V"s, where the source vector s has components

si"! #1 for i"s
!1 for i"t
0 otherwise.

"2#

We cannot directly invert the matrix D!A to get the volt-
age vector V, because the matrix "which is just the graph
Laplacian# is singular. This is equivalent to saying that there
is one undetermined degree of freedom corresponding to the
choice of reference potential for measuring the voltages. We
can add any constant to a solution for the vertex voltages and
get another solution—only the voltage differences matter. In
choosing the reference potential, we fix this degree of free-
dom, leaving only n!1 more to be determined. In math-
ematical terms, once any n!1 of the equations in our matrix
formulation are satisfied, the remaining one is also automati-
cally satisfied so long as current is conserved in the network
as a whole, i.e., so long as ! is i"0, which is clearly true in
this case.
Choosing any vertex v to be the reference point, there-

fore, we remove the row and column corresponding to that
vertex from D and A before inverting. Denoting the resulting
(n!1)$(n!1) matrices Dv and Av , we can then write

V""Dv!Av#!1•s. "3#

Calculation of the currents in the network thus involves
inverting Dv!Av once for any convenient choice of v , and

taking the differences of pairs of columns to get the voltage
vector V for each possible source/sink pair. "The voltage for
the one missing vertex v is always zero, by hypothesis.# The
absolute magnitudes of the differences of voltages along
each edge give us betweenness scores for the given source
and sink. Summing over all sources and sinks, we then get
our complete betweenness score.
The matrix inversion takes time O(n3) in the worst case,

while the subsequent calculation of betweennesses takes time
O(mn2), where as before m is the number of edges and n the
number of vertices in the graph. Thus, the entire community
structure algorithm, including the recalculation step, will
take O„(n#m)mn2… time to complete, or O(n4) on a sparse
graph. Although, as we will see, the algorithm is good at
finding community structure, this poor performance makes it
practical only for smaller graphs; a few hundreds of vertices
is the most that we have been able to do. It is for this reason
that we recommend using the shortest-path betweenness al-
gorithm in most cases, which gives results about as good or
better with considerably less effort.

C. Random walks

The random-walk betweenness described in Sec. II re-
quires us to calculate how often on average random walks
starting at vertex s will pass down a particular edge from
vertex v to vertex w "or vice versa# before finding their way
to a given target vertex t. To calculate this quantity, we pro-
ceed as follows for each separate component of the graph.
As before, let Ai j be an element of the adjacency matrix

such that Ai j"1 if vertices i and j are connected by an edge
and Ai j"0 otherwise. Consider a random walk that on each
step decides uniformly between the neighbors of the current
vertex j and takes a step to one of them. The number of
neighbors is just the degree of the vertex k j"! iAi j , and the
probability for the transition from j to i is Ai j /k j , which we
can regard as an element of the matrixM"A•D!1, where D
is the diagonal matrix with Dii"ki .
We are interested in walks that terminate when they reach

the target t, so that t is an absorbing state. The most conve-
nient way to represent this is just to remove entirely the
vertex t from the graph, so that no walk ever reaches any
other vertex from t. Thus let Mt"At•Dt!1 be the matrix M
with the tth row and column removed "and similarly for At
and Dt).
Now the probability that a walk starts at s, takes n steps,

and ends up at some other vertex "not t# is given by the is
element of Mt

n , which we denote %Mt
n& is . In particular,

walks end up at v and w with probabilities %Mt
n&vs and

%Mt
n&ws , and of those a fraction 1/kv and 1/kw , respectively,

then pass along the edge (v ,w) in one direction or the other,
assuming such an edge exists. "Note that they may also have
passed along this edge an arbitrary number of times before
reaching this point.# Summing over all n, the mean number
of times that a walk of any length traverses the edge from v
to w is kv

!1%(I!Mt)!1&vs , and similarly for walks that go
from w to v .
To highlight the similarity with the current-flow between-

ness of Sec. III B, let us denote these two numbers Vv and

FIG. 5. An example of the type of resistor network considered
here, in which a unit resistance is placed on each edge and unit
current flows into and out of the source and sink vertices.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 "2004#

026113-6

 Unit resistors on each edge.
 For every pair of nodes 𝑠

(source) and 𝑡 (sink), set up
unit currents in at 𝑠 and out
at 𝑡.

 Measure absolute current
along each edge ℓ, |𝐼ℓ,𝑠𝑡|.

 Sum |𝐼ℓ,𝑠𝑡| over all pairs of nodes to obtain
electronic betweenness for edge ℓ.

 (Equivalent to random walk betweenness.)
 Electronic betweenness for edge between nodes 𝑖

and 𝑗:
𝐵 elec

𝑖𝑗 = 𝑎𝑖𝑗|𝑉𝑖 − 𝑉𝑗|.
 Upshot: specific measure of betweenness not too

important.
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FIG. 10. Illustration of the use of the community-structure algorithm to make sense of a complex network. !a" The initial network is a
network of coauthorships between physicists who have published on topics related to networks. The figure shows only the largest component

of the network, which contains 145 scientists. There are 90 more scientists in smaller components, which are not shown. !b" Application of
the shortest-path betweenness version of the community-structure algorithm produces the communities indicated by the shades of the

vertices. !c" A coarse-graining of the network in which each community is represented by a single node, with edges representing collabo-
rations between communities. The thickness of the edges is proportional to the number of pairs of collaborators between communities.

Clearly panel !c" reveals much that is not easily seen in the original network of panel !a".

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 !2004"
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The PoCSverse
Optimal supply &
Structure
detection
48 of 81

Single Source

Distributed
Sources
Facility location

Size-density law

A reasonable derivation

Global redistribution
networks

Structure
Detection
Hierarchy by division

Hierarchy by shuffling

Spectral methods

Hierarchies & Missing
Links

General structure
detection

Final words

References

Scientists working on networks

FIG. 10. Illustration of the use of the community-structure algorithm to make sense of a complex network. !a" The initial network is a
network of coauthorships between physicists who have published on topics related to networks. The figure shows only the largest component

of the network, which contains 145 scientists. There are 90 more scientists in smaller components, which are not shown. !b" Application of
the shortest-path betweenness version of the community-structure algorithm produces the communities indicated by the shades of the

vertices. !c" A coarse-graining of the network in which each community is represented by a single node, with edges representing collabo-
rations between communities. The thickness of the edges is proportional to the number of pairs of collaborators between communities.

Clearly panel !c" reveals much that is not easily seen in the original network of panel !a".

FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 !2004"
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Dolphins!

group splitting is included also.

The split into two groups appears to correspond to a

known division of the dolphin community !39". Lusseau re-
ports that for a period of about two years during observation

of the dolphins they separated into two groups along the

lines found by our analysis, apparently because of the disap-

pearance of individuals on the boundary between the groups.

