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Models

Some important models:
1. Generalized random networks
2. Scale-free networks &'

4. Statistical generative models (p*)
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Models

Some important models:

T

B ot B e

Generalized random networks
Scale-free networks 4

Statistical generative models (p*)
Generalized affiliation networks
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Models

Arbitrary degree distribution P,.
Wire nodes together randomly.

Create ensemble to test deviations from
randomness.

Interesting, applicable, rich mathematically.

Much fun to be had with these guys...
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v=2.5
(k)=1.8
N =150

Due to Barabasi and
Albert 4]

Generative model

Preferential attachment
model with growth
Plattachment to node i]
KD,

Produces P, ~ k7 when
@=L
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Models
v=2.5
(k)=1.8
N =150

Due to Barabasi and
Albert 4]

Generative model

Preferential attachment
model with growth
Plattachment to node i]
KD,

Produces P, ~ k7 when
(oY=t

Trickiness: other models

generate skewed degree
distributions...
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Due to Watts and Strogatz '

Two scales:

local regularity (high clustering—an individual's
friends know each other)

global randomness (shortcuts).

Shortcuts make world ‘small’
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Due to Watts and Strogatz '

Two scales:

local regularity (high clustering—an individual's
friends know each other)

global randomness (shortcuts).

Shortcuts make world ‘small’
Shortcuts allow disease to

jump
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Models

Due to Watts and Strogatz '

Two scales:

local regularity (high clustering—an individual's
friends know each other)

global randomness (shortcuts).

Shortcuts make world ‘small’

Shortcuts allow disease to

jump

Facilitates synchronization [/
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Models

Idea is to realize networks based on certain
tendencies:

Clustering (triadic closure)..
Types of nodes that like each other..
Anything really...

Use statistical methods to estimate ‘best’ values of
parameters.

Drawback: parameters are not real, measurable
quantities.

Non-mechanistic and blackboxish.
c.f., temperature in statistical mechanics.
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Pure, abstract random networks:

Consider set of all networks with
N labelled nodes and m edges.
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Pure, abstract random networks:

Consider set of all networks with
N labelled nodes and m edges.

Horribly, there are ((:21)) of them.
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Pure, abstract random networks:

Consider set of all networks with
N labelled nodes and m edges.
Horribly, there are ((:2:)) of them.

Standard random network =
randomly chosen network from this set.
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Pure, abstract random networks:

Consider set of all networks with
N labelled nodes and m edges.
Horribly, there are ((gb)) of them.

Standard random network =
randomly chosen network from this set.

To be clear: each network is equally probable.
Known as Erdds-Rényi random networks
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Pure, abstract random networks:

Consider set of all networks with
N labelled nodes and m edges.
Horribly, there are ((g)) of them.

Standard random network =
randomly chosen network from this set.

To be clear: each network is equally probable.
Known as Erdds-Rényi random networks

Key structural feature of random networks is that
they locally look like branching networks
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Pure, abstract random networks:

Consider set of all networks with
N labelled nodes and m edges.
Horribly, there are ((g)) of them.

Standard random network =
randomly chosen network from this set.

To be clear: each network is equally probable.
Known as Erdds-Rényi random networks

Key structural feature of random networks is that
they locally look like branching networks

(No small cycles and zero clustering).
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Random networks: examples

Next slides:
Example realizations of random networks
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Random networks: examples

Next slides:
Example realizations of random networks
& N =500
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Random networks: examples

Example realizations of random networks
N =500
Vary m, the number of edges from 100 to 1000.
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Random networks: examples

Example realizations of random networks
N =500
Vary m, the number of edges from 100 to 1000.
Average degree (k) runs from 0.4 to 4.
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Random networks: examples

Example realizations of random networks
N =500
Vary m, the number of edges from 100 to 1000.
Average degree (k) runs from 0.4 to 4.

Look at full network plus the largest component.
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Giant component:

i

0.8

0.6

0.4

0.2

kO

S, = fraction of nodes in largest component.
Old school phase transition.
Key idea in modeling contagion.
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Properties

Erd6s-Rényi random networks are a mathematical
construct.

Real networks are a microscopic subset of all
networks...
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Properties

Erd6s-Rényi random networks are a mathematical
construct.

Real networks are a microscopic subset of all
networks...

ex: ‘Scale-free’ networks are growing networks
that form according to a plausible mechanism.

Randomness is out there, just not to the degree of
a completely random network.
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Outline

Random networks

Configuration model
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General random networks

So... standard random networks have a Poisson
degree distribution
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General random networks
So... standard random networks have a Poisson
degree distribution

Can happily generalize to arbitrary degree
distribution Py,
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General random networks
So... standard random networks have a Poisson
degree distribution

Can happily generalize to arbitrary degree
distribution Py,

Also known as the configuration model. %!
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General random networks
So... standard random networks have a Poisson
degree distribution

Can happily generalize to arbitrary degree
distribution Py,

Also known as the configuration model. %!

