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Models

Some important models:
1. Generalized random networks
2. Scale-free networks
3. Small-world networks
4. Statistical generative models (𝑝∗)
5. Generalized affiliation networks
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Models

1. Generalized random networks:
 Arbitrary degree distribution 𝑃𝑘.
 Wire nodes together randomly.
 Create ensemble to test deviations from

randomness.
 Interesting, applicable, rich mathematically.
 Much fun to be had with these guys...
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Models

2. ‘Scale-free networks’:

𝛾 = 2.5
⟨𝑘⟩ = 1.8
𝑁 = 150

 Due to Barabasi and
Albert [2]

 Generative model
 Preferential attachment

model with growth
 𝑃 [attachment to node i] ∝

k�i .
 Produces 𝑃𝑘 ∼ 𝑘−𝛾 when

𝛼 = 1.
 Trickiness: other models

generate skewed degree
distributions...
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3. Small-world networks
 Due to Watts and Strogatz [18]

Two scales:
 local regularity (high clustering—an individual’s

friends know each other)
 global randomness (shortcuts).

Strong effects:
 Shortcuts make world ‘small’
 Shortcuts allow disease to

jump
 Facilitates synchronization [8]
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Models

4. Generative statistical models
 Idea is to realize networks based on certain

tendencies:
 Clustering (triadic closure)..
 Types of nodes that like each other..
 Anything really...

 Use statistical methods to estimate ‘best’ values of
parameters.

 Drawback: parameters are not real, measurable
quantities.

 Non-mechanistic and blackboxish.
 c.f., temperature in statistical mechanics.
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Models

5. Generalized affiliation networks

100

eca b d

geography occupation age

0

 Blau & Schwartz [3], Simmel [15], Breiger [4], Watts et
al. [17]
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Pure, abstract random networks:

 Consider set of all networks with
𝑁 labelled nodes and 𝑚 edges.

 Horribly, there are ((𝑁
2 )

𝑚 ) of them.
 Standard random network =

randomly chosen network from this set.
 To be clear: each network is equally probable.
 Known as Erdős-Rényi random networks
 Key structural feature of random networks is that

they locally look like branching networks
 (No small cycles and zero clustering).
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Random networks: examples for 𝑁=500

𝑚 = 100
⟨𝑘⟩ = 0.4

𝑚 = 260
⟨𝑘⟩ = 1.04

𝑚 = 200
⟨𝑘⟩ = 0.8

𝑚 = 280
⟨𝑘⟩ = 1.12

𝑚 = 230
⟨𝑘⟩ = 0.92

𝑚 = 300
⟨𝑘⟩ = 1.2

𝑚 = 240
⟨𝑘⟩ = 0.96

𝑚 = 500
⟨𝑘⟩ = 2

𝑚 = 250
⟨𝑘⟩ = 1

𝑚 = 1000
⟨𝑘⟩ = 4
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Random networks: largest components

𝑚 = 100
⟨𝑘⟩ = 0.4

𝑚 = 260
⟨𝑘⟩ = 1.04

𝑚 = 200
⟨𝑘⟩ = 0.8

𝑚 = 280
⟨𝑘⟩ = 1.12

𝑚 = 230
⟨𝑘⟩ = 0.92

𝑚 = 300
⟨𝑘⟩ = 1.2

𝑚 = 240
⟨𝑘⟩ = 0.96

𝑚 = 500
⟨𝑘⟩ = 2

𝑚 = 250
⟨𝑘⟩ = 1

𝑚 = 1000
⟨𝑘⟩ = 4
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Giant component:

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

〈  k 〉

S
1

 𝑆1 = fraction of nodes in largest component.
 Old school phase transition.
 Key idea in modeling contagion.
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Properties

But:
 Erdős-Rényi random networks are amathematical

construct.
 Real networks are a microscopic subset of all

networks...
 ex: ‘Scale-free’ networks are growing networks

that form according to a plausible mechanism.

But but:
 Randomness is out there, just not to the degree of

a completely random network.
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General random networks
 So... standard random networks have a Poisson

degree distribution
 Can happily generalize to arbitrary degree

distribution 𝑃𝑘.
 Also known as the configuration model. [12]

 Can generalize construction method from ER
random networks.

 Assign each node a weight 𝑤 from some
distribution and form links with probability

𝑃(link between 𝑖 and 𝑗) ∝ 𝑤𝑖𝑤𝑗.

