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Random network generator for N = 3:

<o Getyour own exciting generator here (4.
<= As N , polyhedral die rapidly becomes a ball...
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Random networks

Pure, abstract random networks:
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Random networks

Pure, abstract random networks:

Consider set of all networks with IV labelled nodes
and m edges.
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Random networks

Consider set of all networks with IV labelled nodes
and m edges.

Standard random network =
one randomly chosen network from this set.

To be clear: each network is equally probable.
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Random networks—basic features:
<= Number of possible edges:

0
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Random networks—basic features:
<= Number of possible edges:

2

Ogmg(N):N(N_—D

2

< Limit of m = 0: empty graph.
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Random networks—basic features:
Number of possible edges:
N\ N(N-1)
osms (3) -2
Limit of m = 0: empty graph.
Limit of m = (§'): complete or fully-connected
graph.
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Number of possible edges:

Limit of m = 0: empty graph.
Limit of m = (§'): complete or fully-connected
graph.
Number of possible networks with N labelled
nodes:

2(1;7) ~ elnTQNuvfl)‘
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Random networks

How to build standard random networks:
&> Given N and m.
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Random networks

How to build standard random networks:
&> Given N and m.
< Two probablistic methods
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Random networks

How to build standard random networks:
&> Given N and m.

< Two probablistic methods (we'll see a third later
on)
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Random networks

Given N and m.
Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).
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Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).

1 and 2 are effectively equivalent for large N.
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Random networks

+ A

A few more things:
For method 1, # links is probablistic:

N

<m>=p(2

) 2 p—;—N(N i

So the expected or average degree is
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Random networks

For method 1, # links is probablistic:

mwzp(g)zpéwuv—w

So the expected or average degree is

2 )
=24
= ZpAN(V = 1) = ZpiN(N — 1) =p(N ~ 1),

Which is what it should be...
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Random networks

For method 1, # links is probablistic:

N

<m>=p<2

) B p%N(N i

So the expected or average degree is

_2¢m
S
= ZpAN(V=1) = Zpi (N —1)=p(N -1

Which is what it should be...

If we keep (k) constant thenp x 1/N — 0 as
N — 0.
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Random networks: examples

Next slides:
Example realizations of random networks
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Random networks: examples

Next slides:
Example realizations of random networks
N =500
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Random networks: examples

Example realizations of random networks
N =500
Vary m, the number of edges from 100 to 1000.
Average degree (k) runs from 0.4 to 4.
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Average degree (k) runs from 0.4 to 4.
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Random networks: largest components
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Giant component
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Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient: !’
3 x #triangles
27 #triples
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Clustering in random networks:
For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient: !’
3 x #triangles
27 #triples

! Recall: C,, = probability that
Ci two friends of a node are
also friends.
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Clustering in random networks:
For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient:!”!
3 x #triangles
27 #triples

! Recall: C,, = probability that
Ci two friends of a node are
D also friends.
'( v PE2C, Or: C, = probability that a
2 ) triple is part of a triangle.
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Clustering in random networks:
For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient:!”!
3 x #triangles
27 #triples

! Recall: C,, = probability that
Ci two friends of a node are
also friends.
'( P ECy Or: C, = probability that a
2 ,‘1) triple is part of a triangle.
For standard random
' networks, we have simply
that
3 CQ == p.

The PoCSverse
Random
Networks

23 0f 82

Pure random
networks

Generalized

Random

Networks
Conf

Larg

References




Clustering in random networks: Rondom

Networks
24 of 82

Pure random
networks
Definitions

How

build theoretically

Some visual examples

So for large random
networks (N — o0), Ebeale
clustering drops to zero. Networks

ion model

ild in practice

Largest component

References




Clustering in random networks: Rondom

Networks
24 of 82

Pure random

ild theoretically
al examples

Clustering

So for large random Degree disrbutions
networks (N — o), Senerglizer

clustering drops to zero.

Key structural feature of
random networks is that
they locally look like

pure branching networks

References




Clustering in random networks: Rondom
Networks
24 0f 82

Pure random
networks

ons

ow to build theoretically
visual examples

Clustering

So for large random Degree disrbutions
networks (N — o), Senerglizer

clustering drops to zero.

Key structural feature of
random networks is that
they locally look like

pure branching networks

No small loops.