Can generalize construction method from ER
random networks.
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General random networks
So... standard random networks have a Poisson
degree distribution

Can happily generalize to arbitrary degree
distribution Py,

Also known as the configuration model.['?!

Can generalize construction method from ER
random networks.

Assign each node a weight w from some
distribution and form links with probability

P(link between i and j) oc w,;w;.
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General random networks Moo ar &
Complex
So... standard random networks have a Poisson e
degree distribution Modeling
Complex
Can happily generalize to arbitrary degree Nepdelle
i H H Random
dlStFIbUtIOﬂ Pk:' networks

Also known as the configuration model. %! catigasis
Can generalize construction method from ER ek

random networks.

Assign each node a weight w from some
distribution and form links with probability

Small-world
networks

P(link between i and j) oc w,;w;.
References

A more useful way:
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General random networks The PoCSverse
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degree distribution Modeling
Complex
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o B 3 Random
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Also known as the configuration model. %! catigasis
Can generalize construction method from ER ol
random networks.
Assign each node a weight w from some
distribution and form links with probability i e
networks
P(link between i and j) oc w,;w;.
References

A more useful way:

1. Randomly wire up (and rewire) already existing
nodes with fixed degrees. % PoCS



The PoCSverse

General random networks MCclelt Bt

Complex

So... standard random networks have a Poisson e

degree distribution Modeling

Complex

Can happily generalize to arbitrary degree Nepdelle

i H H Random

dlStFIbUtIOﬂ Pk:' networks
Also known as the configuration model. %! catigasis

Can generalize construction method from ER ek

random networks.

Assign each node a weight w from some o
distribution and form links with probability

Small-world
networks
Experi

heol

P(link between i and j) oc w,;w;.
References

A more useful way:
1. Randomly wire up (and rewire) already existing
nodes with fixed degrees. % PoCS
2. Examine mechanisms that lead to networks with gl
certain degree distributions.



General random rewiring algorithm

i

<

h

Randomly choose two
edges.

(Or choose problem edge
and a random edge)
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General random rewiring algorithm
i

. Randomly choose two

edges.

(Or choose problem edge

and a random edge)

Check to make sure edges
are disjoint.
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General random rewiring algorithm

i

<

h

Randomly choose two
edges.

(Or choose problem edge
and a random edge)

Check to make sure edges
are disjoint.

Rewire one end of each
edge.
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General random rewiring algorithm

61 12

4

Randomly choose two
edges.

(Or choose problem edge
and a random edge)

Check to make sure edges
are disjoint.

Rewire one end of each
edge.

Node degrees do not
change.
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General random rewiring algorithm Wit s G

l Complex
¢ 2

l‘ 1 Networks
1 20 of 83
Randomly choose two VoG
edges Comp\c;
* Networks
(Or choose problem edge RaMIGH
and a random edge) gl
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Check to make sure edges s e
Scale-free
are disjoint. A
Rewire one end of each
edge Small-world
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Node degrees do not
Change. References
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General random rewiring algorithm

4

<

h

Randomly choose two
edges.

(Or choose problem edge
and a random edge)

Check to make sure edges
are disjoint.

Rewire one end of each
edge.

Node degrees do not
change.

Works if e, is a self-loop or
repeated edge.

Same as finding

on/off/on/off 4-cycles. and
rotatine them.
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Random networks: examples

\

Example realizations of random networks with power
law degree distributions:
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Random networks: examples

Example realizations of random networks with power
law degree distributions:
N =1000.
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Random networks: examples

Example realizations of random networks with power
law degree distributions:

N =1000.
Phochp fork ol
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Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.
Phochp fork ol
Set P, = 0 (no isolated nodes).
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Random networks: examples

Example realizations of random networks with power
law degree distributions:

N =1000.

Phochp fork ol

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.
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Random networks: examples

Example realizations of random networks with power
law degree distributions:

N =1000.

Phochp fork ol

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.

Apart from degree distribution, wiring is random.
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Random networks: largest components odesor
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The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks
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The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks

A related key distribution:
R, = probability that a friend of a random node
has k other friends.
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The edge-degree distribution:
The degree distribution P, is fundamental for our
description of many complex networks

A related key distribution:
R, = probability that a friend of a random node
has k other friends.

e (k+1)Pp,q
AT i A

Ry,
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The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks

A related key distribution:
R, = probability that a friend of a random node
has k other friends.