When some of these individuals later reappeared, the two

halves of the network joined together once more. As Lusseau

points out, developments of this kind illustrate that the dol-

phin network is not merely a scientific curiosity but, like

human social networks, is closely tied to the evolution of the

community. The subgroupings within the larger half of the

network also seem to correspond to real divisions among the

animals: the largest subgroup consists almost of entirely of

females and the others almost entirely of males, and it is

conjectured that the split between the male groups is gov-

erned by matrilineage !D. Lusseau #personal communica-
tion$".
Figure 12 shows the community structure of the network

of interactions between major characters in Victor Hugo’s

sprawling novel of crime and redemption in post-restoration

FIG. 11. Community structure in the bottlenose dolphins of

Doubtful Sound !38,39", extracted using the shortest-path version of
our algorithm. The squares and circles denote the primary split of

the network into two groups, and the circles are subdivided further

into four smaller groups as shown. The modularity for the split is

Q!0.52. The network has been drawn with longer edges between
vertices in different communities than between those in the same

community, to make the community groupings clearer. The same is

also true of Figs. 12 and 13.

FIG. 12. The network of interactions between major characters in the novel Les Misérables by Victor Hugo. The greatest modularity

achieved in the shortest-path version of our algorithm is Q!0.54 and corresponds to the 11 communities shown.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 #2004$

026113-12
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Les Miserables

group splitting is included also.

The split into two groups appears to correspond to a

known division of the dolphin community !39". Lusseau re-
ports that for a period of about two years during observation

of the dolphins they separated into two groups along the

lines found by our analysis, apparently because of the disap-

pearance of individuals on the boundary between the groups.

When some of these individuals later reappeared, the two

halves of the network joined together once more. As Lusseau

points out, developments of this kind illustrate that the dol-

phin network is not merely a scientific curiosity but, like

human social networks, is closely tied to the evolution of the

community. The subgroupings within the larger half of the

network also seem to correspond to real divisions among the

animals: the largest subgroup consists almost of entirely of

females and the others almost entirely of males, and it is

conjectured that the split between the male groups is gov-

erned by matrilineage !D. Lusseau #personal communica-
tion$".
Figure 12 shows the community structure of the network

of interactions between major characters in Victor Hugo’s

sprawling novel of crime and redemption in post-restoration

FIG. 11. Community structure in the bottlenose dolphins of

Doubtful Sound !38,39", extracted using the shortest-path version of
our algorithm. The squares and circles denote the primary split of

the network into two groups, and the circles are subdivided further

into four smaller groups as shown. The modularity for the split is

Q!0.52. The network has been drawn with longer edges between
vertices in different communities than between those in the same

community, to make the community groupings clearer. The same is

also true of Figs. 12 and 13.

FIG. 12. The network of interactions between major characters in the novel Les Misérables by Victor Hugo. The greatest modularity

achieved in the shortest-path version of our algorithm is Q!0.54 and corresponds to the 11 communities shown.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 #2004$
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Shuffling for structure

 “Extracting the hierarchical organization of
complex systems”
Sales-Pardo et al., PNAS (2007) [17, 18]

 Consider all partitions of networks into 𝑚 groups
 As for Newman and Girvan approach, aim is to

find partitions with maximum modularity:

𝑄 = ∑
𝑖

[𝑒𝑖𝑖 − (∑
𝑗

𝑒𝑖𝑗)2] = Tr𝐸 − ||𝐸2||1.
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 Consider partition network, i.e., the network of all
possible partitions.

 Defn: Two partitions are connected if they differ
only by the reassignment of a single node.

 Look for local maxima in partition network.
 Construct an affinity matrix with entries 𝐴𝑖𝑗.
 𝐴𝑖𝑗 = Pr random walker on modularity network

ends up at a partition with 𝑖 and 𝑗 in the same
group.

 C.f. topological overlap between 𝑖 and 𝑗 =
# matching neighbors for 𝑖 and 𝑗 divided by
maximum of 𝑘𝑖 and 𝑘𝑗.
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Corrections

APPLIED PHYSICAL SCIENCES. For the article ‘‘Extracting the
hierarchical organization of complex systems,’’ by Marta
Sales-Pardo, Roger Guimerà, André A. Moreira, and Luı́s
A. Nunes Amaral, which appeared in issue 39, September
25, 2007, of Proc Natl Acad Sci USA (104:15224–15229; first

published September 19, 2007; 10.1073!pnas.0703740104),
the authors note that, due to a printer’s error, Fig. 1B
appeared incorrectly. The corrected figure and its legend
appear below. This error does not affect the conclusions of
the article.
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Fig. 1. Schematic illustration of our method for a
simple network. (A) Example network. (B) Modularity
landscape. For the example network, there are 15 dis-
tinct groupings of nodes into modules. Each large col-
ored circle represents a partition, which we draw inside
the circle, with different colors indicating different mod-
ules. For clarity, we label each partition with a number
from1to15.Thecolorof thepartitioncircle indicates the
modularity of that partition following the color code on
the bottom right-hand side of the diagram. For simplic-
ity, we consider only single node changes; thus, we con-
nect two partitions, for instance 1 and 2, because the
change of a node to a new module in partition 1 gener-
ates partition 2. The arrows show the direction of in-
creasing modularity. Local maxima correspond to those
partitions that do not point to any other partition; that
is, the change of a single node does not increase the
modularity. In the example, there are two local maxima:
partition 1 and partition 15. To illustrate the concept of
basin of attraction, we show next to each partition a
colored bar (black and white) that represents the prob-
ability that a walker that starts from, for instance, partition 2 and only moves to partitions with larger modularity ends up in either of the local maxima. We use white
to indicate partition 15 and black to indicate partition 1. (C) Coclassification matrix. We show the number of times two nodes are classified in the same module, starting
from a random partition. Note that nodes a, c and b, d are always classified together because they are in the same module in both local maxima (partitions 1and 15).
In contrast, nodes a and b are only in the same module for one of the maxima (partition 1); therefore, the coclassification is lower than one, but larger than zero. (D)
Comparison with randomized networks. In this case, this is the only network that one can build keeping the same degree distribution and not allowing for self-loops.
Therefore, the average modularity for the local maxima of the randomized networks and that of the network under analysis are the same. Thus, our conclusion is that
this network has no internal organization. (E) Representation of the hierarchical organization for the example network. We show the ordered coclassification matrix
on the Left, and on the Right is the tree showing the organization of the nodes into modules. In this case, the network has no significant structure; thus, we show a
bar of a single color indicating that there is a single module. Note that a modularity maximization algorithm would have a certain chance (the probability depending
on the specific algorithm) of finding partition 15 as the optimal partition and would thus conclude that the network does have a modular structure.

www.pnas.org!cgi!doi!10.1073!pnas.0709460104

BIOCHEMISTRY. For the article ‘‘A surface on the androgen
receptor that allosterically regulates coactivator binding,’’ by Eva
Estébanez-Perpiñá, Alexander A. Arnold, Phuong Nguyen, Ed-
son Delgado Rodrigues, Ellena Mar, Raynard Bateman, Peter
Pallai, Kevan M. Shokat, John D. Baxter, R. Kiplin Guy, Paul
Webb, and Robert J. Fletterick, which appeared in issue 41,
October 9, 2007, of Proc Natl Acad Sci USA (104:16074–16079;
first published October 2, 2007; 10.1073!pnas.0708036104), the
author name Alexander A. Arnold should have appeared as
Leggy A. Arnold. The online version has been corrected. The
corrected author line appears below.