References




O Utl i ne EZﬁggr(;]Sverse

Networks
25 0f 82

Pure random
Pure random networks networks

Definitions

w to build theoretically

Generalized
Random
Networks

Degree distributions

ation model

build in practice

m friends are

References




The PoCSverse

Degree distribution: Random

Networks
26 of 82
Recall P,, = probability that a randomly selected Pure random
k
node has degree k. i

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks

Configuration model

build in practice
Moti
Random friends are
strange

Largest component

References



https://en.wikipedia.org/wiki/Binomial_distribution

Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.
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https://en.wikipedia.org/wiki/Binomial_distribution

Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose &’
ways the node can be connected to k of the other
N — 1 nodes.
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https://en.wikipedia.org/wiki/Binomial_distribution

Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose &’
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).
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https://en.wikipedia.org/wiki/Binomial_distribution

Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose &’
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).

Therefore have a binomial distribution&":
P(kip, N) = (N_ :
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https://en.wikipedia.org/wiki/Binomial_distribution

Limiting form of P(k; p, |
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http://en.wikipedia.org/wiki/Poisson_distribution

Limiting form of P(k;p, N):

<= Our degree distribution:

Bksn-INoi={

N-1
k

jpi
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http://en.wikipedia.org/wiki/Poisson_distribution

Limiting form of P(k;p, N):
<= Our degree distribution:

P(kip, N) = (75 )pt (1 - p)V-1=5

k
<% What happens as N — co?
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What happens as N — oc?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — cc.

But we want to keep (k) fixed...

So examine limit of P(k; p, N) when p — 0 and
N — oo with (k) = p(N — 1) = constant.
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We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — cc.

But we want to keep (k) fixed...

So examine limit of P(k; p, N) when p — 0 and
N — oo with (k) = p(N — 1) = constant.
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degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model.!”!

Can generalize construction method from ER
random networks.

Assign each node a weight w from some
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So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.

Also known as the configuration model.!”!

Can generalize construction method from ER

random networks.

Assign each node a weight w from some

distribution P,, and form links with probability
P(link between i and j) o< w,;w,.

But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.
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So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model.!”!

Can generalize construction method from ER
random networks.

Assign each node a weight w from some
distribution P,, and form links with probability

P(link between i and j) o< w,;w,.
But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.

2. Examining mechanisms that lead to networks with
certain degree distributions.

The PoCSverse
Random
Networks

34 of 82

Pure random
networks
Definitions

How to build theoretically

Degree distributions

Generalized
Random
Networks
Configuration model




RandOm networks: examples The PoCSverse

Random
Networks
350f82

Pure random
networks

Definitions

to build theoretically

ual examples

Example realizations of random networks with power
law degree distributions: Generalized

Random
Networks
Configuration model

build in practice

friends are




Random networks: examples oo

Networks
350f82

Pure random

networks

Defir
Cominge up: '

ns

uild theoretically

Example realizations of random networks with power
law degree distributions: Generalized

Random
Networks
N == 1000- Configuration model

build in practice

friends are
est component

References




Random networks: examples oo

Networks
350f82

Pure random

ild theoretically

al examples

Clustering

Example realizations of random networks with power
law degree distributions: Generalized

N e 1000 Networks
P, sckgifork = 1. i




Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.
P, x kaifork = L
Set P, = 0 (no isolated nodes).

The PoCSverse
Random
Networks
350f82

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks




Random networks: examples oo

Networks
350f82

Pure random
networks

Definitions.

build theoretically

Example realizations of random networks with power
law degree distributions: Generalized
andom
N = 1000 Networks

Configuration model

P, x kaifork = L
Set P, = 0 (no isolated nodes).
Vary exponent v between 2.10 and 2.91.




RandOm networks: eXamp'eS The PoCSverse

Random
Networks
350f82

Pure random
networks

Definitions.

Example realizations of random networks with power U CeR
law degree distributions: Generalzed
andom
N = 1000, Networks

Configuration model

P, x kaifork = L
Set P, = 0 (no isolated nodes). ;
Vary exponent v between 2.10 and 2.91. 5

Again, look at full network plus the largest
component.




Random networks: examples oo

Networks
35 0f 82

Pure random
networks
Definitions

Example realizations of random networks with power Desre dirtors

law degree distributions: Generalized
andom
N = 1000 Networks

Confi tion model

B o kntfork = I

Set P, = 0 (no isolated nodes).
Vary exponent v between 2.10 and 2.91. 5
Again, look at full network plus the largest

component.

Apart from degree distribution, wiring is random.