(k+ 1Py 4 (k+1D)Pyiq

BRI =
B S OB (k)
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The edge-degree distribution: The PoCSerse

Complex
The degree distribution P, is fundamental for our ~ oes
description of many complex networks Modelng
A related key distribution: Ne“jo‘ks
o . Random
R, = probability that a friend of a random node networks
has k other friends. b a b
Scale-free
networks
Bl (k+1)Pp4y _ (k+1)Pey,y Lo
o= = i
PR oRr a2 (k) et i
Natural question: what's the expected number of ~ reorte
other friends that one friend has?
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The edge-degree distribution: The PoCSerse

Complex
The degree distribution P, is fundamental for our ~ oes
description of many complex networks sl
A related key distribution: N“Wf”ks
o . Random
R, = probability that a friend of a random node networks
has k other friends. Contrsion el
Scale-free
networks
Bl (k+1)Pp4y _ (k+1)Pey,y Lo
o= = i
Dok + 1) Py (k) Bha oy
Natural question: what's the expected number of ~ reorte
other friends that one friend has?
F|nd References
1
(B) g = 7 ((K2) — (k)
R ;
: @ PoCS
True for all random networks, independent of P

degree distribution.



Giant component condition

If:

(k) g

1

(k)

((k2) — (k) > 1

then our random network has a giant component.
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Giant component condition

If:

e ‘<2?> ((k2) — (k) > 1

then our random network has a giant component.

Exponential explosion in number of nodes as we
move out from a random node.
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Giant component condition

If:

e % ((k2) — (k) > 1

then our random network has a giant component.

Exponential explosion in number of nodes as we
move out from a random node.

Number of nodes expected at n steps:

Ry B0 = s ()= ()
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Giant component condition The FoC e
N
24 of 83
If: Modeling
1 Complex

Networks
<k>R 2= @ (<k2> = <k>> >k Random
networks

then our random network has a giant component.  csusennee

Scale-free
networks
History

Exponential explosion in number of nodes as we
move out from a random node.

Robi

Small-world
networks

Number of nodes expected at n steps:

heol

Ry B0 = s ()= ()

We'll see this again for contagion models... F?CS



Mild weirdness...

Average # friends of friends per node is

(ko) = (k) — (k).
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Mild weirdness...

Average # friends of friends per node is

(ko) = (k) — (k).

Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.
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Mild weirdness...

Average # friends of friends per node is

(ko) = (k) — (k).

Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
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Mild weirdness...

Average # friends of friends per node is

(kg) = (k?) — (k).

Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k) = (k)((k) — 1) but it's actually
(k(k—1)).
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Mild weirdness...

Average # friends of friends per node is

(kg) = (k?) — (k).

Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k) = (k)((k) — 1) but it's actually
(k(k —1)).
2. If P, has a large second moment,
then (k5) will be big.
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Mild weirdness...

Average # friends of friends per node is

(kg) = (k?) — (k).

Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k) = (k)((k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k5) will be big.
3. Your friends have more friends than you...
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Size distributions
The sizes of many systems’ elements appear to obey
an
inverse power-law size distribution:

Plsize=x) > card

Wihere o £y« wpe crand w1

The PoCSverse
Models of
Complex
Networks

26 of 83

Modeling
Complex
Networks

Random
networks
Basics

Configuration model

Scale-free network:

References

@ PoCS



Size distributions
The sizes of many systems’ elements appear to obey
an
inverse power-law size distribution:

Plsize=x) > card

Wihere o £y« wpe crand w1

z can be continuous or discrete.
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Size distributions

The sizes of many systems’ elements appear to obey
an
inverse power-law size distribution:

Plsize=x) > card

Wihere o £y« wpe crand w1

z can be continuous or discrete.
Typically, 2 < v < 3.
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Size distributions

The sizes of many systems’ elements appear to obey
an

inverse power-law size distribution:
Plsize=x) > card

Wihere o £y« wpe crand w1

x can be continuous or discrete.

Typically, 2 < v < 3.

No dominant internal scale between z,,;, and x .,
If v < 3, variance and higher moments are ‘infinite’
If v < 2, mean and higher moments are ‘infinite’
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Size distributions

The sizes of many systems’ elements appear to obey
an

inverse power-law size distribution:
Plsize=x) > card

Wihere o £y« wpe crand w1

z can be continuous or discrete.
Typically, 2 < v < 3.

No dominant internal scale between z,;, and z .

If v < 3, variance and higher moments are ‘infinite’
If v < 2, mean and higher moments are ‘infinite’
Negative linear relationship in log-log space:

logP(z) = loge — logx
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A beautiful, heart-warming example:

7
10 T T T
6
10° £ Risso’s dolphin
Bottlenose dolphin -~
et orse
farbor porpoise _ ~.
5 Chimpanzee~>5
10 ¢ Sea lion Pl o
o Olive baboon ~ 5. Cow
— Capuchiy monkey o, Lar gibbon
® . Red colobus . Pig
ediail monke S ey
Bl I S S e markes )
g Squmel mgnkz) Car_ Woolly monkey
= Wmle—j'mmed l!mur\\; A
o ~ Indri
£ | su;w lou:\ fara
3 L Tufied-ear marmoset ~ 4
210 (A Marmoset
> ™ Woolly lemur
E Everett’s tupaia-_ R d—mxled xpomw lemur
ko] West European hedgehog Ol
= 102 b Al eranhzdgzh o™ Dwarfbushbaby 4
2 Fishegman bat S8 gy ol
g Tenrec ~., Lesser mouse lemur
Large Madagascar hedgehog NS ™ Long-eared desert hedgehog
1 Water shrew
10 £ Sown 4/r|mn giant shrew E|
Small Madagascar hedgehog \\‘.
™ Streaked tenrec
‘o
Asian house shrew
log,, W= (1.23£0.01) log, ) G - (1.47 £ 0.04)
100 b Premyshrew T Commonshrew o E
‘uropean white~toothed shrew = 0998
=l
10 L L I ! I
o 1 2 3 4 5
10 10 10 10 10 10 10

