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Random networks

Consider set of all networks with IV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.
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Random networks

Consider set of all networks with IV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.
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Consider set of all networks with N labelled nodes ~ coee
and m edges. :

Generalized

Rand
Standard random network =
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one randomly chosen network from this set. St
To be clear: each network is equally probable.

Sometimes equiprobability is a good assumption, References
but it is always an assumption.
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Random networks—basic features:
<& Number of possible edges:

0§m<<N):N(N—1)

T AN 2

< Limit of m = 0: empty graph.
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Random networks—basic features:
<& Number of possible edges:

0§m<<

= ];7) N(N —1)

B2 i
< Limit of m = 0: empty graph.

& Limitof m = (];’): complete or fully-connected
graph.
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Number of possible edges:

O§m<<

2 ];7) _ NV -1)

2

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled
nodes:
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Number of possible edges:

Limit of m = 0: empty graph.

Limit of m = (§): complete or fully-connected
graph.

Number of possible networks with N labelled
nodes:

Given m edges, there are ((gﬂ)) different possible
networks.
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Limit of m = 0: empty graph. g T
Limit of m = (g’): complete or fully-connected G
graph. i
Number of possible networks with N labelled
nodes:
2(5) ~ e‘nTQNUV—l).

Given m edges, there are ((gﬂ)) different possible
networks.

Crazy factorial explosion for 1 « m « (g).

Real world: links are usually costly so real
networks are almost always sparse.
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Random networks

How to build standard random networks:
&> Given N and m.
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Random networks

How to build standard random networks:
&> Given N and m.
< Two probablistic methods
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Random networks

How to build standard random networks:
&> Given N and m.

< Two probablistic methods (we'll see a third later
on)

The PoCSverse
Random
Networks
Nutshell

11 of 74

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Strange friends

Largest component

References




Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

The PoCSverse
Random
Networks
Nutshell

11 of 74

Pure random

Generalized
Random
Networks
Configuration mode

o build in practice

Strange friends

Largest component

References




Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.
Best for adding relatively small numbers of links
(most cases).
1 and 2 are effectively equivalent for large N.
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Random networks
A few more things:
< For method 1, # links is probablistic:

N

(m) =p(2) —pIN(N 1)

<& So the expected or average degree is
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Random networks

A fan
A TE

For method 1, # links is probablistic:

N
2

<m>=p<

So the expected or average degree is

) B p%N(N i
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Random networks

For method 1, # links is probablistic:

mwzp(g)zpiwuv—m

So the expected or average degree is

_2¢m
S e
= ZpAN(V=1) = Zpi (N —1)=p(N -1

Which is what it should be...
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Random networks

For method 1, # links is probablistic:

mwzp(f)zpiwuv—n

So the expected or average degree is

_2(m)
S
= ZpAN(V=1) = Zpi (N —1)=p(N -1

Which is what it should be...

If we keep (k) constant thenp x 1/N — 0 as
N — 0.
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Random networks: examples

Next slides:
Example realizations of random networks
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Random networks: examples

Next slides:
Example realizations of random networks
& N =500
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Random networks: examples for N=500
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Random networks: largest components

T

& m =230
A BB o
m =100 m =250
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i m =500 m = 1000
(s le (ky=2 (k)=4
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Random networks: largest components

m =250
(k)=1
m =250 m =250
(k)y=1 (k)=1 m =250
(k)=
m =250
(k)=1
m =250
Sl m =250
(k)=1
m =250
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Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
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Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient:

3 x #triangles
27 #triples

The PoCSverse
Random
Networks
Nutshell

21 of 74

Pure random

Generalized
Random
Networks

Configuration model

o build in practice

ge friends

Largest component

References




Clustering in random networks: Random

Networks

For construction method 1, what is the clustering Nutshel
coefficient for a finite network? P SaHlor

Consider triangle/triple clustering coefficient:

3 x #triangles
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Clustering in random networks:
For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient:
3 x #triangles
27 #triples

! Recall: C,, = probability that
Ci two friends of a node are
also friends.
'( P ECy Or: C, = probability that a
2 ,‘r) triple is part of a triangle.
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Clustering in random networks: Random

Networks

For construction method 1, what is the clustering Naghie)
coefficient for a finite network? Pure random
Consider triangle/triple clustering coefficient: 3
3 x #triangles :
27 #triples
Generalized
Random
Networks
' Recall: C, = probability that
Ci two friends of a node are
also friends. References
'( v PE2C, Or: C, = probability that a
2 ,,r) triple is part of a triangle.

For standard random
' networks, we have simply
that

(L3 CQZP‘
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Clustering in random networks:

So for large random
networks (N — o0),
clustering drops to zero.