Eva Estébanez-Perpiñá, Leggy A. Arnold, Phuong Nguyen,
Edson Delgado Rodrigues, Ellena Mar, Raynard Bateman,
Peter Pallai, Kevan M. Shokat, John D. Baxter, R. Kiplin
Guy, Paul Webb, and Robert J. Fletterick

www.pnas.org!cgi!doi!10.1073!pnas.0709913104

18874 " PNAS " November 20, 2007 " vol. 104 " no. 47 www.pnas.org

 A: Base network; B: Partition network; C:
Coclassification matrix; D: Comparison to random
networks (all the same!); E: Ordered
coclassification matrix; Conclusion: no structure...
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Shuffling for structure

 Method obtains a distribution of classification
hierarchies.

 Note: the hierarchy with the highest modularity
score isn’t chosen.

 Idea is to weight possible hierarchies according to
their basin of attraction’s size in the partition
network.

 Next step: Given affinities, now need to sort nodes
into modules, submodules, and so on.

 Idea: permute nodes to minimize following cost

𝐶 = 1
𝑁

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝐴𝑖𝑗|𝑖 − 𝑗|.

 Use simulated annealing (slow).
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Let then Pmax be the set of partitions for which the modularity M
is a local maxima, that is, partitions for which neither the change of
a single node from one module to another nor the merging of two
modules will yield a higher modularity (Fig. 1B). The most straight-
forward way to calculate Aij would be to consider all partitions P̃ !
Pmax, and find the fraction for which (i, j) are placed in the same
module. However, such a procedure would not take into consid-
eration the size of the basins of attraction of the different maxima.
To understand the importance of this fact, consider the ‘‘landscape’’
in Fig. 1 in which each node represents a partition of the network,
and for simplicity, we connect two partitions if the change of a single
node transforms one partition into the other. This landscape has
two local maxima, partitions 1 and 15. Therefore, if we were only
to consider those partitions, we would conclude that those parti-
tions are equally important. However, there is no reason to assume
that all partitions have the same importance. Actually, for networks
with a very clear modular structure, one expects that a few local
maxima will yield the most relevant information about the orga-
nization of the network. This idea is can be formalized through the
concept of basin of attraction.

Consider again the landscape in Fig. 1B. Suppose we wanted to
find a partition for which the modularity is a maximum with no a
priori information on the landscape. We would start by grouping the
nodes into a randomly chosen partition; let us say, partition 13. In

partition 13, nodes a and c are placed in one group, whereas nodes
b and d are placed into their own groups. There are two single node
changes that increase the modularity. Node b can be placed in the
same group as node d; this is partition 15, which is a local maxima.
Instead, node b can be placed in the same group as nodes a and c;
this is partition 14. Partition 14 is not a modularity maximum; thus
one would continue our random ascent of the modularity land-
scape. From partition 14, one could move to partition 1 or to
partition 15, both local maxima. This example illustrates that from
partition 13, one has a 25% chance of ending in partition 1 and a
75% chance of ending in partition 15. If one repeats this calculation
for every possible starting partition, one obtains the size of the basin
of attraction of the two local modularity maxima.

Formally, the size of the basin of attraction of P̃ is

b!P̃" ! !
P!P

b!P, P̃"

"P " [2]

where b(P, P̃) is the probability that starting from partition P one
ends at partition P̃ ! Pmax and !P! is the number of possible
partitions (Fig. 1B).

We propose that the affinity Aij of a pair of nodes (i, j) is then the
probability that when local maxima partition P̃ ! Pmax are sampled
with probabilities b(P̃), nodes (i, j) are classified in the same module.
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Fig. 2. Affinity measures and clustering methods. (A)
We generate a model network comprised of 640 nodes
with average degree 16 and with a three-level hierarchi-
cal structure (see SI Fig. 8 for results for a network with a
‘‘flat’’ organization of the nodes). We show the affinity
matrices Aij obtained for two different measures: (i) to-
pological overlap (11) and (ii) coclassification (see text
and Supplementary Information). The color scale goes
from red for an affinity of one to dark blue for an affinity
of zero. At the far right, we show the hierarchical tree
obtained by using two different methods: hierarchical
clustering and the ‘‘box clustering’’ method we propose.
In the hierarchical clustering tree, the vertical axis shows
the average distance, dij # 1 " Aij, of the matrix ele-
ments that have already merged. In the box-model clus-
tering tree, each row corresponds to one hierarchical
level. Different colors indicate different modules at that
level. To better identify which are the submodules at a
lower level, we color the nodes in the submodules with
shades of the color used for the modules in the level
above. Note that topological overlap fails to find any
modular structure beyond a locally dense connectivity
pattern. In contrast, the coclassification measure clearly
reveals the hierarchical organization of the network by
the ‘‘nested-box’’ pattern along the diagonal. Signifi-
cantly, thehierarchical treeobtainedviahierarchicalclus-
tering fails to reproduce the clear three-level hierarchical
structure that the affinity matrix displays, whereas the
box-model clustering tree accurately reproduces the
three-level hierarchical organization of the network. (B)
Accuracyof themethod.Wegeneratenetworkswith640
nodes and with built-in hierarchical structure comprising
one (Left), two (Center), and three (Right) levels. The top
level always comprises four modules of 160 nodes each.
For networks with a second level, each of the top-level
modules is organized into four submodules of 40 nodes.
For the networks with three levels, each level-two mod-
ule is further split into four submodules of 10 nodes. We
build networks with different degrees of level cohesive-
ness by tuning a single parameter # (see SI Text). For low
values of #, the levels are very cohesive, for high values of
# the levels are weakly cohesive. Because we know a priori which are the nodes that should be coclassified at each level, we measure the accuracy as the mutual
information between the empirical partition of the nodes and the theoretical one (23). We plot the mutual information versus# and, for comparison, we also plot the
accuracy of a standard community detection algorithm (24) in finding the top level of the networks (dashed green line). Each point is the average over 10different
realizations of the network. Filled circles, empty squares, and filled diamonds represent the accuracy at the top, middle, and lowest levels, respectively. Note that our
method isasgoodatdetectingcommunitiesasa standardcommunitydetectionalgorithmfornetworkswithaflatorganizationof thenodes.Additionally,ourmethod
is able to detect the top level for all cases analyzed, whereas standard modularity optimization algorithms are not.

15226 # www.pnas.org$cgi$doi$10.1073$pnas.0703740104 Sales-Pardo et al.

 𝑁 = 640,
 ⟨𝑘⟩ = 16,
 3 tiered

hierarchy.
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Air transportation:

matrix. As we said previously, we assume that the information at
different levels in the hierarchy is decoupled, thus to detect
submodules beyond the first level, one needs to break the network
into the subnetworks defined by each module and apply the same
procedure from the start. The algorithm iterates these steps for each
identified box until no subnetworks are found to have internal
structure.

Method Validation
We validate our method on hierarchically nested random graphs
with one, two, and three hierarchical levels. We define the accuracy
of the method as the mutual information between the empirical
partition and the theoretical one (23). Fig. 2C shows that the
algorithm uncovers the correct number of levels in the hierarchy.

Moreover, our method always detects the top level, even for the
networks with three hierarchical levels. In contrast, because the
partition that globally maximizes M corresponds to the submodules
in the second level, even the more accurate module identification
algorithms based on modularity maximization would fail to capture
the top level organization (20).