Gray Matter Volume G (mm 3 )

from Zhang & Sejnowski, PNAS (2000) 7!

a~1.23

gray
matter:
‘computing
elements’

white
matter:
‘wiring’
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Size distributions

Power law size distributions are sometimes called
Pareto distributions (& after Italian scholar Vilfredo

Pareto.

Pareto noted wealth in Italy was distributed
unevenly (80-20 rule).

Term used especially by economists
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http://en.wikipedia.org/wiki/Pareto_distribution

Size distributions

Earthquake magnitude (Gutenberg Richter law):

P(M) x M3

Number of war deaths: P(d) oc d—1-8 1%
Sizes of forest fires

Sizes of cities: P(n) oc n=2-1

Number of links to and from websites
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Size distributions The PocSverse
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The gravitational force at a random point in the
universe: P(F) oc F—5/2,
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Outline

Scale-free networks
History
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History

<& Random Additive/Copying Processes involving
Competition.
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History

Random Additive/Copying Processes involving
Competition.

Widespread: Words, Cities, the Web, Wealth,
Productivity (Lotka), Popularity (Books, People, ...)
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Work of Yore

<o 1924: G. Udny Yule ™I
# Species per Genus
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Work of Yore

1924: G. Udny Yule P
# Species per Genus

1926: Lotka ["?!:
# Scientific papers per author (Lotka's law)
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Work of Yore

1924: G. Udny Yule P

# Species per Genus

1926: Lotka['%;

# Scientific papers per author (Lotka's law)
1953: Mandelbrot '

Optimality argument for Zipf's law; focus on
language.
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Work of Yore

1924: G. Udny Yule P

# Species per Genus

1926: Lotka['%;

# Scientific papers per author (Lotka’s law)
1953: Mandelbrot ")

Optimality argument for Zipf's law; focus on
language.

1955; Herbert Simon ['6 20l

Zipf's law for word frequency, city size, income,
publications, and species per genus.

The PoCSverse
Models of
Complex
Networks
330f83

Modeling
Complex
Networks

Random
networks
Basics
Configuration model

Scale-free
networks
History

Robustnes

Small-world
networks
Experiments
Theory

References



Work of Yore M

Complex

g
1924: G. Udny Yule P Modeling
# Species per Genus N
1926: Lotka['%; e
# Scientific papers per author (Lotka’s law) s ot
1953: Mandelbrot!'': At
Optimality argument for Zipf's law; focus on i
language.
1955: Herbert Simon [16: 201
Zipf's law for word frequency, city size, income, ot
publications, and species per genus.
1965/1976: Derek de Solla Price [> 31 References

Network of Scientific Citations.

#PoCS



Work of Yore M

Complex

Networks

33 0f 83
1924: G. Udny Yule P Modeling
# Species per Genus N
1926: Lotka 19l e
# Scientific papers per author (Lotka’s law) CSHEE
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1955: Herbert Simon 16 201
Zipf's law for word frequency, city size, income, g
publications, and species per genus.
1965/1976: Derek de Solla Price [ '3l References

Network of Scientific Citations.

1999: Barabasi and Albert 2l

The World Wide Web, networks-at-large. ’ POCS



Mandelbrot vs. Simon:
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Mandelbrot vs. Simon:

< Mandelbrot (1953): “An Informational Theory of
the Statistical Structure of Languages”'""
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Not everyone is happ

I iﬂ 2

Mandelbrot vs. Simon:

Mandelbrot (1953): “An Informational Theory of
the Statistical Structure of Languages”'""

Simon (1955): “On a class of skew distribution
functions” [
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Mandelbrot (1953): “An Informational Theory of
the Statistical Structure of Languages”'""

Simon (1955): “On a class of skew distribution
functions” [

Mandelbrot (1959): “A note on a class of skew
distribution function: analysis and critique of a
paper by H. A. Simon”
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Not everyone is happy...
1

Mandelbrot (1953): “An Informational Theory of
the Statistical Structure of Languages”'""
Simon (1955): “On a class of skew distribution
functions” [

Mandelbrot (1959): “A note on a class of skew
distribution function: analysis and critique of a
paper by H. A. Simon”

Simon (1960): “Some further notes on a class of
skew distribution functions”
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Not everyone is happy... (cont.)