 A more useful way:
1. Randomly wire up (and rewire) already existing

nodes with fixed degrees.
2. Examine mechanisms that lead to networks with

certain degree distributions.
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General random rewiring algorithm
1

1

i3
i4

i2

e2

ei
 Randomly choose two

edges.
(Or choose problem edge
and a random edge)

 Check to make sure edges
are disjoint.

i3
i4

i2

1
e’2

i

e’

1

 Rewire one end of each
edge.

 Node degrees do not
change.

 Works if 𝑒1 is a self-loop or
repeated edge.

 Same as finding
on/off/on/off 4-cycles. and
rotating them.
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Random networks: largest components

𝛾 = 2.1
⟨𝑘⟩ = 3.448

𝛾 = 2.55
⟨𝑘⟩ = 1.712

𝛾 = 2.19
⟨𝑘⟩ = 2.986

𝛾 = 2.64
⟨𝑘⟩ = 1.6

𝛾 = 2.28
⟨𝑘⟩ = 2.306

𝛾 = 2.73
⟨𝑘⟩ = 1.862

𝛾 = 2.37
⟨𝑘⟩ = 2.504

𝛾 = 2.82
⟨𝑘⟩ = 1.386

𝛾 = 2.46
⟨𝑘⟩ = 1.856

𝛾 = 2.91
⟨𝑘⟩ = 1.49
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The edge-degree distribution:
 The degree distribution 𝑃𝑘 is fundamental for our

description of many complex networks
 A related key distribution:

𝑅𝑘 = probability that a friend of a random node
has 𝑘 other friends.



𝑅𝑘 = (𝑘 + 1)𝑃𝑘+1
∑𝑘′=0(𝑘′ + 1)𝑃𝑘′+1

= (𝑘 + 1)𝑃𝑘+1
⟨𝑘⟩

 Natural question: what’s the expected number of
other friends that one friend has?

 Find
⟨𝑘⟩𝑅 = 1

⟨𝑘⟩ (⟨𝑘2⟩ − ⟨𝑘⟩)

 True for all random networks, independent of
degree distribution.
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Giant component condition

 If:

⟨𝑘⟩𝑅 = 1
⟨𝑘⟩ (⟨𝑘2⟩ − ⟨𝑘⟩) > 1

then our random network has a giant component.

 Exponential explosion in number of nodes as we
move out from a random node.

 Number of nodes expected at 𝑛 steps:

⟨𝑘⟩ ⋅ ⟨𝑘⟩𝑛−1
𝑅 = 1

⟨𝑘⟩𝑛−2 (⟨𝑘2⟩ − ⟨𝑘⟩)𝑛−1

 We’ll see this again for contagion models...
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Mild weirdness...

 Average # friends of friends per node is

⟨𝑘2⟩ = ⟨𝑘2⟩ − ⟨𝑘⟩.

 Average depends on the 1st and 2nd moments of
𝑃𝑘 and not just the 1st moment.

 Three peculiarities:
1. We might guess ⟨𝑘2⟩ = ⟨𝑘⟩(⟨𝑘⟩ − 1) but it’s actually

⟨𝑘(𝑘 − 1)⟩.
2. If 𝑃𝑘 has a large second moment,

then ⟨𝑘2⟩ will be big.
3. Your friends have more friends than you...
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Size distributions
The sizes of many systems’ elements appear to obey
an
inverse power-law size distribution:

𝑃(size = 𝑥) ∼ 𝑐 𝑥−𝛾

where 𝑥min < 𝑥 < 𝑥max and 𝛾 > 1.
 𝑥 can be continuous or discrete.
 Typically, 2 < 𝛾 < 3.
 No dominant internal scale between 𝑥min and 𝑥max.
 If 𝛾 < 3, variance and higher moments are ‘infinite’
 If 𝛾 < 2, mean and higher moments are ‘infinite’
 Negative linear relationship in log-log space:

log𝑃(𝑥) = log𝑐 − 𝛾log𝑥
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A beautiful, heart-warming example:

𝛼 ≃ 1.23

gray
matter:
‘computing
elements’

white
matter:
‘wiring’

from Zhang & Sejnowski, PNAS (2000) [19]
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Size distributions

Power law size distributions are sometimes called
Pareto distributions after Italian scholar Vilfredo
Pareto.