Random networks: examples for N=1000  fandom

Networks
36 of 82

Pure random
networks
Definitions

visual examples

Generalized
Random
Networks

2437 ~ =246
(k) =2.504 (k) =1.856

References

2.73 =282 ~ =291
=1.862 (k) =1.386 (k) =1.49

build theoretically



Random networks: largest components a5

Networks
37 of 82

Pure random
networks

Definitions

How to build theoretically
Some visual examples

stering

Degree distributions

Generalized
Random
Networks
y=21 ~=2.19 ~=2.28 ~ =237 ~=2.46
(k) =3.448 (k) =2.986 (k) =2.306 (k) =2.504 (k) =1.856

References




Outline

Generalized Random Networks

How to build in practice

The PoCSverse
Random
Networks

38 0f 82

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to b
ol

uild in practice

Random friends are
strange

Largest component

References




Models

Generalized random networks:

The PoCSverse
Random
Networks

39 of 82

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice

Random friends are
strange

Largest component

References




Models

Generalized random networks:
<% Arbitrary degree distribution P,

The PoCSverse
Random
Networks

39 of 82

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice

Random friends are
strange

Largest component

References




Models

Arbitrary degree distribution P,.

Create (unconnected) nodes with degrees
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|dea: start with a soup of unconnected nodes with
stubs (half-edges):
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Building random networks: First rewiring

Phase 2:

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><>/<
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Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><>/<

Being careful: we can't change the degree of any
node, so we can't simply move links around.
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time.
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General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.
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General random rewiring algorithm

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
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General random rewiring algorithm
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Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.

Node degrees do not change.
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Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
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Node degrees do not change.

Works if e, is a self-loop or
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Sampling random networks

Phase 2:

Use rewiring algorithm to remove all self and
repeat loops.
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Random sampling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.

The PoCSverse
Random
Networks

44 of 82

Pure random
networks

Defir ns

uild theoretically

| examples

distributions

Generalized
Random
Networks

Configuration model




Random sampling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.

Example from Milo et al. (2003) ™'
(a) (b)

B N NAO S

9% frequency of occurrence

1 configuration 90 configurations
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The PoCSverse
Random
Networks

45 of 82

Pure random

Generalized
Random
Networks
Configuration mode

How to build in practice




Sampllng random netWOrkS The PoCSverse

Random
Networks
45 of 82

Pure random

What if we have P, instead of N,.?

Must now create nodes before start of the Genctgee
construction algorithm. s
Generate N nodes by sampling from degree et

distribution Py.
Easy to do exactly numerically since k is discrete.




Sampling random networks Randoim A%

Networks
45 of 82

Pure random
networks
Definitions

How to build theoretically

What if we have P, instead of N, ? e
Must now create nodes before start of the Generalized
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distribution Py.
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wired together.




Outline

Generalized Random Networks

Motifs

The PoCSverse
Random
Networks

46 of 82

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Bt
Random friends are
strange

Largest component

References




Network motifs A 5 g

Networks
47 of 82

Pure random
networks

Idea of motifs ® introduced by Shen-Orr, Alon et
al. in 2002.

sual examples

Degree distributions

Generalized
Random
Networks

uration model

Largest component

References




NetWO rk motifs The PoCSverse

Random
Networks
47 of 82
Pure random
? o networks
Idea of motifs ® introduced by Shen-Orr, Alon et
al. in 2002.
Looked at gene expression within full context of e
transcriptional regulation networks. Random




Network motifs o Y

Networks
47 of 82
Pure random
L 5 network

Idea of motifs ¥! introduced by Shen-Orr, Alon et okt Ll L8
al. in 2002.
Looked at gene expression within full context of Gem‘ £
transcriptional regulation networks. Random

Specific example of Escherichia coli.




Network motifs e a

Networks
47 of 82

Pure random

Idea of motifs ® introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of s
transcriptional regulation networks. Random

Networks

Specific example of Escherichia coli. bt

Directed network with 577 interactions (edges)
and 424 operons (nodes).

o build in practice



Network motifs i 2oy

Networks
47 of 82

Pure random
networks

Idea of motifs ® introduced by Shen-Orr, Alon et et
al. in 2002.

Looked at gene expression within full context of s
transcriptional regulation networks. Random

Networks

Specific example of Escherichia coli.
Directed network with 577 interactions (edges)
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Idea of motifs ® introduced by Shen-Orr, Alon et et
al. in 2002.

Looked at gene expression within full context of s
transcriptional regulation networks. Random

Networks

Specific example of Escherichia coli.
Directed network with 577 interactions (edges)
and 424 operons (nodes).

Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,,.

Looked for certain subnetworks (motifs) that K =
appeared more or less often than expected || Fes|

Degree distributions
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The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.
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The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.
A second very important distribution arises from

choosing randomly on edges rather than on nodes.

The PoCSverse
Random
Networks

54 of 82

Pure random
networks
Definitions

t uild

Degree distributions
Generalized
Random
Networks
C ation model

H build in practice

Motifs
Random friends are

References




The edge-degree distribution:

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.
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Random

Define ;. to be the probability the node at a random NapwaEks |k

end of a randomly chosen edge has degree k.
Now choosing nodes based on their degree (i.e., size):

Normalized form:
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The edge-degree distribution: Randoi

Networks

The degree distribution P, is fundamental for our o

description of many complex networks networks

Defir

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from Dedree dribionh
choosing randomly on edges rather than on nodes. Generalized

Random

Define @, to be the probability the node at a random gwoRRs 1
end of a randomly chosen edge has degree k. okt b o

Now choosing nodes based on their degree (i.e., size):

Normalized form:
kP, kP,

Qk = Z;?:O ]f/Pk/: <l€> 5

Big deal: Rich-get-richer mechanism is built into this
selection process.
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The edge-degree distribution:

For networks, @, is also the probability that a

friend (neighbor) of a random node has £ friends.

Useful variant on Q,:

R, = probability that a friend of a random node
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The edge-degree distribution:

For networks, @, is also the probability that a

friend (neighbor) of a random node has £ friends.

Useful variant on Q,:

R, = probability that a friend of a random node
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For networks, @, is also the probability that a

friend (neighbor) of a random node has & friends. =
Useful variant on Q. S ——

Generalized
Random

R, = probability that a friend of a random node Mg
has k other friends. 4

(k+1)Pp 4 (k+1)Pp.q

R H
M S P )

Equivalent to friend having degree k + 1.

Natural question: what's the expected number of
other friends that one friend has?
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The edge-degree distribution:
Given R, is the probability that a friend has k other

friends, then the average number of friends' other
friends is

% = k:+1Pk+1
= kR
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The edge-degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

% = k+1Pk+1
= kR
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The edge-degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

:ZkRk:Zk(k+ ) Pri1
k=0 k=0 (k)

1 o0
Z k(k+1)Py_ 4
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1 o0
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The edge-degree distribution:

Note: our result, (k) , = s ((k(k —1))), is true for

all random networks, independent of degree
distribution.
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The edge-degree distribution:

Note: our result, (k) , = ﬁ ((k(k—1))), is true for
all random networks, independent of degree
distribution.

For standard random networks, recall

(k2) = (k)? + (k).
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The edge-degree distribution:

Note: our result, (k) , = ﬁ ((k(k—1))), is true for

all random networks, independent of degree
distribution.

For standard random networks, recall
(k?) = (k)2 + (k).

Therefore:
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Note: our result, (k) . = 7 ((k(k —1))), is true for  rue random
all random networks, independent of degree
distribution. s
For standard random networks, recall Defrsedliibydond
Generalized
Random
(k2) = (k)2 + (k). i A,
Therefore:
1
(k) = 0] (k)2 + (k) — ()) = (k)

Again, neatness of results is a special property of
the Poisson distribution.

So friends on average have (k) other friends, and
(k) + 1 total friends...
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The edge-degree distribution:

In fact, R, is rather special for pure random
networks ...

Substituting
_BF
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into

(b+1)Py 1

e ="
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The edge-degree distribution:

In fact, R, is rather special for pure random
networks ...
Substituting

B (7,0
S
into (h+1)P
i R
v e s s
. (k)
we have
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Two reasons why this matters
Reason #1:
<& Average # friends of friends per node is

(ko) = (k) X (k)r = <k>% ((k?) — (k) = (k?) — (k).

<> Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.
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Two reasons why this matters

Average # friends of friends per node is

(ea) = (k) X (k) = <k>$ ((K2) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
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Two reasons why this matters

Average # friends of friends per node is

(ka) = (k) x (B) e = (B) 7 (82) = () = (K2) = (b,

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k,) will be big.
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Two reasons why this matters

Average # friends of friends per node is

(ka) = (k) x (B) e = (B) 7 (82) = () = (K2) = (b,

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)
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Two reasons why this matters

Average # friends of friends per node is

(ka) = (k) x (B) e = (B) 7 (82) = () = (K2) = (b,

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you...* ©!
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Two reasons why this matters

Average # friends of friends per node is

(ea) = (k) X (k) = <k>$ ((B2) — (k) = (K2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you...* ©!