The hierarchically nested random graphs considered above have
a homogeneous hierarchical structure; however, real-world net-
works are not likely to be so regular. In particular, for real-world
networks, one expects that some modules will have deeper hierar-
chical structures than others. We thus have verified that our method
is also able to correctly uncover the organization of model networks
with heterogeneous hierarchical structures (see SI Fig. 10).

Analysis of Real-World Networks
Having validated our method, we next analyze different types of
real-world networks for which we have some insight into the
network structure: the worldwide air-transportation network (35–
37), an e-mail exchange network of a Catalan university (13), and
an electronic circuit (4).

In the air-transportation network, nodes correspond to cities
(that is, all airports around major cities would be merged into a
single node), and two nodes are connected if there is a nonstop
flight connecting them. In the e-mail network, nodes are people and
two people are connected if they send e-mails to each other. In the
electronic network, nodes are transistors and two transistors are
connected if the output of one transistor is the input of the other
(Table 1).

We find that the air-transportation network is strongly modular
and has a deep hierarchical organization (Fig. 3). This finding does

not come as a surprise because historical, economic, political, and
geographical constraints shape the topology of the network (35–
37). We find eight main modules that closely match major conti-
nents and subcontinents and major political divisions, and thus they
truly represent the highest level of the hierarchy.¶

The electronic circuit network is comprised of eight D-flip-flops
and 58 logic gates (4). Our method identifies two levels in the
network (SI Fig. 12A). At the top level, modules comprise either a
D-flip-flop plus some additional gates, or a group of logic gates. At
the second level, the majority of modules comprise single gates.

For the e-mail network, five of the seven major modules at the
top level (SI Fig. 12B) correspond to schools in the university, with
!70% of the nodes in each of those modules affiliated with the
corresponding school. The remaining two major modules at the top
level are a mixture of schools and administration offices (often
collocated on campus), which are distinctly separated at the second
level. The second level also identifies major departments and
groups within a school, as well as research centers closely related to
individual schools.

Application to Metabolic Networks
Finally, we analyze the metabolic networks of E. coli obtained
from three different sources! (Fig. 4 and SI Fig. 13): the KEGG
database (40, 41), the Ma-Zeng database (42), and the recon-
struction compiled by Palsson’s Systems Biology Laboratory at
the UCSD (43). In these networks, nodes are metabolites and
two metabolites are connected if there is a reaction that
transforms one into the other (44).

To quantify the plausibility of our classification scheme, we
analyze the within-module consistency of metabolite pathway clas-
sification for the top and the second levels of the metabolic network
of E. coli (43). For each module, we first identify the pathways
represented; then, we compute the fraction of metabolites that are
classified in the most abundant pathway. We find that there is a
clear correlation between modules and known pathways: At the top
level, for all of the modules except one (the central metabolism

¶The ability of the present method to detect the top level is significant. A previous study
coauthored by two of us identified 19 modules in the worldwide air-transportation
network (37) by using the most accurate modularity maximization algorithm in the
literature (38).

!In the SI Text, we also show the organization obtained for the UCSD reconstruction of the
metabolic network for Helicobacter pylori (39).

DC

A B

Fig. 3. Hierarchical organization of the air-
transportation network. (A) Global-level af-
finity matrix and hierarchical tree (the repre-
sentation is the same used in Fig. 2). (B) Top-
level modules. Each dot represents a city and
different colors represent different modules.
Note that the top level in the hierarchy cor-
responds to major geopolitical units. (C) The
‘‘Eurasian’’module (which is composedof the
majority of European countries, ex-Soviet
Union countries, Middle-Eastern countries,
India, and countries in Northern half of Af-
rica) splits for levels ! " 2 into five submod-
ules. (D)The ‘‘NearandMiddleEast’’ submod-
ule further splits into seven submodules for
! " 3 (D). Note that the air-transportation
network is large and very dense (Table 1), and
thus the organization of the network is not at
all apparent (SI Fig. 11). Remarkably, the
modules our method detects show a clear
agreement with geopolitical units.

15228 " www.pnas.org#cgi#doi#10.1073#pnas.0703740104 Sales-Pardo et al.

 Modules found match up with geopolitical units.
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General structure detection

 “Detecting communities in large networks”
Capocci et al. (2005) [4]

 Consider normal matrix 𝐾−1𝐴, random walk
matrix 𝐴T𝐾−1, Laplacian 𝐾 − 𝐴, and 𝐴𝐴T.

 Basic observation is that eigenvectors associated
with secondary eigenvalues reveal evidence of
structure.

 Build on Kleinberg’s HITS algorithm. [13]
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 Example network:

Thus, solving the eigenproblem is equivalent to minimizing function (1) with
constraint (2), where the xi’s are eigenvectors components. The absolute minimum
corresponds to the trivial eigenvector, which is constant. The other stationary points
correspond to eigenvectors where components associated to well connected nodes
assume similar values.

In order to compute cluster sizes and distribution, methods such as bisection or
edge-betweenness based ones are very poor in detecting the end of the recursive
splitting. Our approach, instead, immediately detects the number of clear clusters
from the eigenvectors profile.

As an illustrative example, we show in Fig. 2 the profile of the second eigenvectors
of D!1W corresponding to the simple graph shown in Fig. 1 with S ¼ 19 nodes,
where random weights between 1 and 10 were assigned to the links (Figs. 1 and 2).
The components of the eigenvectors assume approximately constant values on nodes
belonging to the same community. Thus, the number of communities emerges
naturally and it is not needed as input.

However, as aforementioned, when dealing with large networks with no clear
partitioning, the precise value of the eigenvector components is of little use. In such
situations, the typical eigenvector profile is not step-like, but resembles a continuous
curve. Nevertheless, our method can still be applied, and efficiently detects sets of
well connected nodes. In fact, components corresponding to nodes belonging to the
same communities are still strongly correlated taking, in each eigenvector, similar
values among themselves. Thus, a natural way to identify communities in an
automatic manner, is to measure the correlation

rij ¼
hxixji!h xiihxji

½ðhx2i i!h xii2Þðhx2j i!h xji2Þ&1=2
, (4)

where the average h'i is over the first few nontrivial eigenvectors. The quantity rij
measures the community closeness between nodes i and j: Though the performance
may be improved by averaging over more and more eigenvectors, with increased
computational effort, we find that indeed a small number of eigenvectors suffices to
identify the community to which nodes belong, even in large networks.

ARTICLE IN PRESS

Fig. 1. Network employed as an example, with S ¼ 19 and random weights between 1 and 10 assigned to
the links. Three clear clusters appear, composed by nodes 0–6, 7–12 and 13–19.