 Pareto noted wealth in Italy was distributed
unevenly (80–20 rule).

 Term used especially by economists
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Size distributions

Examples:
 Earthquake magnitude (Gutenberg Richter law):

𝑃(𝑀) ∝ 𝑀−3

 Number of war deaths: 𝑃(𝑑) ∝ 𝑑−1.8 [14]

 Sizes of forest fires
 Sizes of cities: 𝑃(𝑛) ∝ 𝑛−2.1

 Number of links to and from websites
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Size distributions

Examples:
 Number of citations to papers: 𝑃(𝑘) ∝ 𝑘−3.
 Individual wealth (maybe): 𝑃 (𝑊) ∝ 𝑊 −2.
 Distributions of tree trunk diameters: 𝑃(𝑑) ∝ 𝑑−2.
 The gravitational force at a random point in the

universe: 𝑃(𝐹) ∝ 𝐹 −5/2.
 Diameter of moon craters: 𝑃(𝑑) ∝ 𝑑−3.
 Word frequency: e.g., 𝑃(𝑘) ∝ 𝑘−2.2 (variable)

Note: Exponents range in error;
see M.E.J. Newman arxiv.org/cond-mat/0412004v3
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History

 Random Additive/Copying Processes involving
Competition.

 Widespread: Words, Cities, the Web, Wealth,
Productivity (Lotka), Popularity (Books, People, ...)

 Competing mechanisms (more trickiness)
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Work of Yore

 1924: G. Udny Yule [?]:
# Species per Genus

 1926: Lotka [10]:
# Scientific papers per author (Lotka’s law)

 1953: Mandelbrot [11]:
Optimality argument for Zipf’s law; focus on
language.

 1955: Herbert Simon [16, 20]:
Zipf’s law for word frequency, city size, income,
publications, and species per genus.

 1965/1976: Derek de Solla Price [5, 13]:
Network of Scientific Citations.

 1999: Barabasi and Albert [2]:
The World Wide Web, networks-at-large.
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Not everyone is happy...

Mandelbrot vs. Simon:
 Mandelbrot (1953): “An Informational Theory of

the Statistical Structure of Languages” [11]

 Simon (1955): “On a class of skew distribution
functions” [16]

 Mandelbrot (1959): “A note on a class of skew
distribution function: analysis and critique of a
paper by H. A. Simon”

 Simon (1960): “Some further notes on a class of
skew distribution functions”
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Not everyone is happy... (cont.)

Mandelbrot vs. Simon:
 Mandelbrot (1961): “Final note on a class of skew

distribution functions: analysis and critique of a
model due to H.A. Simon”

 Simon (1961): “Reply to ‘final note’ by Benoit
Mandelbrot”

 Mandelbrot (1961): “Post scriptum to ‘final note”’
 Simon (1961): “Reply to Dr. Mandelbrot’s post

scriptum”

The PoCSverse
Models of
Complex
Networks
34 of 81

Modeling
Complex
Networks

Random
networks
Basics

Configuration model

Scale-free
networks
History

BA model

Redner & Krapivisky’s
model

Robustness

Small-world
networks
Experiments

Theory

References

Not everyone is happy... (cont.)

Mandelbrot:
“We shall restate in detail our 1959 objections to
Simon’s 1955 model for the Pareto-Yule-Zipf
distribution. Our objections are valid quite
irrespectively of the sign of p-1, so that most of
Simon’s (1960) reply was irrelevant.”

Simon:
“Dr. Mandelbrot has proposed a new set of objections
to my 1955 models of the Yule distribution. Like his
earlier objections, these are invalid.”
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Essential Extract of a Growth Model

Random Competitive Replication (RCR):
1. Start with 1 element of a particular flavor at 𝑡 = 1
2. At time 𝑡 = 2, 3, 4, …, add a new element in one of

two ways:
 With probability 𝜌, create a new element with a

new flavor
ä Mutation/Innovation

 With probability 1 − 𝜌, randomly choose from all
existing elements, and make a copy.
ä Replication/Imitation

 Elements of the same flavor form a group
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Random Competitive Replication

Example: Words in a text
 Consider words as they appear sequentially.
 With probability 𝜌, the next word has not

previously appeared
ä Mutation/Innovation

 With probability 1 − 𝜌, randomly choose one word
from all words that have come before, and reuse
this word
ä Replication/Imitation