4. See also: class size paradoxes (nod to: Gelman)

The PoCSverse
Random
Networks

60 of 82

Pure random
networks
Definitions

How

Generalized

Random

Networks
Confi
How

Motifs

Random friends are
stran,

Largest component

References




Two reasons why this matters

More on peculiarity #3:
<> A node’s average # of friends: (k)
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Two reasons why this matters

More on peculiarity #3:
<> A node’s average # of friends: (k)

< Friend’s average # of friends: <<’7j>>

<= Comparison:
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(82
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Two reasons why this matters

More on peculiarity #3:
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< Friend’s average # of friends: <<’7j>>
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Two reasons why this matters

More on peculiarity #3:
<> A node’s average # of friends: (k)
< Friend’s average # of friends: (R2)

(k)
<= Comparison:
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1+W
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So only if everyone has the same degree

(variance= o2 = 0) can a node be the same as its
friends.
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So only if everyone has the same degree

(variance= o2 = 0) can a node be the same as its
friends.

Intuition: For networks, the more connected a
node, the more likely it is to be chosen as a friend.
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popular?’
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Two reasons why this matters

(k)  is key to understanding how well random
networks are connected together.

e.g., we'd like to know what's the size of the largest
component within a network.
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N — 0.
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(k)  is key to understanding how well random oefions
networks are connected together.

e.g., we'd like to know what's the size of the largest
0 . Generalized
component within a network. Random

Networks

As N — oo, does our network have a giant
component?

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — 0.

Note: Component = Cluster

Degree distributions
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Structure of random networks
Giant component:

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

The PoCSverse
Random
Networks

67 of 82

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks

Configuration model

ild in practice
Motifs

Random friends are
strange

Largest component

References




Structure of random networks

Q¢

1C

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.
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Structure of random networks

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.

All of this is the same as requiring (k) 5 > 1.
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Structure of random networks

A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.

All of this is the same as requiring (k) 5 > 1.

Giant component condition (or percolation
condition):
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condition):
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Again, see that the second moment is an essential
part of the story.

(k)r = =
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least 1 other outgoing edge.
Equivalently, expect exponential growth in node Seperqized
number as we move out from a random node. grworks

All of this is the same as requiring (k) 5 > 1.

Giant component condition (or percolation
condition):

References

(k%) — (k)
(k)
Again, see that the second moment is an essential

part of the story.
Equivalent statement: (k?) > 2(k)

(k)r = =




Spreading on Random Networks

For random networks, we know local structure is
pure branching.
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Spreading on Random Networks

For random networks, we know local structure is
pure branching.

Successful spreading is - contingent on single
edges infecting nodes.

Success Failure:
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Spreading on Random Networks

For random networks, we know local structure is
pure branching.

Successful spreading is - contingent on single
edges infecting nodes.

Success Failure:

P~ I~

Focus on binary case with edges and nodes either
infected or not.
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Spreading on Random Networks

For random networks, we know local structure is
pure branching.

Successful spreading is - contingent on single
edges infecting nodes.

Success Failure:

P~ I~

Focus on binary case with edges and nodes either
infected or not.

First big question: for a given network and
contagion process, can global spreading from a
single seed occur?
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Global spreading condition

We need to find: !

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.
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Define B, as the probability that a node of Z il
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Global spreading condition

We need to find: %!
R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.
Define B, as the probability that a node of

degree k is infected by a single infected edge.

o
kP
R= e
;;) (k)
= ——
prob. of
connecting to

a degree k node
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We need to find: %!

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of

degree k is infected by a single infected edge.
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Global spreading condition

We need to find: %!

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

= kP,
R= Z S o (k—1) e B,
=0 (k) i i
= S # outgoing Prob. of
prob. of infected infection
connecting to edges
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Global spreading condition

We need to find: %!

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

s kP,
R = Z W [ ] (k == 1) (] Bkl
N SN——
=P S # outgoing Prob. of
prob. of infected infection
connecting to edges
a degree k node
(%) e e v
kP,
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Global spreading condition

We need to find: !
R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

= kP,
R= Z S o (k—1) e B,
=0 (k) i i
= S # outgoing Prob. of
prob. of infected infection
connecting to edges

a degree k node
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k
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Global spreading condition

We need to find: %!