A. Capocci et al. / Physica A 352 (2005) 669–676672
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 Second eigenvector’s components:

When dealing with a directed network, links do not correspond to any equivalence
relation. Rather, pointing to common neighbors is a significant relation, as suggested
in the sociologists’ literature where this quantity measures the so-called structural
equivalence of nodes [18]. Accordingly, in a directed network, clusters should be
composed by nodes pointing to a high number of common neighbors, no matter
their direct linkage. For directed networks, we thus modify our method in the
streamline of the HITS algorithm [17]. The HITS algorithm was proposed on
empirical bases to find the main communities in large oriented networks. It assumes
that the largest components (in the absolute value) of eigenvectors of the matrices
AAT and ATA correspond to highly clustered nodes belonging to a single
community. Such algorithm efficiently detects the main communities, even when
these are not sharply defined. However, it becomes computationally heavy when one
is interested in minor communities, which correspond to smaller eigenvalues. As
explained in the undirected case, we tackle this issue by combining information from
the first few eigenvectors of the normal matrix and extracting the community
structure from correlations between the same components in different eigenvectors.

To detect the community structure in a directed network, we therefore replace, in
the previous analysis, the matrix W with a matrix Y ¼ WWT: This corresponds to
replacing the directed network with an undirected weighted network, where nodes
pointing to common neighbors are connected by a link, whose intensity is
proportional to the total sum of the weights of the links pointing from the two
original nodes to the common neighbors. Then, one performs the analysis on the
undirected network as described previously. Thus, the function to minimize in this
case is

yðxÞ ¼
X1;S

ijl

ðxi $ xjÞ2wilwjl . (5)

ARTICLE IN PRESS

Fig. 2. Values of the 2nd eigenvector components for matrix D$1W relative to the graph depicted
in Fig. 1.

A. Capocci et al. / Physica A 352 (2005) 669–676 673
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Hierarchies and missing links
Clauset et al., Nature (2008) [5]

LETTERS

Hierarchical structure and the prediction of missing
links in networks
Aaron Clauset1,3, Cristopher Moore1,2,3 & M. E. J. Newman3,4

Networks have in recent years emerged as an invaluable tool for
describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth overmultiple
scales. Inmany cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr
(Fig. 1).

This model, which we call a hierarchical random graph, is similar
in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one.Wewish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random

1Department of Computer Science, and 2Department of Physics andAstronomy, University of NewMexico, Albuquerque, NewMexico 87131, USA. 3Santa Fe Institute, 1399Hyde Park
Road, Santa Fe, New Mexico 87501, USA. 4Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA.

Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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Networks have in recent years emerged as an invaluable tool for
describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth overmultiple
scales. Inmany cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr
(Fig. 1).

This model, which we call a hierarchical random graph, is similar
in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one.Wewish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random
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Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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 Idea: Shades indicate probability that nodes in left
and right subtrees of dendogram are connected.

 Handle: Hierarchical random graph models.
 Plan: Infer consensus dendogram for a given real

network.
 Obtain probability that links are missing (big

problem...).
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 Model also predicts reasonably well
1. average degree,
2. clustering,
3. and average shortest path length.

graph can capture behaviour of this kind using probabilities pr that
decrease as wemove higher up the tree. Conversely, probabilities that
increase as we move up the tree correspond to ‘disassortative’ struc-
tures in which vertices are less likely to be connected on small scales
than on large ones. By letting the pr values vary arbitrarily throughout
the dendrogram, the hierarchical random graph can capture both
assortative and disassortative structure, as well as arbitrary mixtures
of the two, at all scales and in all parts of the network.

To demonstrate ourmethod we have used it to construct hierarch-
ical decompositions of three example networks drawn fromdisparate
fields: the metabolic network of the spirochaete Treponema palli-
dum18, a network of associations between terrorists19, and a food
web of grassland species20. To test whether these decompositions
accurately capture the important structural features of the networks,
we use the sampled dendrograms to generate new networks, different
in detail from the originals but, by definition, having similar hier-
archical structure (see Supplementary Information for more details).
We find that these ‘resampled’ networks match the statistical pro-
perties of the originals closely, including their degree distributions,
clustering coefficients, and distributions of shortest path lengths
between pairs of vertices, despite the fact that none of these properties
is explicitly represented in the hierarchical random graph (Table 1,
and Supplementary Fig. 3). It therefore seems that a network’s hier-
archical structure is capable of explaining a wide variety of other
network features as well.

The dendrograms produced by our method are also of interest in
themselves, as a graphical representation and summary of the hier-
archical structure of the observed network. As discussed above, our
method can generate not just a single dendrogram but a set of den-
drograms, each of which is a good fit to the data. From this set we can,
by using techniques from phylogeny reconstruction21, create a single
consensus dendrogram, which captures the topological features that
appear consistently across all or a large fraction of the dendrograms
and typically is a better summary of the network’s structure than any
individual dendrogram. Figure 2a shows such a consensus dendro-
gram for the grassland species network, which clearly reveals com-
munities and subcommunities of plants, herbivores, parasitoids and
hyperparasitoids.

Another application of the hierarchical decomposition is the pre-
diction of missing interactions in networks. In many settings, the
discovery of interactions in a network requires significant experi-
mental effort in the laboratory or the field. As a result, our current
pictures of many networks are substantially incomplete22–28. An
alternative to checking exhaustively for a connection between every
pair of vertices in a network is to try to predict, in advance and on the
basis of the connections already observed, which vertices are most
likely to be connected, so that scarce experimental resources can be
focused on testing for those interactions. If our predictions are good,
we can in this way substantially reduce the effort required to establish
the network’s topology.

The hierarchical decomposition can be used as the basis for an
effective method of predicting missing interactions as follows.
Given an observed but incomplete network, we generate, as described
above, a set of hierarchical random graphs—dendrograms and the
associated probabilities pr—that fit that network. Then we look for
pairs of vertices that have a high average probability of connection
within these hierarchical random graphs but are unconnected in the

observed network. These pairs we consider themost likely candidates
formissing connections. (Technical details of the procedure are given
in Supplementary Information.)

We demonstrate the method by using our three example networks
again. For each network we remove a subset of connections chosen
uniformly at random and then attempt to predict, on the basis of the
remaining connections, which have been removed. A standardmetric
for quantifying the accuracy of prediction algorithms, commonly
used in the medical and machine learning communities, is the
AUC statistic, which is equivalent to the area under the receiver
operating characteristic (ROC) curve29. In the present context, the
AUC statistic can be interpreted as the probability that a randomly
chosenmissing connection (a true positive) is given a higher score by
our method than a randomly chosen pair of unconnected vertices (a
true negative). Thus, the degree to which the AUC exceeds 0.5 indi-
cates how much better our predictions are than chance. Figure 2
shows the AUC statistic for the three networks as a function of the
fraction of the connections known to the algorithm. For all three
networks our algorithm does far better than chance, indicating that
hierarchy is a strong general predictor of missing structure. It is also
instructive to compare the performance of our method with that of
other methods for link prediction8. Previously proposed methods
include assuming that vertices are likely to be connected if they have
many common neighbours, if there are short paths between them, or
if the product of their degrees is large. These approaches work well
for strongly assortative networks such as collaboration and citation

Table 1 | Comparison of original and resampled networks

Network Ækæreal Ækæsamp Creal Csamp dreal dsamp

T. pallidum 4.8 3.7(1) 0.0625 0.0444(2) 3.690 3.940(6)
Terrorists 4.9 5.1(2) 0.361 0.352(1) 2.575 2.794(7)
Grassland 3.0 2.9(1) 0.174 0.168(1) 3.29 3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by
resampling from our hierarchical model. The generated networks closely match the average
degree Ækæ, clustering coefficient C and average vertex–vertex distance d in each case,
suggesting that they capture much of the structure of the real networks. Parenthetical values
indicate standard errors on the final digits.

