Organizational Networks: Information Exchange and Robustness

Last updated: 2023/08/22, 11:48:23 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

The PoCSverse Organizational Networks 1 of 61

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

These slides are brought to you by:

The PoCSverse Organizational Networks 2 of 61

Overview

Toyota Ambiguous problems

Models of organizations

Modelification

Goals Model Testing

Results

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Organizational Networks

Overview
Toyota
Ambiguous problems

Ambiguous problems

Models of organizations

Modelification

Goals Model Testing

Results

Conclusion

Outline

Overview

Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model Testing Results

Conclusion

References

The PoCSverse Organizational Networks 4 of 61

Overview

Ambiguous problems

Models of organizations:


Modelification

Goals Model Testing

Results

Coriciusioi

Overview

The basic idea/problem/motivation/history:

Organizations as information exchange entities.

Catastrophe recovery.

Solving ambiguous, ill-defined problems.

Robustness as 'optimal' design feature.

A model of organizational networks:

Network construction algorithm.

Task specification.

Message routing algorithm.

Results:

Performance measures.

The PoCSverse Organizational Networks 8 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals Model Testing

Results

References

February, 1997:

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground. [4]

- 4 hours supply ("just in time").
- \clubsuit 14,000 cars per day \rightarrow 0 cars per day.
- 6 months before new machines would arrive.
- Recovered in 5 days.

Case study performed by Nishiguchi and Beaudet [4]

"Fractal Design: Self-organizing Links in Supply

Chain"

in "Knowledge Creation: A New Source of Value"

The PoCSverse Organizational Networks 10 of 61

Overview Toyota

Ambiguous problems

Models of organizations:

Modelification

Goals Model

Results

February, 1997:

Some details:

- 36 suppliers, 150 subcontractors
- 50 supply lines
- Sewing machine maker with no experience in car parts spent about 500 man hours refitting a milling machine to produce 40 valves a day.
- Recovery depended on horizontal links which arguably provided:
 - 1. robustness
 - 2. searchability

The PoCSverse Organizational Networks 11 of 61

Overview
Toyota
Ambiguous problems

Models of organizations:

Modelification

Goals

Testing Results

Conclusion

Some things fall apart:

The PoCSverse Organizational Networks 12 of 61

Overview

Toyota

Ambiguous problems

Models of organizations:

Modelification

Goals Model Testing

Results

The PoCSverse Organizational Networks 13 of 61

Overview

Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model

Testing Results

Conclusion

Rebirth:

The PoCSverse Organizational Networks 14 of 61

Overview
Toyota
Ambiguous problems

Ambiguous problems

Models of organizations:

Modelification

Goals Model Testing

Results

Conclusion

Motivation

Recovery from catastrophe involves solving problems that are:

& Unanticipated,

Unprecedented,

Ambiguous (nothing is obvious),

Distributed (knowledge/people/resources),

Limited by existing resources,

Critical for survival.

Frame:

Collective solving of ambiguous problems

The PoCSverse Organizational Networks 16 of 61

Overview
Toyota
Ambiguous problems

Ambiguous problems

Models of organizations

Modelification

Goals Model Testing

Results

- Correlation

Motivation

Ambiguity:

- Question much less answer is not well understood.
- Back and forth search process rephrases question.
- Leads to iterative process of query reformulation.
- Ambiguous tasks are inherently not decomposable.
- How do individuals collectively work on an ambiguous organization-scale problem?
- How do we define ambiguity?

The PoCSverse Organizational Networks 17 of 61

Overview
Toyota
Ambiguous problems

Models of organizations:

Modelification

Goals

Testing

Results

Let's modelify:

Modeling ambiguous problems is hard...

- Model response instead...
- Individuals need novel information and must communicate with others outside of their usual contacts.
- Creative search is intrinsically inefficient.

Focus on robustness:

- 1. Avoidance of individual failures.
- 2. Survival of organization even when failures do occur.

The PoCSverse Organizational Networks 18 of 61

Overview
Toyota
Ambiguous problems

Ambiguous problems

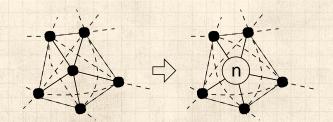
Models of organizations

Modelification Goals

Model Testing

Results

Why organizations exist:



"The Nature of the Firm"

Ronald H. Coase, Economica, **New Series, 4**, 386–405, 1937. [1]

More efficient for individuals to cooperate outside of the market.