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

= kP,
R= Z S o (k—1) e B,
=0 (k) i i
= S # outgoing Prob. of
prob. of infected infection
connecting to edges

a degree k node

o=~ kP,
+> Lo 0 o (FaBe)
= ABE ool e e
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edges
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Global spreading condition

<= Our global spreading condition is then:

. kP,
R:§ i ko (k—1) e B 1.
£l

<= Case 1-Rampant spreading:
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Global spreading condition

<= Our global spreading condition is then:

. kP,
R:§ i ko (k—1) e B 1.
£l

o Case 1-Rampant spreading: If B,; =1
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Global spreading condition

Our global spreading condition is then:

.<k_1>.Bk1>1

Case 1-Rampant spreading: If B,; =1 then

>, kP,
R: —k. k‘—l:
2t ]
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Global spreading condition

Our global spreading condition is then:

e
R= £
2®

.<k_1>.Bk1>1

Case 1-Rampant spreading: If B,; =1 then

B AN s 5y P N L i
R_I;)<k> (k—1) o =

Good: This is just our giant component condition
again.
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Global spreading condition

o= Case 2—Simple disease-like:
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http://en.wikipedia.org/wiki/Percolation_theory

Global spreading condition

oo Case 2—Simple disease-like: If B,; =<1
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http://en.wikipedia.org/wiki/Percolation_theory

Global spreading condition

o Case 2—Simple disease-like: If B,; =8 <1 then

k

0

(k

Py

)

e(k—1)e 3> 1.
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Global spreading condition

Case 2—Simple disease-like: If B,,; =8 <1 then

kP
R_I;)<k> (k—1)eB>1.

A fraction (1-3) of edges do not transmit infection.
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Global spreading condition

Case 2—Simple disease-like: If B,,; =8 <1 then

kP
R_’;)<k> (k—1)eB>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.
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Global spreading condition

Case 2—Simple disease-like: If B,,; =8 <1 then

kP
R_’;)<k> (k—1)eB>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (.
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http://en.wikipedia.org/wiki/Percolation_theory

Global spreading condition

Case 2—Simple disease-like: If B,,; =8 <1 then

i i
B=D

e(k—1)e 3> 1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (.

Resulting degree distribution P, :

Bo=prY (,i)(l—ﬁ)HPi-

i=k

The PoCSverse
Random
Networks

71 of 82

Pure random
networks
Defir

Generalized
Random
Networks

References



http://en.wikipedia.org/wiki/Percolation_theory

Giant component for standard random networks:
& Recall (k2) = (k)2 + (k).
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http://en.wikipedia.org/wiki/Phase_transition

Giant component for standard random networks:
& Recall (k2) = (k)2 + (k).
<= Determine condition for giant component:
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Giant component for standard random networks:
& Recall (k2) = (k)2 + (k).
<= Determine condition for giant component:
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Giant component for standard random networks:
& Recall (k2) = (k)2 + (k).

<= Determine condition for giant component:
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http://en.wikipedia.org/wiki/Phase_transition

Giant component for standard random networks:

& Recall (k2) = (k)2 + (k).
<= Determine condition for giant component:

<% Therefore when (k) > 1, standard random
networks have a giant component.
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JIC

ot e el e
for sta (

Recall (k2) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.
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Therefore when (k) > 1, standard random
networks have a giant component. S

When (k) < 1, all components are finite.
Fine example of a continuous phase transition (4,
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Recall (k2) = (k)2 + (k). il
Determine condition for giant component:
TR R Generazed
]{ = = s k andom
< >R <k> <k> < > Eletworks

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.
Fine example of a continuous phase transition (4,

We say (k) = 1 marks the critical point of the
system.
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Random networks with skewed P, :
& e.g ifP. =ck7with2 <~y <3, k>1,then

Wl N2
k=1

The PoCSverse
Random
Networks

73 of 82

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Random friends are
strange

Largest component

References




Random networks with skewed P,
& e.g ifP. =ck7with2 <~y <3, k>1,then

Wl N2
k=1

")

oo

=X

x2-7dzx
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Random networks with skewed P, :
& e.g ifP. =ck7with2 <~y <3, k>1,then

Wl N2
k=1

oo
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=%

x2-7dzx
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Random networks with skewed P, :
& e.g ifP. =ck7with2 <~y <3, k>1,then

Wl N2
k=1
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Random networks with skewed P, :
& e.g ifP. =ck7with2 <~y <3, k>1,then

Wl N2
k=1

oo
~ / x2-7dzx
=1
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Random networks with skewed P, :

& e.g ifP. =ck7with2 <~y <3, k>1,then

Wl N2
k=1

oo
~ / x2-7dzx
=1

<= So giant component always exists for these kinds
of networks.
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Random networks with skewed P, :
eg if P, =ck " with2 <~y <3,k =1, then

Wl N2
k=1

o0
~ / x2-7dzx
=1

o :c3_’yyzil =00 S e

So giant component always exists for these kinds
of networks.