b

a

Figure 2 | Application of the hierarchical decomposition to the network of
grassland species interactions. a, Consensus dendrogram reconstructed
from the sampled hierarchical models. b, A visualization of the network in
which the upper few levels of the consensus dendrogram are shown as boxes
around species (plants, herbivores, parasitoids, hyperparasitoids and hyper-
hyperparasitoids are shown as circles, boxes, down triangles, up triangles
and diamonds, respectively). Note that in several cases a set of parasitoids is
grouped into a disassortative community by the algorithm, not because they
prey on each other but because they prey on the same herbivore.
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graph can capture behaviour of this kind using probabilities pr that
decrease as wemove higher up the tree. Conversely, probabilities that
increase as we move up the tree correspond to ‘disassortative’ struc-
tures in which vertices are less likely to be connected on small scales
than on large ones. By letting the pr values vary arbitrarily throughout
the dendrogram, the hierarchical random graph can capture both
assortative and disassortative structure, as well as arbitrary mixtures
of the two, at all scales and in all parts of the network.

To demonstrate ourmethod we have used it to construct hierarch-
ical decompositions of three example networks drawn fromdisparate
fields: the metabolic network of the spirochaete Treponema palli-
dum18, a network of associations between terrorists19, and a food
web of grassland species20. To test whether these decompositions
accurately capture the important structural features of the networks,
we use the sampled dendrograms to generate new networks, different
in detail from the originals but, by definition, having similar hier-
archical structure (see Supplementary Information for more details).
We find that these ‘resampled’ networks match the statistical pro-
perties of the originals closely, including their degree distributions,
clustering coefficients, and distributions of shortest path lengths
between pairs of vertices, despite the fact that none of these properties
is explicitly represented in the hierarchical random graph (Table 1,
and Supplementary Fig. 3). It therefore seems that a network’s hier-
archical structure is capable of explaining a wide variety of other
network features as well.

The dendrograms produced by our method are also of interest in
themselves, as a graphical representation and summary of the hier-
archical structure of the observed network. As discussed above, our
method can generate not just a single dendrogram but a set of den-
drograms, each of which is a good fit to the data. From this set we can,
by using techniques from phylogeny reconstruction21, create a single
consensus dendrogram, which captures the topological features that
appear consistently across all or a large fraction of the dendrograms
and typically is a better summary of the network’s structure than any
individual dendrogram. Figure 2a shows such a consensus dendro-
gram for the grassland species network, which clearly reveals com-
munities and subcommunities of plants, herbivores, parasitoids and
hyperparasitoids.

Another application of the hierarchical decomposition is the pre-
diction of missing interactions in networks. In many settings, the
discovery of interactions in a network requires significant experi-
mental effort in the laboratory or the field. As a result, our current
pictures of many networks are substantially incomplete22–28. An
alternative to checking exhaustively for a connection between every
pair of vertices in a network is to try to predict, in advance and on the
basis of the connections already observed, which vertices are most
likely to be connected, so that scarce experimental resources can be
focused on testing for those interactions. If our predictions are good,
we can in this way substantially reduce the effort required to establish
the network’s topology.

The hierarchical decomposition can be used as the basis for an
effective method of predicting missing interactions as follows.
Given an observed but incomplete network, we generate, as described
above, a set of hierarchical random graphs—dendrograms and the
associated probabilities pr—that fit that network. Then we look for
pairs of vertices that have a high average probability of connection
within these hierarchical random graphs but are unconnected in the

observed network. These pairs we consider themost likely candidates
formissing connections. (Technical details of the procedure are given
in Supplementary Information.)

We demonstrate the method by using our three example networks
again. For each network we remove a subset of connections chosen
uniformly at random and then attempt to predict, on the basis of the
remaining connections, which have been removed. A standardmetric
for quantifying the accuracy of prediction algorithms, commonly
used in the medical and machine learning communities, is the
AUC statistic, which is equivalent to the area under the receiver
operating characteristic (ROC) curve29. In the present context, the
AUC statistic can be interpreted as the probability that a randomly
chosenmissing connection (a true positive) is given a higher score by
our method than a randomly chosen pair of unconnected vertices (a
true negative). Thus, the degree to which the AUC exceeds 0.5 indi-
cates how much better our predictions are than chance. Figure 2
shows the AUC statistic for the three networks as a function of the
fraction of the connections known to the algorithm. For all three
networks our algorithm does far better than chance, indicating that
hierarchy is a strong general predictor of missing structure. It is also
instructive to compare the performance of our method with that of
other methods for link prediction8. Previously proposed methods
include assuming that vertices are likely to be connected if they have
many common neighbours, if there are short paths between them, or
if the product of their degrees is large. These approaches work well
for strongly assortative networks such as collaboration and citation

Table 1 | Comparison of original and resampled networks

Network Ækæreal Ækæsamp Creal Csamp dreal dsamp

T. pallidum 4.8 3.7(1) 0.0625 0.0444(2) 3.690 3.940(6)
Terrorists 4.9 5.1(2) 0.361 0.352(1) 2.575 2.794(7)
Grassland 3.0 2.9(1) 0.174 0.168(1) 3.29 3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by
resampling from our hierarchical model. The generated networks closely match the average
degree Ækæ, clustering coefficient C and average vertex–vertex distance d in each case,
suggesting that they capture much of the structure of the real networks. Parenthetical values
indicate standard errors on the final digits.

b

a

Figure 2 | Application of the hierarchical decomposition to the network of
grassland species interactions. a, Consensus dendrogram reconstructed
from the sampled hierarchical models. b, A visualization of the network in
which the upper few levels of the consensus dendrogram are shown as boxes
around species (plants, herbivores, parasitoids, hyperparasitoids and hyper-
hyperparasitoids are shown as circles, boxes, down triangles, up triangles
and diamonds, respectively). Note that in several cases a set of parasitoids is
grouped into a disassortative community by the algorithm, not because they
prey on each other but because they prey on the same herbivore.
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graph can capture behaviour of this kind using probabilities pr that
decrease as wemove higher up the tree. Conversely, probabilities that
increase as we move up the tree correspond to ‘disassortative’ struc-
tures in which vertices are less likely to be connected on small scales
than on large ones. By letting the pr values vary arbitrarily throughout
the dendrogram, the hierarchical random graph can capture both
assortative and disassortative structure, as well as arbitrary mixtures
of the two, at all scales and in all parts of the network.

To demonstrate ourmethod we have used it to construct hierarch-
ical decompositions of three example networks drawn fromdisparate
fields: the metabolic network of the spirochaete Treponema palli-
dum18, a network of associations between terrorists19, and a food
web of grassland species20. To test whether these decompositions
accurately capture the important structural features of the networks,
we use the sampled dendrograms to generate new networks, different
in detail from the originals but, by definition, having similar hier-
archical structure (see Supplementary Information for more details).
We find that these ‘resampled’ networks match the statistical pro-
perties of the originals closely, including their degree distributions,
clustering coefficients, and distributions of shortest path lengths
between pairs of vertices, despite the fact that none of these properties
is explicitly represented in the hierarchical random graph (Table 1,
and Supplementary Fig. 3). It therefore seems that a network’s hier-
archical structure is capable of explaining a wide variety of other
network features as well.