Mandelbrot (1961): “Final note on a class of skew
distribution functions: analysis and critique of a
model due to H.A. Simon”

Simon (1961): “Reply to ‘final note’ by Benoit
Mandelbrot”
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Not everyone is happy... (cont.)

Mandelbrot (1961): “Final note on a class of skew
distribution functions: analysis and critique of a
model due to H.A. Simon”

Simon (1961): “Reply to ‘final note’ by Benoit
Mandelbrot”

Mandelbrot (1961): “Post scriptum to ‘final note

m
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Not everyone is happy... (cont.)

Mandelbrot (1961): “Final note on a class of skew
distribution functions: analysis and critique of a
model due to H.A. Simon”

Simon (1961): “Reply to ‘final note’ by Benoit
Mandelbrot”

Mandelbrot (1961): “Post scriptum to ‘final note
Simon (1961): “Reply to Dr. Mandelbrot’s post
scriptum”

m
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Not everyone is happy... (cont.)

“We shall restate in detail our 1959 objections to
Simon’s 1955 model for the Pareto-Yule-Zipf
distribution. Our objections are valid quite
irrespectively of the sign of p-1, so that most of
Simon'’s (1960) reply was irrelevant.”
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Not everyone is happy... (cont.)

“We shall restate in detail our 1959 objections to
Simon’s 1955 model for the Pareto-Yule-Zipf
distribution. Our objections are valid quite
irrespectively of the sign of p-1, so that most of
Simon'’s (1960) reply was irrelevant.”

“Dr. Mandelbrot has proposed a new set of objections
to my 1955 models of the Yule distribution. Like his
earlier objections, these are invalid.”
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Not everyone is happy... (cont.)

“We shall restate in detail our 1959 objections to
Simon’s 1955 model for the Pareto-Yule-Zipf
distribution. Our objections are valid quite
irrespectively of the sign of p-1, so that most of
Simon’s (1960) reply was irrelevant.”

“Dr. Mandelbrot has proposed a new set of objections
to my 1955 models of the Yule distribution. Like his
earlier objections, these are invalid.”
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Not everyone is happy... (cont.)

“We shall restate in detail our 1959 objections to
Simon’s 1955 model for the Pareto-Yule-Zipf
distribution. Our objections are valid quite
irrespectively of the sign of p-1, so that most of
Simon'’s (1960) reply was irrelevant.”

“Dr. Mandelbrot has proposed a new set of objections
to my 1955 models of the Yule distribution. Like his
earlier objections, these are invalid.”
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Not everyone is happy... (cont.)

“We shall restate in detail our 1959 objections to
Simon’s 1955 model for the Pareto-Yule-Zipf
distribution. Our objections are valid quite
irrespectively of the sign of p-1, so that most of
Simon'’s (1960) reply was irrelevant.”

“Dr. Mandelbrot has proposed a new set of objections
to my 1955 models of the Yule distribution. Like his
earlier objections, these are invalid.”
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Essential Extract of a Growth Model

Random Competitive Replication (RCR):
1. Start with 1 element of a particular flavor at¢t =1
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Essential Extract of a Growth Model

1. Start with 1 element of a particular flavor at¢t =1

2. Attimet =2,3,4,..., add a new element in one of
two ways:
With probability p, create a new element with a
new flavor

With probability 1 — p, randomly choose from all
existing elements, and make a copy.
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Essential Extract of a Growth Model

1. Start with 1 element of a particular flavor at¢t =1

2. Attimet =2,3,4,..., add a new element in one of
two ways:

With probability p, create a new element with a
new flavor

With probability 1 — p, randomly choose from all
existing elements, and make a copy.

Elements of the same flavor form a group
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Essential Extract of a Growth Model

1. Start with 1 element of a particular flavor at¢t =1

2. Attimet =2,3,4,..., add a new element in one of
two ways:
With probability p, create a new element with a
new flavor
» Mutation/Innovation

With probability 1 — p, randomly choose from all
existing elements, and make a copy.

Elements of the same flavor form a group
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Essential Extract of a Growth Model

1. Start with 1 element of a particular flavor at¢t =1
2. Attimet =2,3,4,..., add a new element in one of
two ways:
With probability p, create a new element with a
new flavor
» Mutation/Innovation

With probability 1 — p, randomly choose from all
existing elements, and make a copy.
» Replication/Imitation

Elements of the same flavor form a group
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Random Competitive Replication

Example: Words in a text
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Random Competitive Replication

Example: Words in a text
<= Consider words as they appear sequentially.
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Random Competitive Replication

Consider words as they appear sequentially.

With probability p, the next word has not
previously appeared
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Random Competitive Replication

Consider words as they appear sequentially.

With probability p, the next word has not
previously appeared

With probability 1 — p, randomly choose one word
from all words that have come before, and reuse
this word
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Random Competitive Replication

Consider words as they appear sequentially.