Cutoff scaling is £~3: if vy > 3 then we have to look
harder at (k) .
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Random networks with skewed P, :
eg if P, =ck " with2 <~y <3,k =1, then

Wl N2
k=1

o0
~ / x2-7dzx
=1

o :c3_’yyzil =00 S e

So giant component always exists for these kinds
of networks.

Cutoff scaling is £~3: if vy > 3 then we have to look
harder at (k) .

How about Py, = dy,, ?
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Giant component
And how big is the largest component?

<o Define S, as the size of the largest component.
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<o Define S, as the size of the largest component. et

How to build theoretically

&% Consider an infinite ER random network with average e

Clustering

degree (k). Degree distrbutions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Random friends are
strange

Largest component

References




Giant component
And how big is the largest component?

<o Define S, as the size of the largest component.

<= Consider an infinite ER random network with average
degree (k).

<o Let's find S; with a back-of-the-envelope argument.
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Giant component
And how big is the largest component?
Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find .S; with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.
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Define § as the probability that a randomly chosen
node does not belong to the largest component.

o build in practice

Simple connection: 6 =1 — 5;.
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Define § as the probability that a randomly chosen o s
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Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.
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Define S, as the size of the largest component. efntions

Giant component Random

Consider an infinite ER random network with average :
degree (k). o
Generalized

Let's find .S; with a back-of-the-envelope argument. Ragdoln

Networks

butions

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — 5;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

So

5= i P,6*
k=0




Giant component

Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find .S; with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — 5;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

So

5= i P,6*
k=0

Substitute in Poisson distribution...
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Giant component

<= Carrying on:

5= i P,ok
k=0
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Giant component

<= Carrying on:

5= i P,ok =
k=0

oo

%

k=0
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Giant component

Carrying on:

_OO k_oo<k>k—k k
e il s LESBE L ral
k=0 k=0

ek B AT
ey § ]z!)
k=0
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Giant component

Carrying on:

5= i P,ok =
k=0

oo

%

k=0

<l;;>'k €_<k>(5k

ek B AT
ey § ]z!)
k=0

_ o (k) k)
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Giant component

Carrying on:

_OO k_oo<k>k—k k
e il s LESBE L ral
k=0 k=0

ek B AT
ey § ]z!)
k=0

— e (k)elk)d — o—(k)(1-0)
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Giant component

Carrying on:

_OO k_oo<k>k—k k
5= P _276 (k) g
k=0 k=0

ek B AT
ey (€ ]z!)
k=0

gt etk L (k) (16}

Now substitute in § = 1 — S; and rearrange to
obtain:

Sl — 1 o ei<k>sl
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Giant component

We can figure out some limits and details for
Sl — ]. i el 6_<k>sl
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Giant component

We can figure out some limits and details for
Sl — ]. i el €_<k>sl.

First, we can write (k) in terms of S;:
1 1
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Giant component

We can figure out some limits and details for
Sl — ]. i el €_<k>sl.

First, we can write (k) in terms of S;:

1 1

As (kY —» 0,5, — 0.
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Giant component

We can figure out some limits and details for
Sl — ]. i el €_<k>sl.

First, we can write (k) in terms of S;:

1 1
gl e
G gl

As (kY —» 0,5, — 0.
As (k) = 00, S; — 1.
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Giant component

We can figure out some limits and details for
Sl — ]. i el €~<k>sl.

First, we can write (k) in terms of S;:
1 1

As (kY —» 0,5, — 0.
As (k) = 00, S; — 1.
Notice that at (k) = 1, the critical point, S; = 0.
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First, we can write (k) in terms of S;:

Generalized
Random

1 1 Networks
k) = —In ;

As (kY —» 0,5, — 0.

As (k) = 00, S; — 1.

Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.
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We can figure out some limits and details for
Sl s ]_ — 67<k>sl‘ e visu

First, we can write (k) in terms of S;:

Generalized

Random

1 1 Networks
mo!

;i :
() s =

As (kY —» 0,5, — 0.

As (k) = 00, S; — 1.

Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.