The dendrograms produced by our method are also of interest in
themselves, as a graphical representation and summary of the hier-
archical structure of the observed network. As discussed above, our
method can generate not just a single dendrogram but a set of den-
drograms, each of which is a good fit to the data. From this set we can,
by using techniques from phylogeny reconstruction21, create a single
consensus dendrogram, which captures the topological features that
appear consistently across all or a large fraction of the dendrograms
and typically is a better summary of the network’s structure than any
individual dendrogram. Figure 2a shows such a consensus dendro-
gram for the grassland species network, which clearly reveals com-
munities and subcommunities of plants, herbivores, parasitoids and
hyperparasitoids.

Another application of the hierarchical decomposition is the pre-
diction of missing interactions in networks. In many settings, the
discovery of interactions in a network requires significant experi-
mental effort in the laboratory or the field. As a result, our current
pictures of many networks are substantially incomplete22–28. An
alternative to checking exhaustively for a connection between every
pair of vertices in a network is to try to predict, in advance and on the
basis of the connections already observed, which vertices are most
likely to be connected, so that scarce experimental resources can be
focused on testing for those interactions. If our predictions are good,
we can in this way substantially reduce the effort required to establish
the network’s topology.

The hierarchical decomposition can be used as the basis for an
effective method of predicting missing interactions as follows.
Given an observed but incomplete network, we generate, as described
above, a set of hierarchical random graphs—dendrograms and the
associated probabilities pr—that fit that network. Then we look for
pairs of vertices that have a high average probability of connection
within these hierarchical random graphs but are unconnected in the

observed network. These pairs we consider themost likely candidates
formissing connections. (Technical details of the procedure are given
in Supplementary Information.)

We demonstrate the method by using our three example networks
again. For each network we remove a subset of connections chosen
uniformly at random and then attempt to predict, on the basis of the
remaining connections, which have been removed. A standardmetric
for quantifying the accuracy of prediction algorithms, commonly
used in the medical and machine learning communities, is the
AUC statistic, which is equivalent to the area under the receiver
operating characteristic (ROC) curve29. In the present context, the
AUC statistic can be interpreted as the probability that a randomly
chosenmissing connection (a true positive) is given a higher score by
our method than a randomly chosen pair of unconnected vertices (a
true negative). Thus, the degree to which the AUC exceeds 0.5 indi-
cates how much better our predictions are than chance. Figure 2
shows the AUC statistic for the three networks as a function of the
fraction of the connections known to the algorithm. For all three
networks our algorithm does far better than chance, indicating that
hierarchy is a strong general predictor of missing structure. It is also
instructive to compare the performance of our method with that of
other methods for link prediction8. Previously proposed methods
include assuming that vertices are likely to be connected if they have
many common neighbours, if there are short paths between them, or
if the product of their degrees is large. These approaches work well
for strongly assortative networks such as collaboration and citation

Table 1 | Comparison of original and resampled networks

Network Ækæreal Ækæsamp Creal Csamp dreal dsamp

T. pallidum 4.8 3.7(1) 0.0625 0.0444(2) 3.690 3.940(6)
Terrorists 4.9 5.1(2) 0.361 0.352(1) 2.575 2.794(7)
Grassland 3.0 2.9(1) 0.174 0.168(1) 3.29 3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by
resampling from our hierarchical model. The generated networks closely match the average
degree Ækæ, clustering coefficient C and average vertex–vertex distance d in each case,
suggesting that they capture much of the structure of the real networks. Parenthetical values
indicate standard errors on the final digits.

b

a

Figure 2 | Application of the hierarchical decomposition to the network of
grassland species interactions. a, Consensus dendrogram reconstructed
from the sampled hierarchical models. b, A visualization of the network in
which the upper few levels of the consensus dendrogram are shown as boxes
around species (plants, herbivores, parasitoids, hyperparasitoids and hyper-
hyperparasitoids are shown as circles, boxes, down triangles, up triangles
and diamonds, respectively). Note that in several cases a set of parasitoids is
grouped into a disassortative community by the algorithm, not because they
prey on each other but because they prey on the same herbivore.
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 “The discovery of structural form”
Kemp and Tenenbaum, PNAS (2008) [12]

the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F!D) # P(D!S)P(S!F)P(F).
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F!D) # P(D!S)P(S!F)P(F).
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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 Performance for test networks.
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Fig. S5. Structure discovery results for synthetic data. Five sets of features were generated over the graphs in the left column, and five forms were fit to each dataset. The
structures found are drawn so that entity positions correspond to positions in the picture of the true structure. Each entity has been connected to the cluster node to which it
belongs: for instance, all graphs in the top row have six clusters. The final column shows log posteriors log(P (S, F |D)) for the best structures found, and the best scoring
structure is marked with an asterisk. The difference between the scores for the top two structures ranges from 0.63 (indicating that the chain is about twice as likely as the
grid on the chain-structured data) to 2245 (indicating that the grid is many orders of magnitude more likely than the ring on the grid-structured data). A constant has been
added to the log probabilities along each y axis so that the worst performing structure receives a score close to zero.

{0.05, 0.15, . . . , 0.95}. We sample uniformly from all points on
this grid where α0

α0+β0
≤ α1

α1+β1
, which captures the assump-

tion that relation D is most likely to be true of pairs (i, j)
that correspond to edges in graph S.

As for the frequency model, we integrate out the parame-
ters:

P (D|S) =
X

(α0,β0,α1,β1)

P (D|S, α0, β0, α1, β1)P (α0, β0, α1, β1)

=
X

(α0,β0,α1,β1)

P (D0|α0, β0)P (D1|α1, β1)P (α0, β0, α1, β1)

where D1 represents the entries in D that correspond to edges
in the graph S, and D0 represents the remaining entries in D.
As before, the terms P (D0|α0, β0) and P (D1|α1, β1) are com-
puted by integrating out θ:

P (D1|α1, β1) =

Z

P (D1|θ1)p(θ1|α1, β1)dθ1

where θ1 is a vector containing parameters θab for all pairs
(a, b) such that there is an edge between cluster a and cluster
b. P (D0|α0, β0) is computed similarly.

Model Implementation
The hierarchical generative model in Fig. 1 can be used for
many purposes. If the form of a data set is already known, we
can search for the structure S that maximizes P (S|F ). If the
form of the data is not known, at least two strategies might be
tried. For some applications it may be desirable to integrate
over the space of structures S and compare forms according
to their posterior probabilities P (F |D). Here, however, we

search for the structure S and form F that jointly maximize
P (S, F |D) (Equation 1). Two considerations motivate this
approach. First, we are interested in discovering the structure
S that best accounts for the data. Maintaining a posterior
distribution over structures may lead to optimal predictions
about unobserved features, but human learners often appear
to choose just one representation for a problem. Second, even
if we wanted to integrate over the space of structures, comput-
ing the integral P (F |D) =

R

P (F, S|D)P (S|D)dS is a difficult
challenge.