Key structural feature of
random networks is that
they locally look like

pure branching networks
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Clustering in random networks:

So for large random
networks (N — o0),
clustering drops to zero.

Key structural feature of
random networks is that
they locally look like

pure branching networks

No small loops.
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Degree distribution:

<= Recall P, = probability that a randomly selected
node has degree k.
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https://en.wikipedia.org/wiki/Binomial_distribution
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https://en.wikipedia.org/wiki/Binomial_distribution

Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose &’
ways the node can be connected to k of the other
N — 1 nodes.
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https://en.wikipedia.org/wiki/Binomial_distribution

Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose &’
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).
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https://en.wikipedia.org/wiki/Binomial_distribution

Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose &’
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).
Therefore have a binomial distribution (":

B o (Nk_l)p%—p)N—l—k.
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Our degree distribution:

Pl = pil=n" """

What happens as N — oc?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — cc.

But we want to keep (k) fixed...

So examine limit of P(k; p, N) when p — 0 and
N — oo with (k) = p(N — 1) = constant.

k N-1-k L
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What happens as N — oc?

We must end up with the normal distribution :
right? Generalized

Random

If p is fixed, then we would end up with a Gaussian  newworcs
with average degree (k) ~ pN — cc. o

But we want to keep (k) fixed...

So examine limit of P(k; p, N) when p — 0 and References
N — oo with (k) = p(N — 1) = constant.

k N-1-k L
Pk p;iND-o2 <kk:>' (1 BE N<k_>1> B (k) (k)

This is a Poisson distribution (£ with mean (k).
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Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:

(k2) = (k)* + (k).
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Poisson basics:

The variance of degree distributions for random
networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:

(k2) = (k) + (k).
Variance is then

a? = (k2) = (k)2
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The variance of degree distributions for random Pure random
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networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:
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(k%) = ()2 + ().

Variance is then

0 = (k%) = (B)2 = ()% + () = (k)2 = ().

So standard deviation ¢ is equal to \/ (k).
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The variance of degree distributions for random Pure random

networks

networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:

Generalized
Random

(k2) = (k)2 + (k). R

Variance is then

o2 = <k2> ! <k>2 4 <k>2 + (k) — <k>2 = (k). Sy

So standard deviation ¢ is equal to \/ (k).

Note: This is a special property of Poisson
distribution and can trip us up...
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So... standard random networks have a Poisson
degree distribution
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General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
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General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. !

The PoCSverse
Random
Networks
Nutshell

29 of 74

Pure random

Generalized
Random
Networks
Configuration model




General random netWOrkS The PoCSverse

Random
Networks
Nutshell
So... standard random networks have a Poisson 29 of 74
S 1
degree dIStrlbqun Pure random

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. ! i e
Can generalize construction method from ER Geperdlize

Random

random networks. Networks




General random networks Rt

Networks
Nutshell

So... standard random networks have a Poisson 29 of 74
Pure random

degree distribution networks
Generalize to arbitrary degree distribution P,.
Also known as the configuration model. [/ s g
Can generalize construction method from ER Geperdlize

Random

random networks. Networks

Assign each node a weight w from some
distribution P,, and form links with probability

References

P(link between i and j) o< w,;w,.




General random networks Rt

Networks

Nutshell
So... standard random networks have a Poisson 24ples
degree distribution et
Generalize to arbitrary degree distribution P, oo
Also known as the configuration model. [/ Sipter
Can generalize construction method from ER ooy
random networks. NC:;::LK; 5
Assign each node a weight w from some

distribution P,, and form links with probability

P(link between i and j) o< w,;w,.

But we'll be more interested in




General random networks Rt

Networks
Nutshell
So... standard random networks have a Poisson 29 of 74
BN E
degree distribution et

Definitions

Generalize to arbitrary degree distribution P,. CERLDS

Also known as the configuration model. [/ i
Can generalize construction method from ER Gzt

Random
random networks. Networks
onfiguration model
Assign each node a weight w from some :

distribution P,, and form links with probability i

P(link between i and j) o< w,;w,.
But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.
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Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.
P, x kaifork = L
Set P, = 0 (no isolated nodes).
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Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.

P, x kaifork = L

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.

Again, look at full network plus the largest
component.

Apart from degree distribution, wiring is random.
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Models

Arbitrary degree distribution P,.

Create (unconnected) nodes with degrees
sampled from P,.
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|dea: start with a soup of unconnected nodes with
stubs (half-edges):
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Building random networks: First rewiring

Phase 2:

Now find any (A) self-loops and (B) repeat edges

and randomly rewire them.

(A) (B) ><>/<
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Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><>/<

Being careful: we can't change the degree of any
node, so we can't simply move links around.
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Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><>/<

Being careful: we can't change the degree of any
node, so we can't simply move links around.