With probability p, the next word has not
previously appeared
» Mutation/Innovation

With probability 1 — p, randomly choose one word
from all words that have come before, and reuse
this word
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Random Competitive Replication odelsol
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» Mutation/Innovation
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Random Competitive Replication odelsol
Complex
Sofas

Modeling
Complex
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Consider words as they appear sequentially. Random

networks
Basics

With probability p, the next word has not
previously appeared Scale-free

networks

» Mutation/Innovation i

With probability 1 — p, randomly choose one word rovsnes
from all words that have come before, and reuse R
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thiS WO rd ih“], \:v ents
» Replication/Imitation i

Please note: authors do not do this...
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Random Competitive Replication

<= Competition for replication between elements is
random
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Random Competitive Replication

Competition for replication between elements is
random

Competition for growth between groups is not
random
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Random Competitive Replication

Competition for replication between elements is
random

Competition for growth between groups is not
random

Selection on groups is biased by size
Rich-gets-richer story

The PoCSverse
Models of
Complex
Networks

39 0f 83

Modeling
Complex
Networks

Random
networks
Basics

Configuration model

Scale-free
networks

Small-world
networks
Experiments

Theory

References

&< PoCS
& i

7 What's the st



Random Competitive Replication

Competition for replication between elements is
random

Competition for growth between groups is not
random

Selection on groups is biased by size
Rich-gets-richer story
Random selection is easy
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Random Competitive Replication

Competition for replication between elements is
random

Competition for growth between groups is not
random

Selection on groups is biased by size
Rich-gets-richer story

Random selection is easy

No great knowledge of system needed
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Random Competitive Replication

After some thrashing around, one finds:

(2—p)

Pk x k T»p =

k=7
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Random Competitive Replication

After some thrashing around, one finds:

= 1(25p)
Pk o< k =)= k_ﬂy

el

1

=)

See ~ is governed by rate of new flavor creation, p.
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Evolution of catch phrases

Yule's paper (1924) 7

“A mathematical theory of evolution, based on the
conclusions of Dr . C. Willis, F.R.S.”

Simon’s paper (1955) ')

“On a class of skew distribution functions” (snore)
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Evolution of catch phrases

Yule's paper (1924) 7
“A mathematical theory of evolution, based on the
conclusions of Dr . C. Willis, F.R.S.”

Simon’s paper (1955) ')
“On a class of skew distribution functions” (snore)
Price’s term: Cumulative Advantage
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Evolution of catch phrases

&% Robert K. Merton: the Matthew Effect
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Evolution of catch phrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit
flowed disproportionately to the already famous
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Evolution of catch phrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit
flowed disproportionately to the already famous

From the Gospel of Matthew:
“For to every one that hath shall be given...
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Evolution of catch phrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit
flowed disproportionately to the already famous

From the Gospel of Matthew:
“For to every one that hath shall be given...
(Wait! There's more....)
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Evolution of catch phrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit
flowed disproportionately to the already famous

From the Gospel of Matthew:

“For to every one that hath shall be given...
(Wait! There's more....)

but from him that hath not, that also which he
seemeth to have shall be taken away.
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Evolution of catch phrases

Robert K. Merton: the Matthew Effect

Studied careers of scientists and found credit
flowed disproportionately to the already famous

From the Gospel of Matthew:

“For to every one that hath shall be given...
(Wait! There's more....)

but from him that hath not, that also which he
seemeth to have shall be taken away.

And cast the worthless servant into the outer
darkness; there men will weep and gnash their
tEeth
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Evolution of catch phrases

Merton was a catchphrase machine:
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Evolution of catch phrases

Merton was a catchphrase machine:
1. self-fulfilling prophecy
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Evolution of catch phrases

Merton was a catchphrase machine:
1. self-fulfilling prophecy
2. role model
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Evolution of catch phrases

Merton was a catchphrase machine:
1. self-fulfilling prophecy
2. role model
3. unintended (or unanticipated) consequences
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Evolution of catch phrases

Merton was a catchphrase machine:

S |

self-fulfilling prophecy

role model

unintended (or unanticipated) consequences
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Evolution of catch phrases

Merton was a catchphrase machine:

self-fulfilling prophecy

role model

unintended (or unanticipated) consequences

0

4. focused interview — focus group
And just to rub itin...

Merton’s son, Robert C. Merton, won the Nobel Prize
for Economics in 1997.
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Evolution of catch phrases Models of

Barabasi and Albert “/—thinking about the Web E‘}%%kas
Independent reinvention of a version of Simon Modeling
and Price’s theory for networks N
Another term: “Preferential Attachment” Random

networks

Basic idea: a new node arrives every discrete time =~ o
step and connects to an existing node i with : :

Scale-free

probability o« k,. networks
Connection:
Groups of a single flavor ~ edges of a node

Small hitch: selection mechanism is now small-world
non-random ki o
Solution: Connect to a random node (easy) ;‘f;mes
+ Randomly connect to the node’s friends (also

easy)
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Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.
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Scale-free networks

Networks with power-law degree distributions
have become known as scale-free networks.