 Please note: authors do not do this...
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Random Competitive Replication

 Competition for replication between elements is
random

 Competition for growth between groups is not
random

 Selection on groups is biased by size
 Rich-gets-richer story
 Random selection is easy
 No great knowledge of system needed
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Random Competitive Replication

 After some thrashing around, one finds:

𝑃𝑘 ∝ 𝑘− (2−𝜌)
(1−𝜌) = 𝑘−𝛾

𝛾 = 1 + 1
(1 − 𝜌)

 See 𝛾 is governed by rate of new flavor creation, 𝜌.
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Evolution of catch phrases

 Yule’s paper (1924) [?]:
“A mathematical theory of evolution, based on the
conclusions of Dr J. C. Willis, F.R.S.”

 Simon’s paper (1955) [16]:
“On a class of skew distribution functions” (snore)

 Price’s term: Cumulative Advantage
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Evolution of catch phrases

 Robert K. Merton: the Matthew Effect
 Studied careers of scientists and found credit

flowed disproportionately to the already famous

From the Gospel of Matthew:
“For to every one that hath shall be given...
(Wait! There’s more....)
but from him that hath not, that also which he
seemeth to have shall be taken away.
And cast the worthless servant into the outer
darkness; there men will weep and gnash their
teeth.”
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Evolution of catch phrases

Merton was a catchphrase machine:
1. self-fulfilling prophecy
2. role model
3. unintended (or unanticipated) consequences
4. focused interview → focus group

And just to rub it in...

Merton’s son, Robert C. Merton, won the Nobel Prize
for Economics in 1997.
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Evolution of catch phrases
 Barabási and Albert [2]—thinking about the Web
 Independent reinvention of a version of Simon

and Price’s theory for networks
 Another term: “Preferential Attachment”
 Basic idea: a new node arrives every discrete time

step and connects to an existing node 𝑖 with
probability ∝ 𝑘𝑖.

 Connection:
Groups of a single flavor ∼ edges of a node

 Small hitch: selection mechanism is now
non-random

 Solution: Connect to a random node (easy)
 + Randomly connect to the node’s friends (also

easy)
 Scale-free networks = food on the table for

physicists
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Scale-free networks

 Networks with power-law degree distributions
have become known as scale-free networks.

 Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

𝑃𝑘 ∼ 𝑘−𝛾 for ‘large’ 𝑘

 Please note: not every network is a scale-free
network...
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Scale-free networks

 Term ‘scale-free’ is somewhat confusing...
 Scale-free networks are not fractal in any sense.
 Usually talking about networks whose links are

abstract, relational, informational, …(non-physical)
 Main reason is link cost.
 Primary example: hyperlink network of the Web
 Much arguing about whether or networks are

‘scale-free’ or not…
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Scale-free networks

The big deal:
 We move beyond describing networks to finding

mechanisms for why certain networks arise.

A big deal for scale-free networks:
 How does the exponent 𝛾 depend on the

mechanism?
 Do the mechanism’s details matter?
 We know they do for Simon’s model...

The PoCSverse
Models of
Complex
Networks
47 of 81

Modeling
Complex
Networks

Random
networks
Basics

Configuration model

Scale-free
networks
History

BA model

Redner & Krapivisky’s
model

Robustness

Small-world
networks
Experiments

Theory

References

Real data (eek!)

From Barabási and Albert’s original paper [2]:

ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4 ), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6 ). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7 ),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ! k"#. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ! k"#actor, where #actor $
2.3 % 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6 ), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with #www $ 2.1 % 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
#power ! 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent #cite $ 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent # between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7 ) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) $
e"&&k/k!, where

& ! N"N " 1

k
#pk'1 " p(N"1"k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p $ 0, the probability distri-
bution of the connectivities is P(k) $ )(k "
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.