Simplest solution: randomly rewire two edges at a
time.
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General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.
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General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
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General random rewiring algorithm
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Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.

Node degrees do not change.
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General random rewiring algorithm
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Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.
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General random rewiring algorithm

il

1

9

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.

Same as finding on/off/on/off
4-cycles. and rotating them.
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Sampling random networks

Ph

ase 2

Use rewiring algorithm to remove all self and
repeat loops.
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Sampling random networks

Use rewiring algorithm to remove all self and
repeat loops.

Randomize network wiring by applying rewiring
algorithm liberally.
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Sampling random networks

Use rewiring algorithm to remove all self and
repeat loops.

Randomize network wiring by applying rewiring
algorithm liberally.

Rule of thumb: # Rewirings ~ 10 x # edges [“).
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Random sampling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.
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Random sampling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.

Example from Milo et al. (2003) 4

(a) (b)

1 configuration

90 configurations

9% frequency of occurrence

Eo ansm s et ontapinid]
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Sampling random networks

What if we have P, instead of N,.?

Must now create nodes before start of the
construction algorithm.
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Sampling random networks

What if we have P, instead of N,.?

Must now create nodes before start of the
construction algorithm.

Generate N nodes by sampling from degree
distribution Py.
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Motifs

The PoCSverse
Random
Networks
Nutshell

41 of 74

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Nodts

Strange friends

Largest component

References




g The PoCSverse
Network motifs Rardors
Networks
Nutshell
42 of 74

Pure random

Idea of motifs!”) introduced by Shen-Orr, Alon et networks

Definitions

al. in 2002.

Sor

build theoretically
sual examples
Clustering

Degree distributions

Generalized
Random
Networks

Configuration model

build in practice
Motifs

Strange friends

Largest component

References




Network motifs

Idea of motifs!”) introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.
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Network motifs

Idea of motifs !’} introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.
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Network motifs

Idea of motifs !’} introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.

Directed network with 577 interactions (edges)
and 424 operons (nodes).

Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,,.
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Network motifs

Idea of motifs !’} introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.

Directed network with 577 interactions (edges)
and 424 operons (nodes).

Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,,.

Looked for certain subnetworks (motifs) that
appeared more or less often than expected

The PoCSverse
Random
Networks
Nutshell

42 of 74

Pure random
networks

Defir
How

Degree distributior

Generalized
Random
Networks




Network motifs e a

Networks
Nutshell
43 of 74
feedforward loop Pure random
networks
X 1 ‘\r\put)‘( ' ; - Definitions
| Sosr 1 How to build theoreticz
0 So sual example
Y 0 2 a4 6 8 10 12 14 16 18 20 Clus
M .
z M
Generalized
1 16 18 20 Random
crp Networks
oulpu(Z
J / 0\ Configuration model
araC — How to build in practice
J outpu 8 16 18 20 Motifs
Ume 2
Strange friends
araBAD L bmponen

References

Z only turns on in response to sustained activity in
X.




Network motifs

feedforward loop
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output Z /—1
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time

Z only turns on in response to sustained activity in

X.

Turning off X rapidly turns off Z.
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Network motifs

feedforward loop

crp

araC

|

araBAD

6 8 10 12 14 16 18 20

output Z /—1

6 8 10 12 14 16 18 20
time

Z only turns on in response to sustained activity in

X.

Turning off X rapidly turns off Z.
Analogy to elevator doors.
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Network motifs

Note: selection of motifs to test is reasonable but
nevertheless ad-hoc.
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The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks
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The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.
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The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from

choosing randomly on edges rather than on nodes.
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The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks
Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.
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The edge-degree distribution: Randoi

Networks

The degree distribution P, is fundamental for our Z‘éjffhi'f
description of many complex networks Pure random

networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Generalized

Define ;. to be the probability the node at a random B on
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:
kPk
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Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.
Generalized

Define ;. to be the probability the node at a random B on
end of a randomly chosen edge has degree k. :

Now choosing nodes based on their degree (i.e., size): Mot
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The edge—degree dlstrlbutlon: The PoCSverse

Random
Networks

The degree distribution P, is fundamental for our Z‘;fffhi'f
description of many complex networks Pure random
networks

Again: P, is the degree of randomly chosen node. i

A second very important distribution arises from
choosing randomly on edges rather than on nodes.
Generalized

Define @, to be the probability the node at a random B on
end of a randomly chosen edge has degree k. :

Now choosing nodes based on their degree (i.e., size):

Strange friends

Larg: onen
Qk X kPk References

Normalized form:
kP, kP,

Qk = Z;?:O ]f/Pk/: <l€> 5

Big deal: Rich-get-richer mechanism is built into this
selection process.
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Probability of randomly
selecting a node of degree k
by choosing from nodes:

P, =3/7, P, =2/7, P =1/7,
P/

Probability of landing on a
node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Q, =3/16,Q, = 4/16,

Qs = 3/16, Qs = 6/16.
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Probability of randomly
selecting a node of degree k
by choosing from nodes:

Pl 37 ip - ollr ol
P/

Probability of landing on a
node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Q, =3/16,Q, = 4/16,

Qs =3/16, Qg = 6/16.
Probability of finding #
outgoing edges = k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

R, =3/16 R, = 4/16,

R, =3/16, R5 = 6/16.
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The edge-degree distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.
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The edge-degree distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.
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The edge-degree distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.

i (k+1)Pp 4
Zk/:()(k/ & 1>Pk’+1

Ry,
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For random networks, @, is also the probability PUIESqaiite

networks

that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,:

Generalized
Random
Networks

R, = probability that a friend of a random node
has k other friends.

(k+1)Py,q (b +1) Py

R, = =
S LB, (k)

Equivalent to friend having degree k + 1.




The edge-degree distribution: ggﬁggn?vefse
Networks
S0 ore

For random networks, @, is also the probability PUIESqaiite

networks

that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,:

Generalized
Random
Networks

R, = probability that a friend of a random node
has k other friends.

(k+1)Py,q (b +1) Py

R, = =
S LB, (k)

Equivalent to friend having degree k + 1.

Natural question: what's the expected number of
other friends that one friend has?
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The edge-degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

% = k:+1Pk+1
= kR
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The edge-degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

% = k+1Pk+1
= kR

1

(k) £

gk

k(k+1)Ppq

o~
Il

1
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The edge-degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

:ZkRk:Zk(k+ ) Pri1
k=0 k=0 (k)

1 o0
Zk: (k+1)Py;

=1t
=%I;<<k+1>2—<k+1>m+l

(where we have sneakily matched up indices)
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The edge-degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

:ZkRk:Zk(k+ ) Pri1
k=0 k=0 (k)

1 o0
Zk: (k+1)Py;

=1t
=%;<<k+1>2—<k+1>>&+1

(where we have sneakily matched up indices)
1 o0

===% (73 —3)F; (usingf=k+1)
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The edge-degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

:ZkRk:Zk(k+ ) Pri1
k=0 k=0 (k)

1 o0
Z k(k+1)Py_ 4
k=1

1 o0

=®Z((k+1)2

Rl

— (k8 L

(where we have sneakily matched up indices)
1 o0

===% (73 —3)F; (usingf=k+1)
j=

—~
=B
=)
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The edge-degree distribution:

Note: our result, (k) , = ﬁ ((k?) — (k)), is true for
all random networks, independent of degree
distribution.

For standard random networks, recall

(k2) = (k)? + (k).
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The edge-degree distribution:

Note: our result, (k) , = ﬁ ((k?) — (k)), is true for
all random networks, independent of degree
distribution.

For standard random networks, recall
(k?) = (k)2 + (k).

Therefore:
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The edge-degree distribution:

Note: our result, (k) , = ﬁ ((k?) — (k)), is true for
all random networks, independent of degree
distribution.

For standard random networks, recall
(k?) = (k)2 + (k).

Therefore:
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The edge-degree distribution: Randoi
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Note: our result, (k) , = ﬁ ((k2) — (k)), is true for 2o

all random networks, independent of degree networks
distribution.

For standard random networks, recall

Generalized

<k2> s <k>2 I <k2> Random

Networks

Therefore:

(B = 735 (097 + (8] = (k1) = (8 o

Again, neatness of results is a special property of
the Poisson distribution.




The edge-degree distribution: Randoi

Networks
Nutshell
Note: our result, (k) , = (1@ ((k?) — (k)), is true for ~ s52of7 1
Pure random
all random networks, independent of degree networks
distribution.
For standard random networks, recall
Generalized
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Therefore:
(8, = 7 (07 + () — (k) = (&)
Again, neatness of results is a special property of ——

the Poisson distribution.

So friends on average have (k) other friends, and
(k) + 1 total friends...
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The edge-degree distribution:

In fact, R, is rather special for pure random
networks ...

Substituting
B
TG
into
(k+1)Ppyy

e ="
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Two reasons why this matters
Reason #1:

<& Average # friends of friends per node is

(ko) = (k) x (k)R
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Two reasons why this matters
Reason #1:
<& Average # friends of friends per node is

(ko) = (k) X (k)r = <k>% ((k?) — (k) = (k?) — (k).

<> Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.
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Two reasons why this matters

Average # friends of friends per node is

1

(ko) = (k) X (k)r = <k><k> (k%) — (k) = (k*) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
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Two reasons why this matters

Average # friends of friends per node is

(ea) = (k) X (k) = <k>$ ((B2) — (k) = (K2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k,) will be big.
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Two reasons why this matters

Average # friends of friends per node is

(ko) = (k) x (k)R

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually

(k(k—1)).

2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)

(k%) — (k) = (k) — (k).
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Average # friends of friends per node is Tiﬁ:vﬂfs
1
(ko) = (k) x (k) g = (k) ) ((k?) — (k) = (k) — (k).

Generalized
Random
Networks

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... > °!
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Pure random
Average # friends of friends per node is Tiﬁfvflks
1
(ko) = (k) x (k)g = <k>@ (k%) — (k) = (k?) — (K).
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Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... > °!

4. See also: class size paradoxes (nod to: Gelman)
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A node’s average # of friends: (k)

(k2)
(k)

Friend's average # of friends:

Comparison:
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Generalized
Random
Networks

So only if everyone has the same degree
(variance= ¢2 = 0) can a node be the same as its
friends.

Intuition: for random networks, the more
connected a node, the more likely it is to be
chosen as a friend.
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Pure random

(k)  is key to understanding how well random networks

Defir

networks are connected together.

e.g., we'd like to know what's the size of the largest (=" |
component within a network. Generalized

Random

As N — oo, does our network have a giant ol
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — 0.

Note: Component = Cluster
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Pure random

A giant component exists if when we follow a networks
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node e
number as we move out from a random node. s

Networks
All of this is the same as requiring (k) p > 1. i

Giant component condition (or percolation
condition):

(k%) — (k)
(k)
Again, see that the second moment is an essential

part of the story.
Equivalent statement: (k?) > 2(k)

(k)r = =




Spreading on Random Networks

For random networks, we know local structure is
pure branching.

The PoCSverse
Random
Networks
Nutshell

61 of 74

Pure random
networks

Generalized
Random
Networks

ation model

Strange friends
Largest component

References




Spreading on Random Networks LZiESff““e
Networks
Nutshell
For random networks, we know local structure is 610f 74

Pure random

pure branching.

Successful spreading is - contingent on single
edges infecting nodes.

Generalized
Random
Networks

on model

ild in practice
Motifs
Strange friends

Largest component




Spreading on Random Networks The PoCSverse

Random

Networks

; Nutshell

For random networks, we know local structure is 610f74

i d
pure branching. Pure random

Successful spreading is - contingent on single
edges infecting nodes. Chiering

Degree distributions

ild theoretically

al examples

Success Failure:

Generalized
Random
Networks
Configuration model
How to build in practice

Motifs
— SRS

Strange friends

Largest component
i \ l \ References




Spreading on Random Networks

For random networks, we know local structure is
pure branching.

Successful spreading is - contingent on single
edges infecting nodes.

Success Failure:

—> —
Focus on binary case with edges and nodes either
infected or not.

The PoCSverse
Random
Networks
Nutshell

61 of 74

Pure random

eoretically

Clustering

Degree distributions

Generalized
Random
Networks

on model

ild in practice

Motifs

Strange friends
Largest component




Spreading on Random Networks Random

Networks
Nutshell
For random networks, we know local structure is alpie
s Pure random
pure branching. networks
s E r i Definitions
Successful spreading is - contingent on single
edges infecting nodes. iperng |-
Success Failure: Generalized
Random

Networks
Con uration model

build in practice

Largest component
i \ l \ References

Focus on binary case with edges and nodes either
infected or not.

First big question: for a given network and
contagion process, can global spreading from a
single seed occur?

Strange friends




Global spreading condition Rorom

Networks
We need to find: " Nutshell
R = the average # of infected edges that one Pure random

random infected edge brings about.
Call R the gain ratio.

Generalized
Random
Networks

on model

ild in practice
Motifs
Strange friends

Largest component




Global spreading condition Rorom

Networks

We need to find: " Nutshell
R = the average # of infected edges that one Pure random
random infected edge brings about. b

Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge. Geperdlize

Random
Networks
Conf on model




Global spreading condition

We need to find: "

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of

degree k is infected by a single infected edge.