Scale-free refers specifically to the degree

distribution having a power-law decay in its tail:

P,, ~ k=7 for‘large’ k

Please note: not every network is a scale-free
network...
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Scale-free networks

Term ‘scale-free’ is somewhat confusing...
Scale-free networks are not fractal in any sense.
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Scale-free networks

Term ‘scale-free’ is somewhat confusing...
Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)

Main reason is link cost.
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Scale-free networks

Term ‘scale-free’ is somewhat confusing...
Scale-free networks are not fractal in any sense.

Usually talking about networks whose links are
abstract, relational, informational, ...(non-physical)

Main reason is link cost.
Primary example: hyperlink network of the Web
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Scale-free networks

We move beyond describing networks to finding
mechanisms for why certain networks arise.
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Scale-free networks

We move beyond describing networks to finding
mechanisms for why certain networks arise.

How does the exponent v depend on the
mechanism?

Do the mechanism's details matter?
We know they do for Simon’s model...
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Real data (eek!)

From Barabasi and Albert's original paper “):
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
slopes (A) =23, (B) = 2.1 and (Q) Yyoner = 4

Vactor Ywww

But typically for real networks: 2 < v < 3.
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Real data (eek!)

From Barabasi and Albert's original paper “):
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
510es (A) Yocror = 23, (B) Youns = 2.1 314 (C) Yyer = 4

Ywww

But typically for real networks: 2 < v < 3.
(Plot C is on the bogus side of things...)
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Generalized model

Fooling with the mechanism:

< 2001: Redner & Krapivsky (RK) ) explored the
general attachment kernel:
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http://en.wikipedia.org/wiki/Rate_equation

Generalized model

2001: Redner & Krapivsky (RK) ®) explored the
general attachment kernel:

Pr(attach to node i) < A, = k¥

where A, is the attachment kernel and v > 0.
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Generalized model

2001: Redner & Krapivsky (RK) ®) explored the
general attachment kernel:

Pr(attach to node i) < A, = k¥

where A, is the attachment kernel and v > 0.

RK also looked at changing very subtle details of
the attachment kernel.
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http://en.wikipedia.org/wiki/Rate_equation

Generalized model

2001: Redner & Krapivsky (RK) ®) explored the
general attachment kernel:

Pr(attach to node i) < A, = k¥

where A, is the attachment kernel and v > 0.

RK also looked at changing very subtle details of
the attachment kernel.

e.g., keep A, ~ kfor large k but tweak A4, for low
k.

RK’s approach is to use rate equations (£
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Universality?

<> Consider A; =aand A, = kfork > 2.
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Universality?

Consider A; =aand A, = kfork > 2.
Some unsettling calculations leads to P, ~ k7

where

1%_1-+\/14—8a
5 :
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Universality?

Consider A; =aand A, = kfork > 2.
Some unsettling calculations leads to P, ~ k7

where
1+ +v1+ 8«
L | IR e
2
We then have

0<a<oo=2<y<
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Sublinear attachment kernels

Rich-get-somewhat-richer:

A ~k"witho <v < 1.
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Sublinear attachment kernels

Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.

General finding by Krapivsky and Redner: ¥

P, ~ L~V e—c1k' V+correction terms
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Sublinear attachment kernels

Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.

General finding by Krapivsky and Redner: ¥

P, ~ L~V e—c1k' V+correction terms

Weibull distributionish (truncated power laws).
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Sublinear attachment kernels

Rich-get-somewhat-richer:
A, ~ kY with0 <v < 1.
General finding by Krapivsky and Redner: ¥

P, ~ L~V e—c1k' V+correction terms

Weibull distributionish (truncated power laws).
Universality: now details of kernel do not matter.
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Superlinear attachment kernels

Rich-get-much-richer:
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Superlinear attachment kernels

Rich-get-much-richer:
Ak} o, kV Wlth 14 > 1.

Now a winner-take-all mechanism.

One single node ends up being connected to
almost all other nodes.
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Robustness

<= Standard random networks (Erd&s-Rényi)
versus

Scale-free networks

Exponential Scale-free

from Albert et al., 2000 “Error and attack tolerance of complex networks” (1]
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Robustness
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from Albert et al., 2000

Plots of network
diameter as a function
of fraction of nodes
removed

Erd&s-Rényi versus
scale-free networks
blue symbols =
random removal

red symbols =
targeted removal
(most connected first)
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Robustness

&% Scale-free networks are thus robust to random
failures yet fragile to targeted ones.
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Robustness

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.
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Robustness

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.
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Robustness

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or
not.

Representing all webpages as the same size node
is obviously a stretch (e.g., google vs. a random
person’'s webpage)
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Milgram'’s social search experiment (1960s)
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Target person =
Boston stockbroker.