R E P O R T S

15 OCTOBER 1999 VOL 286 SCIENCE www.sciencemag.org510

 o
n

 O
c
to

b
e

r 
1

9
, 

2
0

0
7

 
w

w
w

.s
c
ie

n
c
e

m
a

g
.o

rg
D

o
w

n
lo

a
d

e
d

 f
ro

m
 

 But typically for real networks: 2 < 𝛾 < 3.
 (Plot C is on the bogus side of things...)
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Generalized model

Fooling with the mechanism:
 2001: Redner & Krapivsky (RK) [9] explored the

general attachment kernel:

Pr(attach to node 𝑖) ∝ 𝐴𝑘 = 𝑘𝜈
𝑖

where 𝐴𝑘 is the attachment kernel and 𝜈 > 0.
 RK also looked at changing very subtle details of

the attachment kernel.
 e.g., keep 𝐴𝑘 ∼ 𝑘 for large 𝑘 but tweak 𝐴𝑘 for low

𝑘.
 RK’s approach is to use rate equations.
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Universality?

 Consider 𝐴1 = 𝛼 and 𝐴𝑘 = 𝑘 for 𝑘 ≥ 2.
 Some unsettling calculations leads to 𝑃𝑘 ∼ 𝑘−𝛾

where

𝛾 = 1 + 1 + √1 + 8𝛼
2 .

 We then have

0 ≤ 𝛼 < ∞ ⇒ 2 ≤ 𝛾 < ∞

 Craziness...
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Sublinear attachment kernels

 Rich-get-somewhat-richer:

𝐴𝑘 ∼ 𝑘𝜈 with 0 < 𝜈 < 1.

 General finding by Krapivsky and Redner: [9]

𝑃𝑘 ∼ 𝑘−𝜈𝑒−𝑐1𝑘1−𝜈+correction terms.

 Weibull distributionish (truncated power laws).
 Universality: now details of kernel do not matter.
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Superlinear attachment kernels

 Rich-get-much-richer:

𝐴𝑘 ∼ 𝑘𝜈 with 𝜈 > 1.

 Now a winner-take-all mechanism.
 One single node ends up being connected to

almost all other nodes.
 For 𝜈 > 2, all but a finite # of nodes connect to one

node.
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Robustness

 Standard random networks (Erdős-Rényi)
versus
Scale-free networks

letters to nature
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

from Albert et al., 2000 “Error and attack tolerance of complex networks” [1]
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

from Albert et al., 2000

 Plots of network
diameter as a function
of fraction of nodes
removed

 Erdős-Rényi versus
scale-free networks

 blue symbols =
random removal

 red symbols =
targeted removal
(most connected first)

The PoCSverse
Models of
Complex
Networks
56 of 81

Modeling
Complex
Networks

Random
networks
Basics

Configuration model

Scale-free
networks
History

BA model

Redner & Krapivisky’s
model

Robustness

Small-world
networks
Experiments

Theory

References

Robustness

 Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

 All very reasonable: Hubs are a big deal.
 But: next issue is whether hubs are vulnerable or

not.
 Representing all webpages as the same size node

is obviously a stretch (e.g., google vs. a random
person’s webpage)

 Most connected nodes are either:
1. Physically larger nodes that may be harder to

‘target’
2. or subnetworks of smaller, normal-sized nodes.

 Need to explore cost of various targeting schemes.
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Milgram’s social search experiment (1960s)

http://www.stanleymilgram.com

 Target person =
Boston stockbroker.

 296 senders from Boston
and Omaha.

 20% of senders reached
target.

 chain length ≃ 6.5.

Popular terms:
 The Small World

Phenomenon;
 “Six Degrees of Separation.”
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Milgram’s experiment with e-mail [6]

Participants:
 60,000+ people in 166

countries
 24,000+ chains
 Big media boost...

18 targets in 13 countries including

 a professor
at an Ivy
League
university,

 an archival
inspector in
Estonia,

 a technology
consultant in
India,

 a policeman
in Australia,

 a potter in
New Zealand,

 a
veterinarian
in the
Norwegian
army.
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Social search—the Columbia experiment

The world is smaller:
 ⟨𝐿⟩ = 4.05 for all completed chains
 𝐿∗ = Estimated ‘true’ median chain length (zero

attrition)

 Intra-country chains: 𝐿∗ = 5
 Inter-country chains: 𝐿∗ = 7
 All chains: 𝐿∗ = 7

 c.f. Milgram (zero attrition): 𝐿∗ ≃ 9
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Previous work—short paths

 Connected random networks have short average
path lengths:

⟨𝑑𝐴𝐵⟩ ∼ log(𝑁)
𝑁 = population size,
𝑑𝐴𝐵 = distance between nodes 𝐴 and 𝐵.