Our method for identifying the S and F that maximize
P (S, F |D) involves a separate search for each form. Given
data D, for each form F we search for the best structure S

that is consistent with that form. Since the prior on the space
of forms is uniform, the winning structure is the best candi-
date encountered in any of these searches.

The algorithm used for each of these searches is related
to top-down methods for constructing trees and sets of clus-
ters [9, 10], and to the general idea of coarse-to-fine process-
ing [11]. We begin with all the entities in a single cluster,
then use graph grammars like those in Fig. 2 to split the en-
tities into multiple clusters. Whenever a cluster node is split,
the entities previously assigned to this cluster must be dis-
tributed between the two new cluster nodes. We choose two
of these entities at random, assign one to each of the new
clusters, then go through the remaining entities in a random
order, making a greedy assignment for each one. Since this
procedure for splitting a cluster node is not deterministic, the
search algorithm as a whole is not deterministic. At each it-
eration, we attempt to split each cluster node several times,

Kemp and Tenenbaum www.pnas.org/cgi/content/short/0802631105 5 of 10
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Example learned structures:

extent to which graphs with many clusters are penalized, and is
fixed for all of our experiments. The normalizing constant for
P(S!F) depends on the number of structures compatible with a
given form, and ensures that simpler forms are preferred when-

ever possible. For example, any chain Sc is a special case of a grid,
but P(Sc!F ! chain) " P(Sc!F ! grid) because there are more
possible grids than chains given a fixed number of entities. It
follows that P(Sc, F ! chain!D) " P(Sc, F ! grid!D) for any
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Fig. 3. Structures learned from biological features (A), Supreme Court votes (B), judgments of the similarity between pure color wavelengths (C), Euclidean
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dataset D, and that the grid form will only be chosen if the best
grid is substantially better than the best chain.

The remaining term in Eq. 1, P(D!S), measures how well the
structure S accounts for the data D. Suppose that D is a feature
matrix like the matrix in Fig. 1. P(D!S) will be high if the features
in D vary smoothly over the graph S, that is, if entities nearby in
S tend to have similar feature values. For instance, feature f1 is
smooth over the tree in Fig. 1B, but f100 is not. Even though Fig.
1 shows binary features, we treat all features as continuous
features and capture the expectation of smoothness by assuming
that these features are independently generated from a multi-
variate Gaussian distribution with a dimension for each node in
graph S. As described in SI Appendix, the covariance of this
distribution is defined in a way that encourages nearby nodes in
graph S to have similar feature values, and the term P(D!S) favors
graphs that meet this condition.

In principle, our approach can be used to identify the form F
that maximizes P(F!D), but we are also interested in discovering
the structure S that best accounts for the data. We therefore
search for the structure S and form F that jointly maximize the
scoring function P(S, F!D) (Eq. 1). To identify these elements, we
run a separate greedy search for each candidate form. Each
search begins with all entities assigned to a single cluster, and the
algorithm splits a cluster at each iteration, using the production
for the current form (Fig. 2). After each split, the algorithm
attempts to improve the score, using several proposals, including
proposals that move an entity from one cluster to another and
proposals that swap two clusters. The search concludes once the
score can no longer be improved. A more detailed description of
the search algorithm is provided in SI Appendix.

We generated synthetic data to test this algorithm on cases
where the true structure was known. The SI Appendix shows
graphs used to generate five datasets, and the structures found
by fitting five different forms to the data. In each case, the model
recovers the true underlying form of the data.

Next, we applied the model to several real-world datasets, in
each case considering all forms in Fig. 2. The first dataset is a
matrix of animal species and their biological and ecological
properties. It consists of human judgments about 33 species and
106 features and amounts to a larger and noisier version of the
dataset shown schematically in Fig. 1. The best scoring form for
this dataset is the tree, and the best tree (Fig. 3A) includes
subtrees that correspond to categories at several levels of
resolution (e.g., mammals, primates, rodents, birds, insects, and
flying insects). The second dataset is a matrix of votes from the
United States Supreme Court, including 13 judges and their
votes on 1,596 cases. Some political scientists (35) have argued
that a unidimensional structure best accounts for variation in
Supreme Court data and in political beliefs more generally,
although other structural forms [including higher-dimensional
spaces (36) and sets of clusters (37)] have also been proposed.
Consistent with the unidimensional hypothesis, our model iden-
tifies the chain as the best-scoring form for the Supreme Court
data. The best chain (Fig. 3B) organizes the 13 judges from
liberal (Marshall and Brennan) to conservative (Thomas and
Scalia).

If similarity is assumed to be a measure of covariance, our
model can also discover structure in similarity data. Under our
generative model for features, the expression for P(D!S) includes
only two components that depend on D: the number of features
observed and the covariance of the data. As long as both
components are provided, Eq. 1 can be used even if none of the
features is directly observed. We applied the model to a matrix
containing human judgments of the similarity between all pairs
of 14 pure-wavelength hues (38). The ring in Fig. 3C is the best
structure for these data and corresponds to the color circle
described by Newton. Next, we analyzed a similarity dataset
where the entities are faces that vary along two dimensions:

masculinity and race. The model chooses a grid structure that
recovers these dimensions (Fig. 3D). Finally, we applied the
model to a dataset of distances between 35 world cities. Our
model chooses a cylinder where the chain component corre-
sponds approximately to latitude, and the ring component
corresponds approximately to longitude.

The same algorithm can be used to discover structure in
relational data, but we must modify the distribution P(D!S).
Suppose that D is a square frequency matrix, where D(i, j)
indicates the number of times a certain relation has been
observed between entities i and j (Fig. 4). We define a model
where P(D!S) is high if the large entries in D correspond to edges
in the graph S. A similar model can be defined if D is a binary
relation rather than a frequency matrix. Given a relation D, it is
important to discover whether the relation tends to hold between
elements in the same cluster or only between different clusters,
and whether the relation is directed or not. The forms in Fig. 2 A
all have directed edges and nodes without self-links, and we
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Fig. 5. Developmental changes as more data are observed for a fixed set of
objects. After observing only five features of each animal species, the model
chooses a partition, or a set of clusters. As the number of observed features
grows from 5 to 20, the model makes a qualitative shift between a partition
and a tree. As the number of features grows even further, the tree becomes
increasingly complex, with subtrees that correspond more closely to adult
taxonomic intuitions: For instance, the canines (dog, wolf) split off from the
other carnivorous land mammals; the songbirds (robin, finch), flying birds
(robin, finch, eagle), and walking birds (chicken, ostrich) form distinct subcat-
egories; and the flying insects (butterfly, bee) and walking insects (ant,
cockroach) form distinct subcategories. More information about these simu-
lations can be found in SI Appendix.
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Final words:

Science in three steps:
1. Find interesting/meaningful/important

phenomena involving spectacular amounts of
data.

2. Describe what you see.
3. Explain it.

A plea/warning
Beware your assumptions—don’t use tools/models
because they’re there, or because everyone else
does...
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More final words:

A real theory of everything:
1. Is not just about the small stuff...
2. It’s about the increase of complexity

Symmetry breaking/
Accidents of history vs. Universality

How probable is a certain level of complexity?
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