Really a transcritical bifurcation. !




Giant component
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Turns out we were lucky...

o Our dirty trick only works for ER random networks.
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Turns out we were lucky...

Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have

the same probability § of belonging to the largest
component.
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Turns out we were lucky...

Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have

the same probability § of belonging to the largest
component.

But we know our friends are different from us...
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< 01t we were liicky
S OUt wWe were IUCKY.

Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...

Works for ER random networks because
(k) = (k) g-
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...

Works for ER random networks because

(k) = (k) -

We need a separate probability §” for the chance
that an edge leads to the giant (infinite)
component.
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...
Works for ER random networks because

(k) = (k)R-

We need a separate probability §” for the chance

that an edge leads to the giant (infinite)
component.

We can sort many things out with sensible
probabilistic arguments...

The PoCSverse
Random
Networks

78 of 82

Pure random
networks

Definitions

Generalized
Random
Networks
Confi mo




Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...
Works for ER random networks because

(k) = (k)R-

We need a separate probability §” for the chance

that an edge leads to the giant (infinite)
component.

We can sort many things out with sensible
probabilistic arguments...

More detailed investigations will profit from a spot
of Generatingfunctionology. "
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...
Works for ER random networks because

(k) = (k)R-

We need a separate probability §” for the chance

that an edge leads to the giant (infinite)
component.

We can sort many things out with sensible
probabilistic arguments...

CocoNuTs: We figure out the final size and
complete dynamics.
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Neural reboot (NR):

Falling maple leaf

The PoCSverse
Random
Networks

79 of 82

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Random friends are
strange

Largest component

References




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



References |

[1] J. Bollen, B. Gongalves, I. van de Leemput, and

[2]

[3]

G. Ruan.

The happiness paradox: Your friends are happier
than you.

EPJ Data Science, 6:4, 2017. pdf (%'

P.S. Dodds, K. D. Harris, and J. L. Payne.

Direct, phyiscally motivated derivation of the
contagion condition for spreading processes on
generalized random networks.

Phys. Rev. E, 83:056122, 2011. pdf(%'

Y.-H. Eom and H.-H. Jo.

Generalized friendship paradox in complex
networks: The case of scientific collaboration.
Nature Scientific Reports, 4:4603, 2014. pdf(Z'

The PoCSverse
Random
Networks

80 of 82

Pure random
networks

Definitions

distributions

Generalized
Random



http://pdodds.w3.uvm.edu/research/papers/others/2017/bollen2017a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/2011/dodds2011b.pdf
http://pdodds.w3.uvm.edu/research/papers/others/2014/eom2014a.pdf

References Il

[4]

[5]

[6]

[7]

S Likeld

Why your friends have more friends than you do.

Am. J. of Sociol., 96:1464-1477, 1991. pdf (&'

R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman,
and U. Alon.

On the uniform generation of random graphs
with prescribed degree sequences, 2003. pdf (4

M. E. J. Newman.
Ego-centered networks and the ripple effect,.
Social Networks, 25:83-95, 2003. pdf(#'

M. E. J. Newman.

The structure and function of complex networks.
SIAM Rev., 45(2):167-256, 2003. pdf (&

The PoCSverse
Random
Networks

81 of 82

Pure random
networks

Definitions

Generalized
Random



http://pdodds.w3.uvm.edu/research/papers/others/1991/feld1991a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/2003/milo2003a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/2003/newman2003h.pdf
http://pdodds.w3.uvm.edu/research/papers/others/2003/newman2003a.pdf

References llI

(8]

[9]

[10]

S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon.
Network motifs in the transcriptional regulation
network of Escherichia coli.

Nature Genetics, 31:64-68, 2002. pdf(Z'

S. H. Strogatz.
Nonlinear Dynamics and Chaos.
Addison Wesley, Reading, Massachusetts, 1994.

H. S. Wilf.
Generatingfunctionology.

A K Peters, Natick, MA, 3rd edition, 2006. pdf ('

The PoCSverse
Random
Networks

82 of 82

Pure random
networks
Definitions

Degree distributions

Generalized
Random



http://pdodds.w3.uvm.edu/research/papers/others/2002/shen-orr2002a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/2006/wilf2006a.pdf

	Pure random networks
	Definitions
	How to build theoretically
	Some visual examples
	Clustering
	Degree distributions

	Generalized Random Networks
	Configuration model
	How to build in practice
	Motifs
	Random friends are strange
	Largest component

	References

	fd@rm@0: 
	fd@rm@1: 