 But: social networks aren’t random...
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Previous work—short paths

 Need “clustering”
(your friends are
likely to know
each other):

 Randomly
connecting
people gives
short path
lengths ... weird.
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Non-randomness gives clustering

A

B

𝑑𝐴𝐵 = 10 → too many long paths.
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Randomness + regularity

B

A

𝑑𝐴𝐵 = 10 without random paths
𝑑𝐴𝐵 = 3 with random paths

⟨𝑑⟩ decreases overall
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Theory of Small-World networks

Introduced by
Watts and Strogatz (Nature, 1998) [18]
“Collective dynamics of ‘small-world’ networks.”

Small-world networks are found everywhere:
 neural network of C. elegans,
 semantic networks of languages,
 actor collaboration graph,
 food webs,
 social networks of comic book characters,...

Very weak requirements:
 local regularity + random short cuts
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Toy model
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv " 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv " 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.
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removed from a clustered neighbourhood to make a short cut has, at

most, a linear effect on C; hence C(p) remains practically unchanged

for small p even though L(p) drops rapidly. The important implica-

tion here is that at the local level (as reflected by C(p)), the transition

to a small world is almost undetectable. To check the robustness of

these results, we have tested many different types of initial regular

graphs, as well as different algorithms for random rewiring, and all

give qualitatively similar results. The only requirement is that the

rewired edges must typically connect vertices that would otherwise

be much farther apart than Lrandom.

The idealized construction above reveals the key role of short

cuts. It suggests that the small-world phenomenon might be

common in sparse networks with many vertices, as even a tiny

fraction of short cuts would suffice. To test this idea, we have

computed L and C for the collaboration graph of actors in feature

films (generated from data available at http://us.imdb.com), the

electrical power grid of the western United States, and the neural

network of the nematode worm C. elegans17
. All three graphs are of

scientific interest. The graph of film actors is a surrogate for a social

network
18

, with the advantage of being much more easily specified.

It is also akin to the graph of mathematical collaborations centred,

traditionally, on P. Erdös (partial data available at http://

www.acs.oakland.edu/�grossman/erdoshp.html). The graph of

the power grid is relevant to the efficiency and robustness of

power networks
19

. And C. elegans is the sole example of a completely

mapped neural network.

Table 1 shows that all three graphs are small-world networks.

These examples were not hand-picked; they were chosen because of

their inherent interest and because complete wiring diagrams were

available. Thus the small-world phenomenon is not merely a

curiosity of social networks
13,14

nor an artefact of an idealized

model—it is probably generic for many large, sparse networks

found in nature.

We now investigate the functional significance of small-world

connectivity for dynamical systems. Our test case is a deliberately

simplified model for the spread of an infectious disease. The

population structure is modelled by the family of graphs described

in Fig. 1. At time t ¼ 0, a single infective individual is introduced

into an otherwise healthy population. Infective individuals are

removed permanently (by immunity or death) after a period of

sickness that lasts one unit of dimensionless time. During this time,

each infective individual can infect each of its healthy neighbours

with probability r. On subsequent time steps, the disease spreads

along the edges of the graph until it either infects the entire

population, or it dies out, having infected some fraction of the

population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................

Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes �90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L � Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv � 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.
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Previous work—finding short paths

But are these short cuts findable?

No!

Nodes cannot find each other quickly
with any local search method.

 Jon Kleinberg (Nature, 2000) [7]
“Navigation in a small world.”

 Only certain networks are navigable
 So what’s special about social networks?
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The model

One approach: incorporate identity.
(See “Identity and Search in Social Networks.” Science, 2002,
Watts, Dodds, and Newman [17])

Identity is formed from attributes such as:
 Geographic location
 Type of employment
 Religious beliefs
 Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.
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Social distance—Bipartite affiliation
networks

c d ea b

2 3 41

a

b

c

d

e

contexts

individuals

unipartite
network

Bipartite affiliation networks: boards and directors,
movies and actors.
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Social distance as a function of identity
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Homophily
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geography occupation age

0

(Blau & Schwartz, Simmel, Breiger)

 Networks built with ‘birds of a feather...’ are
searchable.

 Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.
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Social Search—Real world uses

 Tagging: e.g., Flickr induces a network between
photos

 Search in organizations for solutions to problems
 Peer-to-peer networks
 Synchronization in networked systems
 Motivation for search matters...
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