296 senders from Boston
and Omaha.

The PoCSverse
Models of
Complex
Networks

60 of 83

Modeling
Complex
Networks

Random
networks
Basics

Configuration model

Scale-free
networks
History

BA model

Redner & Krapivisky's
model

Robustness

Small-world
networks

Theory

References

&< PoCS
£, et



http://www.stanleymilgram.com

Milgram'’s social search experiment (1960s)
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Target person =
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chain length ~ 6.5.
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Milgram'’s social search experiment (1960s)

Target person =
Boston stockbroker.

296 senders from Boston
and Omaha.

20% of senders reached
target.

chain length ~ 6.5.
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Milgram'’s experiment with e-mail

Participants:

<% 60,000+ people in 166
countries

<o 24,000+ chains

<% Big media boost...
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a professor
at an lvy
League
university,
an archival
inspector in
Estonia,

w-m| Participants:

60,000+ people in 166
countries

24,000+ chains

Big media boost...

signup [

a technology
consultant in
India,

a policeman
in Australia,

a potterin
New Zealand,

a
veterinarian
in the
Norwegian
army.
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Social search—the Columbia experiment

The world is smaller:
(L) = 4.05 for all completed chains

L, = Estimated ‘true’ median chain length (zero
attrition)
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Previous work—short paths

Connected random networks have short average
path lengths:

(dap) ~ log(N)
N = population size,
d 4 g = distance between nodes A and B.
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Previous work—short paths

Connected random networks have short average
path lengths:

(dap) ~ log(N)
N = population size,
d 4 g = distance between nodes A and B.
But: social networks aren’t random...
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Previous work—short paths

Need “clustering”
(your friends are
likely to know
each other):

Randomly
connecting
people gives
short path
lengths
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Previous work—short paths

Need “clustering”
(your friends are
likely to know
each other):

Randomly
connecting
people gives
short path
lengths ... weird.
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Non-randomness gives clustering Models of
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d 4 g = 10 — too many long paths. h,
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Randomness + regularity Models of
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d 4 5 = 10 without random paths % PoCS
d 4 5 = 3 with random paths >
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Theory of Small-World networks

Introduced by
Watts and Strogatz (Nature, 1998) ('8l
“Collective dynamics of ‘small-world’ networks.”
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Theory of Small-World networks

Introduced by
Watts and Strogatz (Nature, 1998) '8l
“Collective dynamics of ‘small-world’ networks.”

neural network of C. elegans,
semantic networks of languages,
actor collaboration graph,

food webs,

social networks of comic book characters,...
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Theory of Small-World networks

Introduced by
Watts and Strogatz (Nature, 1998) '8l
“Collective dynamics of ‘small-world’ networks.”

neural network of C. elegans,
semantic networks of languages,
actor collaboration graph,

food webs,

social networks of comic book characters,...

local regularity + random short cuts
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The structural small-world property
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Modeling
Complex
Table 1 Empirical examples of small-world networks Networks
Rand
Lactual Lrandom Caclua\ Crandom HZC\,\,S;ES
Film actors 3.65 2.99 0.79 0.00027 e
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 225 0.28 0.05 Scale-free
networks

Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors:n = 225,226,k = 61. Power grid:n = 4,941,k = 2.67.C. elegans:n = 282,
k = 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component'® of this
graph, which includes ~90% of all actors listed in the Internet Movie Database (available at Small-world
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators, networks
transformers and substations, and edges represent high-voltage transmission lines o L
between them. For C. elegans, an edge joins two neurons if they are connected by either -

a synapse or a gap junction. We treat all edges as undirected and unweighted, and all References
vertices as identical, recognizing that these are crude approximations. All three networks

show the small-world phenomenon: L = L ,ngom DUt C > Cangom-

#PoCS



Previous work—finding short paths

But are these short cuts findable?
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Previous work—finding short paths

But are these short cuts findable?

No!
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Previous work—finding short paths

But are these short cuts findable?
No!

Nodes cannot find each other quickly
with any local search method.

Jon Kleinberg (Nature, 2000) "/
“Navigation in a small world.”

Only certain networks are navigable
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Previous work—finding short paths

But are these short cuts findable?
No!

Nodes cannot find each other quickly
with any local search method.

Jon Kleinberg (Nature, 2000) "/
“Navigation in a small world.”

Only certain networks are navigable
So what's special about social networks?
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The model

One approach: incorporate identity.
(See “ldentity and Search in Social Networks.” Science, 2002,
Watts, Dodds, and Newman 7]
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Social distance—Bipartite affiliation
networks

[contexts]

[individuals |

unipartite
network

Bipartite affiliation networks: boards and directors,
movies and actors.
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Social distance as a function of identity

occupation

education health care

kindergarten
teacher

high school

teacher doctor
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Social Search—Real world uses ks
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