= kP
R = &
prob. of

connecting to
a degree k node

The PoCSverse
Random
Networks
Nutshell

62 of 74

Pure random
networks
Definitions

Generalized
Random
Networks




Global spreading condition
We need to find: "
R = the average # of infected edges that one
random infected edge brings about.
Call R the gain ratio.
Define B, as the probability that a node of

degree k is infected by a single infected edge.

o
kP
= (k) T
= —_ # outgoing
prob. of infected
connecting to edges

a degree k node

The PoCSverse
Random
Networks
Nutshell

62 of 74

Pure random
networks
Defir n:

Deg

ibutions

Generalized
Random
Networks




Global spreading condition

We need to find: "

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

= kP,
R= Z o (k—1) e B,
=0 (k) i i
= S # outgoing Prob. of
prob. of infected infection
connecting to edges

a degree k node

The PoCSverse
Random
Networks
Nutshell

62 of 74

Pure random
networks
Definitions

How to build theoretically

Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks

Configuration mode

friend:

build in practice



Global spreading condition

We need to find: "

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

e kP,
R:Z B o (k—1) e B,
—_—— ~——
=P S # outgoing Prob. of
prob. of infected infection
connecting to edges
a degree k node
(%) e e v
P,
+
2

The PoCSverse
Random
Networks
Nutshell

62 of 74

Pure random
networks
Definitions

Generalized
Random
Networks
Configuration mode

Stra iend:
Largest component




Global spreading condition

We need to find: "

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

= kP,
R= Z o (k—1) e B,
=0 (k) i i
= S # outgoing Prob. of
prob. of infected infection
connecting to edges

a degree k node

&, kP,
k
+ ° 0
2"
= # outgoing
infected
edges

The PoCSverse
Random
Networks
Nutshell

62 of 74

Pure random
networks
Definitions

Generalized
Random
Networks




Global spreading condition

We need to find: "

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

= kP,
R= Z o (k—1) e B,
=0 (k) i i
= S # outgoing Prob. of
prob. of infected infection
connecting to edges

a degree k node

&, kP,
+> kk . 0 s (B
k=0 < > # outgoing Prob. of

infected no infection
edges

The PoCSverse
Random
Networks
Nutshell

62 of 74

Pure random
networks
Definitions

How to build theoretic
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks

Configuration mode

friend:

ouild in practice



Global spreading condition EZﬁJan:““e
Networks
& orve

Pure random

<= Our global spreading condition is then: netwonic

Definitions

How to build theoretically

Some visual examples

o Clustering
k/‘P Degree distributions
R=> —Fe(k—1)eB; >1. :
<k> Generalized
k=0 Random
Networks

Configuration model

How to build in practice
Motifs
Strange friends

Largest component

References




Global spreading condition

<= Our global spreading condition is then:

. kP,
R:§ i ko (k—1) e B 1.
il

<= Case 1-Rampant spreading:

The PoCSverse
Random
Networks
Nutshell

63 of 74

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Strange friends
Largest component

References




Global spreading condition EZﬁJan:““e
Networks
& orve

Pure random

<= Our global spreading condition is then: netwonic

Definitions

How to build theoretically

Some visual examples

Clustering

R SR 2 kPk k 1 B 1 Degree distributions
o Z <]€> 2 ( & ) = k1 Ay Generalized
k=0 Random
Networks

Configuration model
<o Case 1-Rampant spreading: If B;; =1 AR G
ey

References




Global spreading condition

Our global spreading condition is then:
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Our global spreading condition is then:

2%

. —1 .Bk1>]‘

Case 1-Rampant spreading: If B,; =1 then

_\~ kP _ {k(k—1))
_;ﬁo(k—l)——(m*>l.

Good: This is just our giant component condition
again.
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Global spreading condition

Case 2—Simple disease-like: If B,,; =8 <1 then

diRle o
_,;0 (k)

—1l)ef>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (.
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Giant component for standard random networks:
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Fine example of a continuous phase transition (4,

We say (k) = 1 marks the critical point of the
system.



http://en.wikipedia.org/wiki/Phase_transition

The PoCSverse

Random networks with skewed P, : Random

Networks
q S utshell
& e.g ifP. =ck7with2 <~y <3, k>1,then 66 o158

Pure random
networks

o0 5
efinitions
<k2> =0 E ka—’Y How to build theoretically
Some visual examples
k=1

Clustering
Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Strange friends

Largest component

References




The PoCSverse

Random networks with skewed P, : Random

Networks
q S utshell
& e.g ifP. =ck7with2 <~y <3, k>1,then 66 o158

Pure random
networks

=2 Definit
<k2> =0 E ka_FY How to build theoretically
k=1

Some visual examples
Clustering
Degree distributions

oS Generalized
Ry Random
s L d‘T Networks
=%

Configuration model
How to build in practice
Motifs

Strange friends

Largest component

References




Random networks with skewed P, :
& e.g ifP. =ck7with2 <~y <3, k>1,then

Wl N2
k=1

oo
~ x2-7dzx

The PoCSverse
Random
Networks
Nutshell

66 of 74

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Strange friends

Largest component

References




The PoCSverse

Random networks with skewed P, : Random

Networks
q S utshell
& e.g ifP. =ck7with2 <~y <3, k>1,then 86174

Pure random
networks

=2 Definit
<k2> =0 E k2 k= How to build theoretically
k=1

Some visual examples
Clustering
Degree distributions

e Generalized

Ry Random
~Y
x d‘T Networks
Configuration model
How to build in practice
Motifs

oo
X xS—’Y = 00 Strange friends
x

=1 Largest component

References




The PoCSverse

Random networks with skewed P, : Random

Networks
q S utshell
& e.g ifP. =ck7with2 <~y <3, k>1,then 86174

Pure random
networks

Def
efinitions
<k2> =0 E k2 k= How to build theoretically
Some visual examples
k=1