The PoCSverse Organizational Networks 20 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals

Testing

Results

Real organizations—Extremes

Hierarchy:

Maximum efficiency,

Suited to static environment,

Brittle.

Market:

Resilient,

Suited to rapidly changing environment,

Requires costless or low cost interactions.

The PoCSverse Organizational Networks 21 of 61

Toyota Ambiguous problems

Overview

Models of organizations:

Modelification

Goals Model

Results

Conclusion

Organizations as efficient hierarchies

& Economics: Organizations \equiv Hierarchies.

& e.g., Radner (1993)^[5], Van Zandt (1998)^[7]

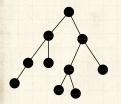
Hierarchies performing associative operations:

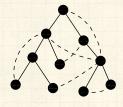
The PoCSverse Organizational Networks 22 of 61

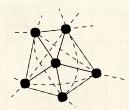
Overview

Ambiguous problems

Models of organizations:


Modelification


Goals



Real organizations...

But real, complex organizations are in the middle...

"Heterarchy" David Stark,
The Biology of Business: Decoding the
Natural Laws of the Enterprise., New
Series, 4, 153–, 1999. [6]

The PoCSverse Organizational Networks 23 of 61

Overview Toyota

Ambiguous problems

Models of organizations

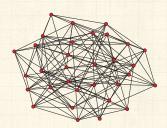
Modelification

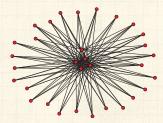
Modelificati

Model Testing

Results

Conclusion




Optimal network topologies for local search

"Optimal network topologies for local search with congestion"

Guimerà et al., Phys. Rev. Lett., **89**, 248701, 2002. [3]

- Parallel search and congestion.
- Queueing and network collapse.
- & Exploration of random search mechanisms.

The PoCSverse Organizational Networks 24 of 61

Overview

Toyota

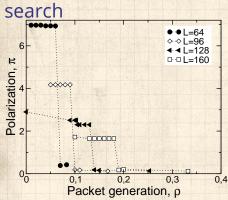
Ambiguous problems

Models of organizations:

woders of organization.

Modelification

Goals


Model Testing

Results

Coriciasion

Optimal network topologies for local

& Betweenness: β .

Polarization:

$$\pi = \frac{\mathsf{max}\beta}{\langle\beta\rangle} - 1$$

A = L = number oflinks.

The PoCSverse Organizational Networks 25 of 61

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

References

Goal: minimize average search time.

Few searches ⇒ hub-and-spoke network.

Many searches ⇒ decentralized network.

Phase transition?

Desirable organizational qualities:

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.
- 4. Searchability.
- 5. 'Ultra-robustness':
 - I Congestion robustness (Resilience to failure due to information exchange);
 - II Connectivity robustness (Recoverability in the event of failure).

The PoCSverse Organizational Networks 27 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals Model

Results

Searchability

Small world problem:

- Can individuals pass a message to a target individual using only personal connections?
- Yes, large scale networks searchable if nodes have identities.
- (Identity and Search in Social Networks," Watts, Dodds, & Newman, 2002. [8]

The PoCSverse Organizational Networks 28 of 61

Overview Toyota

Ambiguous problems

Models of organizations:

Modelification

Goals

Testing

Results

Correlasion

"Information exchange and the robustness of organizational networks" (2)

Dodds, Watts, and Sabel, Proc. Natl. Acad. Sci., **100**, 12516–12521, 2003. ^[2]

& Edited by Harrison White

Formal organizational structure:

Underlying hierarchy:

- branching ratio b
- \bigcirc depth L
- $N = (b^L 1)/(b 1)$ nodes
- N-1 links

Additional informal ties:

- $lue{}$ Choose m links according to a two parameter probability distribution
- $0 \le m \le (N-1)(N-2)/2$

The PoCSverse Organizational Networks 30 of 61

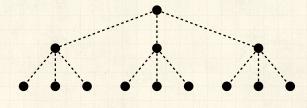
Overview

Ambiguous problems

Models of organizations:

Modelification

Goals


Model Testing

性可与对话。

Model—underlying hierarchy

Model—formal structure:

 $b = 3, \quad L = 3, \quad N = 13$

The PoCSverse Organizational Networks 31 of 61

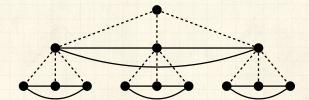
Overview

Ambiguous problems

Models of organizations:

Modelification

Goals Model


Testing

Results

Conclusion

Team-based networks (m = 12):

The PoCSverse Organizational Networks 32 of 61

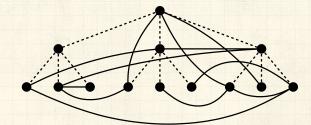
Overview

Ambiguous problems

Models of organizations:

Modelification

Goals Model


Tecting

Results

Conclusion

Random networks (m = 12):

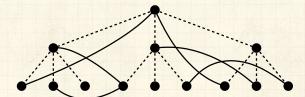
The PoCSverse Organizational Networks 33 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification


Goals Model

Testing Results

Conclusion

Random interdivisional networks (m = 6):

The PoCSverse Organizational Networks 34 of 61

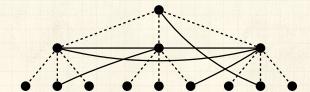
Overview

Ambiguous problems

Models of organizations:

Modelification

Goals


Model

Results

Conclusion

Core-periphery networks (m = 6):

The PoCSverse Organizational Networks 35 of 61

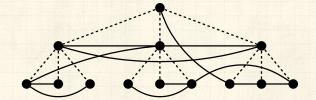
Overview

Ambiguous problems

Models of organizations:

Modelification

Goals Model


Testing

Results

Conclusion

Multiscale networks (m = 12):

The PoCSverse Organizational Networks 36 of 61

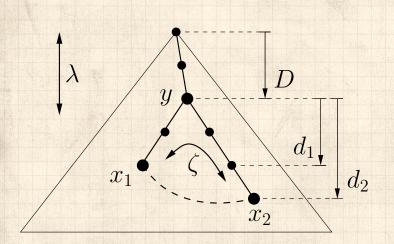
Overview

Ambiguous problems

Models of organizations:

Modelification

Goals


Model

Results

Conclusion

Model—construction

The PoCSverse Organizational Networks 37 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals Model

Testing Results

Conclusio

Model—construction

& Link addition probability:

$$P(D,d_1,d_2) \propto e^{-D/\lambda} e^{-f(d_1,d_2)/\zeta}$$

- & First choose (D, d_1, d_2) .
 - \red{k} Randomly choose (y,x_1,x_2) given (D,d_1,d_2) .
- Choose links without replacement.

The PoCSverse Organizational Networks 38 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals

Model Testing

Results

Model—construction

Requirements for $f(d_1, d_2)$:

- 1. $f \ge 0$ for $d_1 + d_2 \ge 2$
- 2. f increases monotonically with d_1 , d_2 .
- 3. $f(d_1, d_2) = f(d_2, d_1)$.
- 4. f is maximized when $d_1 = d_2$.

Simple function satisfying 1-4:

$$\begin{split} f(d_1,d_2) &= (d_1^2 + d_2^2 - 2)^{1/2} \\ \Rightarrow P(y,x_1,x_2) &\propto e^{-D/\lambda} e^{-(d_1^2 + d_2^2 - 2)^{1/2}/\zeta} \end{split}$$

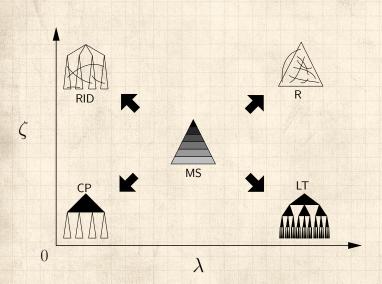
The PoCSverse Organizational Networks 39 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification


Goals Model

Results

Conclusion

Model—limiting cases

The PoCSverse Organizational Networks 40 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals Model

Testing Results

Conclusion

Message passing pattern

- \red Each of T time steps, each node generates a message with probability μ .
- Recipient of message chosen based on distance from sender.

8

 $P(\text{recipient at distance }d) \propto e^{-d/\xi}.$

- 1. ξ = measure of uncertainty;
- 2. $\xi = 0$: local message passing;
- 3. $\xi = \infty$: random message passing.

