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Alternative distributions

There are other ‘heavy-tailed’ distributions:

1. The Log-normal distribution (£

Py } exp (—M)

v/ 2mo 202

2. Weibull distributions (@'

—1
e (5) eterrdg

CCDF = stretched exponential (.,
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Inz is distributed according to a normal
distribution with mean p and variance o.

Appears in economics and biology where growth
increments are distributed normally.
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Standard form reveals the mean p and variance o2
of the underlying normal distribution:

For lognormals:

References

Sy el 2 i
lu’lognormal el ) medlan
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lognormal ~— e,
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All moments of lognormals are finite.
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Derivation from a normal distribution Bt o
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P(y)dy = exp (—M> dy
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References

Transform according to P(z)dx = P(y)dy:

dy
a-l/xidy—dx/m

— Plands — : exp <—(|m_M)2> dx
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Confusion between lognormals and pure
power laws

Near agreement
over four orders
of magnitude!

0 2 4 6 8 10
Ioglox

For lognormal (blue), x = 0 and o = 10.
For power law (red), v = 1 and ¢ = 0.03.
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Confusion

(o) = in{ e (-(0520) )

Inz — ©)?2
= —lnz — Inv270 — M
202

e e e

If the first term is relatively small,

InP(x) ~ — (1—%) Inz + const. |= [y = e
g
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Confusability

If © < 0,y > 1which is totally cool.

If u > 0, v < 1, not so much.

References

If 02 > 1 and py,

‘ InP(z) ~ —Inz + const. ‘

Expect -1 scaling to hold until (Inz)? term becomes
significant compared to (Inz):
—555(Inz)? ~0.05 (&% — 1) Inz

o2

= log, @ 5 0.05 x 2(0% — p)log, je = 0.05(c2 — p)

= If you find a -1 exponent,

you may have a lognormal distribution...
# PoCS
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xn—&-l =Trr,
where r > 0 is a random growth variable
(Shrinkage is allowed)
In log space, growth is by addition:

g =lnr Eing |

= Inz,, is normally distributed
= z,, is lognormally distributed
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Lognormals or power laws?

Gibrat? (1931) uses preceding argument to explain
lognormal distribution of firm sizes (v =~ 1).

But Robert Axtell 'l (2001) shows a power law fits the
data very well with v = 2, not v = 1 (1)

Problem of data censusing (missing small firms).

S

Freq « (size)™™
i

Frequency
g

10-10

10712
] 10 102 10°  10* 105 10°

Firm size (employees)

One piece in Gibrat's model seems okay empirically:
Growth rate r appears to be independent of firm

ize. [1]
size.l'.
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Axtel cites Malcai et al.’s (1999) argument ! for
why power laws appear with exponent ~ ~ 2

The set up: N entities with size x,(t) References
Generally:

z;(t+1) =rz,;(t)
where r is drawn from some happy distribution

Same as for lognormal but one extra piece.

Each z, cannot drop too low with respect to the
other sizes:

A L= max(re, (t) ez, )
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Find P(z) ~z 7

where ~ is implicitly given by

References
L e }
(@ el) | (¢/ NGt (e )
N = total number of firms.
s (y—2) [ —1 ]

Now, if¢/N <« landy>2 N =

/ g =1) | /™)

Which gives ~ ~ 1+ %_C " , POCS

Groovy... csmall = v ~ 2
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Allow the number of updates for each size z, to
Vva ry References

Example: P(t)dt = ae**dt where t = age.

Back to no bottom limit: each z, follows a
lognormal

Sizes are distributed as [°!

oo e 2
Rny— / T ! exp (“nl ) ) dt
iig G/ 2t 2¢

(Assume for this example that o ~ ¢t and = Inm)
Now averaging different lognormal distributions.
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P(x)—/to i T 27rtexp 2t gt

Insert fabulous calculation (team is spared).
Some enjoyable suffering leads to:

P(x)ocx ter 22 (In 22
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Depends on sign of In%, i.e., whether = > 1 or Referonped
m m
ki< b
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‘Break’ in scaling (hot uncommon)
Double-Pareto distribution (%"

First noticed by Montroll and Shlesinger ! &

Later; Huberman and Adamic > #); Number of
pages per website @ PoCs


http://en.wikipedia.org/wiki/Pareto_distribution

Summary of these exciting developments: fIQ;Eﬁ%SZEEEd
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dom

Lognormals and power laws can be awfully similar ~ References

Random Multiplicative Growth leads to lognormal
distributions

Enforcing a minimum size leads to a power law tail

With no minimum size but a distribution of
lifetimes, the double Pareto distribution appears

Take-home message: Be careful out there...
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