Clustering
Degree distributions

Syl Generalized
Ry Random
24 / x d‘T Networks
€T Configuration model
How to build in practice
Motifs
o x3—7|°° =00 (> (k). Strange riends
=

Largest component

References




The PoCSverse

Random networks with skewed P, : Random

Networks
utshell
& e.g ifP. =ck7with2 <~y <3, k>1,then 56 .of 74

Pure random
networks

Def
efinitions
<k2> ==HC) E k2 k_FY How to build theoretically
Some visual examples
k=1

Clustering
Degree distributions

[e o) Generalized
2—~ Random
- / € dz Networks
=1 Configuration model

How to build in practice
Motifs

o e RO Strange friends
oc B |m: =00 S e .

Largest component

<= So giant component always exists for these kinds
of networks.




The PoCSverse
Random
Networks
Nutshell

eg if P, =ck " with2 <~y <3,k =1, then 66 of 74

Pure random

Wl N2
k=1

oo Generalized
Ry Random
o / €z d.’L’ Networks
r=1 Cc on model
ild in practice
Motifs

3—’Y ’ S S Strange friends
i =1 = (>> <k> ) Largest component

References

So giant component always exists for these kinds
of networks.

Cutoff scaling is k=3 if v > 3 then we have to look
harder at (k) .




eg if P, =ck " with2 <~y <3,k =1, then

Wl N2
k=1

o0
~ / x2-7dz
=1

So giant component always exists for these kinds
of networks.

Cutoff scaling is k=3 if v > 3 then we have to look
harder at (k) .

How about Py, = dy,, ?

The PoCSverse
Random
Networks
Nutshell

66 of 74

Pure random

Generalized
Random
Networks
Configuration mode

How to build in practice

Strange friends

Largest component




Giant component The PoCSverse

Random
Networks

And how big is the largest component? gy

; : Pure random
<o Define S, as the size of the largest component. networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice.
Motifs

Strange friends

Largest component

References




Giant Component The PoCSverse

Random
Networks

And how big is the largest component? Nt

67 of 74

Pure random

<o Define S, as the size of the largest component. networks

Definitions

<= Consider an infinite ER random network with average owto D4l theoreeal,

Some visual examples
degree (k). Ciistering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Strange friends

Largest component

References




Giant component
And how big is the largest component?

<o Define S, as the size of the largest component.

<= Consider an infinite ER random network with average
degree (k).

<o Let's find S; with a back-of-the-envelope argument.

The PoCSverse
Random
Networks
Nutshell

67 of 74

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Strange friends

Largest component

References




Giant component

Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find .S; with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.

The PoCSverse
Random
Networks
Nutshell

67 of 74

Pure random
networks

Definitions

suild theoretically

Generalized
Random

Networks
C ation model

build in practice

Motif
Strange friends

Largest component

References




Giant component

Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find .S; with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — 5;.

The PoCSverse
Random
Networks
Nutshell

67 of 74

Pure random
networks

Definitions

Generalized
Random

Networks
C ation model

build in practice

Motif
Strange friends

Largest component

References




Giant component The PoCSyerse

Networks
Nutshell
67 of 74

Pure random

Define S, as the size of the largest component. networks
Consider an infinite ER random network with average

degree (k). ekt
Let's find .S; with a back-of-the-envelope argument. Generalized

Networks

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — 5;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.




Giant component Random

Networks
Nutshell
67 of 74

Pure random

Define S, as the size of the largest component. networks
Consider an infinite ER random network with average

degree (k).

Let's find .S; with a back-of-the-envelope argument. Generalized

Networks

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — 5;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

So

5= i P,6*
k=0




Giant component Random
Nathel
67 of 74

Pure random

Define S, as the size of the largest component. networks
Consider an infinite ER random network with average

degree (k).

Let's find .S; with a back-of-the-envelope argument. Generalized

Networks

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — 5;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

So

5= i P,6*
k=0

Substitute in Poisson distribution...