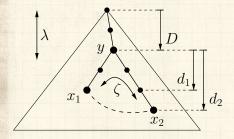
The PoCSverse Organizational Networks 42 of 61

Overview
Toyota
Ambiguous problems

Models of organizations

Modelification Goals

Model Testing


Results

References

Message passing pattern:

Distance d_{12} between two nodes x_1 and x_2 :

$$d_{12}=\max(d_1,d_2)=3$$

The PoCSverse Organizational Networks 43 of 61

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

Testing

Results

References

Measure unchanged with presence of informal ties.

Message passing pattern

Simple message routing algorithm:

- Look ahead one step: always choose neighbor closest to recipient node.
- Pseudo-global knowledge:
 - 1. Nodes understand hierarchy.
 - 2. Nodes know only local informal ties.

The PoCSverse Organizational Networks 44 of 61

Overview Toyota

Ambiguous problems

Models of organizations

Modelification

Goals Model Testing

Results

-

Message passing pattern

Interpretations:

- 1. Sender knows specific recipient.
- 2. Sender requires certain kind of recipient.
- 3. Sender seeks specific information but recipient unknown.
- 4. Sender has a problem but information/recipient unknown.

The PoCSverse Organizational Networks 45 of 61

Overview Toyota

Ambiguous problems

Models of organizations

Modelification

Goals Model

Testing

Conclusion

Message passing pattern

Performance:

- Measure Congestion Centrality ρ_i , fraction of messages passing through node i.
- Similar to betweenness centrality.
- However: depends on
 - 1. Search algorithm;
 - 2. Task specification (μ , ξ).
- & Congestion robustness comes from minimizing $ho_{
 m max}$.

The PoCSverse Organizational Networks 46 of 61

Overview Toyota

Ambiguous problems

Models of organizations

Modelification Goals

Model Testing

Results

Performance testing:

Parameter settings (unless varying):

 \clubsuit Underlying hierarchy: b = 5, L = 6, N = 3096;

 \Re Number of informal ties: m = N.

& Link addition algorithm: $\lambda = \zeta = 0.5$.

& Message passing: $\xi = 1$, $\mu = 10/N$, T = 1000.

The PoCSverse Organizational Networks 48 of 61

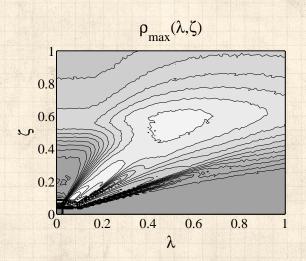
Overview

Ambiguous problems

Models of organizations

Modelification

Goals


Model

Results

Conclusion

Results—congestion robustness

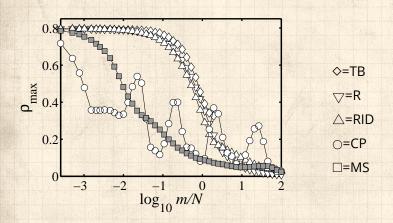
The PoCSverse Organizational Networks 49 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification


Goals Model

Testing Results

Conclusion

Results—varying number of links added:

The PoCSverse Organizational Networks 50 of 61

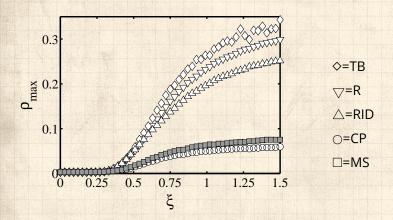
Overview

Toyota

Ambiguous problems

Models of organizations

Modelification


Goals Model

Testing Results

Conclusio

Results—varying message passing pattern

The PoCSverse Organizational Networks 51 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals Model

Results

Lonclusion

Results—Maximum firm size

- Congestion may increase with size of network.
- \Leftrightarrow Fix rate of message passing (μ) and Message pattern (ξ).
- Fix branching ratio of hierarchy and add more levels.
- Individuals have limited capacity ⇒ limit to firm size.

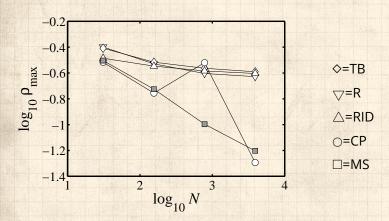
The PoCSverse Organizational Networks 52 of 61

Overview Toyota

Ambiguous problems

Models of organizations.

Modelification


Goals Model

Testing Results

Conclusion

Scalability in complete uncertainty: $\xi = \infty$

The PoCSverse Organizational Networks 53 of 61

Overview

Ambiguous problems

Models of organizations:

Madalification

Modelification

Goals Model Testing

Results

Conclusion

Connectivity Robustness

Inducing catastrophic failure:

- Four deletion sequences:
 - 1. Top-down;
 - 2. Random;
 - 3. Hub;
 - 4. Cascading failure.
- Results largely independent of sequence.

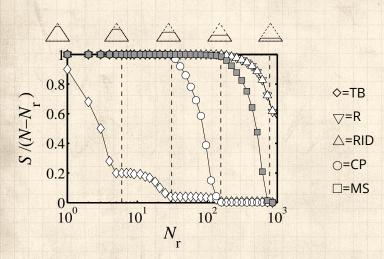
The PoCSverse Organizational Networks 54 of 61

Overview

Ambiguous problems

Models of organizations

Modelification


Goals Model

Results

Concidence

Results—Connectivity Robustness

The PoCSverse Organizational Networks 55 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals

Testing Results

Conclusion

Summary of results

The PoCSverse Organizational Networks 56 of 61

Overview Toyota

Ambiguous problems

Feature	Congestion Robustness	Connectivity Robustness	Scalability	Models of organization Modelification Goals Model
Core-periphery	good	average	average	Testing Results Conclusion
Random	poor	good	poor	References
Rand. Interdivisional	poor	good	poor	
Team-based	poor	poor	poor	
Multiscale	good	good	good	

Conclusary moments

Multi-scale networks:

- Possess good Congestion Robustness and Connectivity Robustness ⇒ Ultra-robust;
- 2. Scalable;
- 3. Relatively insensitive to parameter choice;
- Above suggests existence of multi-scale structure is plausible.

The PoCSverse Organizational Networks 57 of 61

Overview

Ambiguous problems

Models of organizations.

Modelification

Goals Model

Results

Conclusion

Conclusary moments

- Foregoing is an attempt to model what organizations. might look like beyond simple hierarchies (2003).
- Possible work: develop 'bottom up' model of organizational networks based on social search, identity (emergent searchability).
- Balance of generalists versus specialists—how many middle managers does an organization need?
- Still a need for data on real organizations...

The PoCSverse Organizational Networks 58 of 61

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals

Conclusion

References I

[1] R. H. Coase.

The nature of the firm.

Economica, New Series, 4(4):386-405, 1937. pdf

[2] P. S. Dodds, D. J. Watts, and C. F. Sabel.
Information exchange and the robustness of organizational networks.

Proc. Natl. Acad. Sci., 100(21):12516-12521, 2003. pdf

[3] R. Guimerà, A. Diaz-Guilera, F. Vega-Redondo, A. Cabrales, and A. A. Optimal network topologies for local search with congestion.

Phys. Rev. Lett., 89:248701, 2002. pdf

The PoCSverse Organizational Networks 59 of 61

Overview

Ambiguous problems
Models of organizations.

Modelification

Goals

Model Testing

Results

References II

[4] T. Nishiguchi and A. Beaudet.

Fractal design: Self-organizing links in supply chain.

In G. Von Krogh, I. Nonaka, and T. Nishiguchi, editors, Knowledge Creation: A New Source of Value, pages 199–230. MacMillan, London, 2000.

[5] R. Radner.

The organization of decentralized information processing.

Econometrica, 61(5):1109-1146, 1993. pdf

[6] D. Stark.

Heterarchy.

In J. Clippinger, editor, The Biology of Business:
Decoding the Natural Laws of the Enterprise., chapter 5, pages 153–. Jossey-Bass, San Francisco, 1999. pdf

The PoCSverse Organizational Networks 60 of 61

Overview
Toyota
Ambiguous problems

Ambiguous problems

Models of organizations

Modelification

Goals Model Testing

Results

D-6----

References III

[7] T. Van Zandt.

Organizations with an endogenous number of information processing agents.

In <u>Organizations with Incomplete Information</u>, chapter 7. Cambridge University Press, New York, 1998.

[8] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf The PoCSverse Organizational Networks 61 of 61

Overview Toyota

Ambiguous problems

Models of organizations.

Modelification

Goals Model

Results