Giant component

<= Carrying on:

5= i L
k=0

The PoCSverse
Random
Networks
Nutshell

68 of 74

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Strange friends

Largest component

References




Giant component

<= Carrying on:

5= i P,ok =
k=0

oo

%

k

0

<l;;>'k e—(k)(sk

The PoCSverse
Random
Networks
Nutshell

68 of 74

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Strange friends

Largest component

References




Giant component

Carrying on:

_OO k_oo<k>k—k k
e il s LESBE L ral
k=0 k=0

ek B AT
ey (€ ]z!)
k=0

The PoCSverse
Random
Networks
Nutshell

68 of 74

Pure random
networks
Definitions

How to build theoretically

Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks

uration model

build in practice

Motifs

Strange friends
Largest component

References




Giant component

Carrying on:

_OO k_oo<k>k—k k
e il s LESBE L ral
k=0 k=0

ek B AT
ey (€ ]z!)
k=0

= €_<k>6<k:>6

The PoCSverse
Random
Networks
Nutshell

68 of 74

Pure random
networks
Definitions

How

Sor

build theoretically
sual examples
Clustering

Degree distributions

Generalized
Random
Networks

Configuration model

build in practice
Motifs

Strange friends

Largest component

References




Giant component

Carrying on:

_OO k_oo<k>k—k k
e il s LESBE L ral
k=0 k=0

ek B AT
ey (€ ]z!)
k=0

gt etk L (k) (16}

The PoCSverse
Random
Networks
Nutshell

68 of 74

Pure random
networks
Definitions

How

Sor

build theoretically
sual examples
Clustering

Degree distributions

Generalized
Random
Networks

Configuration model

build in practice
Motifs

Strange friends

Largest component

References




Giant component Random

Networks
Nutshell
68 of 74
Ca rl’ying on: Pure random
o oo
k k
k=0 k=0 '
Generalized
Random
g A<k> i (<k§>5)k Networks
=€ T < :m'vw:h;\
A e
Largest component
S lae mle e

Now substitute in § = 1 — S; and rearrange to
obtain:
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We can figure out some limits and details for
Sl — ]. i el €_<k>sl.

The PoCSverse
Random
Networks
Nutshell

69 of 74

Pure random
networks

Definitions

Degree distributions

Generalized
Random
Networks

Configuration model

build in practice
Motifs

Strange friends

Largest component

References




Giant component

We can figure out some limits and details for
Sl — ]. i el €7<k>sl.

First, we can write (k) in terms of S;:

1 1

The PoCSverse
Random
Networks
Nutshell

69 of 74

Pure random

Generalized
Random
Networks

on model

ild in practice
Motifs
Strange friends

Largest component




Giant component Random

Networks
Nutshell
69 of 74

Pure random

We can figure out some limits and details for
Sl — ]. i el €7<k>sl.

First, we can write (k) in terms of S;:

Generalized
Random
<k‘> = 1 |n 1 Networks
i i . Cc on model
Sl 1 R Sl ild in practice
Motifs
Strange friends
As <]<;> — 0, Sl — 0. Largest component




Giant component Random

Networks
Nutshell
69 of 74

Pure random

We can figure out some limits and details for
Sl — ]. i el €7<k>sl.

First, we can write (k) in terms of S;:

Generalized
Random
<k‘> 1 |n 1 Networks
TR . Cc on mode
Sl 1 R Sl ild in practice
Motifs
Strange friends
As <k;> — 0,5, —0. Largest component
References

As (k) = 00, S; — 1.




Giant component Random
Nathel
69 of 74

Pure random
We can figure out some limits and details for b

Sl = ]. G il €7<k>sl £ Some visual examples

First, we can write (k) in terms of S, : pee sions
Generalized
Random

1 Networks

Configuration model

1
g :
G gl

build in practice

As (kY —» 0,5, — 0.
As (k) — 00, §; — 1.
Notice that at (k) = 1, the critical point, S; = 0.




Giant component Random

Networks
Nutshell
69 of 74

Pure random
networks

We can figure out some limits and details for
S g RSy

First, we can write (k) in terms of S;:

Generalized
1 Random

I piRlan
= G

As (kY —» 0,5, — 0.

As (k) — 00, §; — 1.

Notice that at (k) = 1, the critical point, S; = 0.

Only solvable for S; > 0 when (k) > 1.




Giant component Random

Networks
Nutshell
69 of 74

Pure random
networks

We can figure out some limits and details for
S g RSy

First, we can write (k) in terms of S;:

Generalized
1 Random

Ln g
Sl ol cottpon el

As (kY —» 0,5, — 0.

As (k) — 00, §; — 1.

Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.

Really a transcritical bifurcation. ¢!
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We can sort many things out with sensible
probabilistic arguments...

More detailed investigations will profit from a spot
of Generatingfunctionology. !
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