A Partial Overview of Complex **Networks**

Last updated: 2023/08/26, 09:18:43 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

The PoCSverse Complex Networks 1 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Thresholds

Generating

Structure Detection

Big Nutshell

References

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License

These slides are brought to you by:

Sealie & Lambie Productions

The PoCSverse Complex Networks 2 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

The PoCSverse Complex Networks 3 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Outline The PoCSverse **Basic definitions Examples Basic Properties Branching Networks Supply Networks** Random networks **Major Models** Generalized Affiliation Networks Thresholds **Generating Functions** Structure Detection **Big Nutshell** References

The PoCSverse Complex Networks 4 of 320

The PoCSverse

Basic definitions

Examples

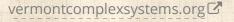
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell

Describe | Explain | Create | Share | Ethos: Play

The PoCSverse Complex Networks 5 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

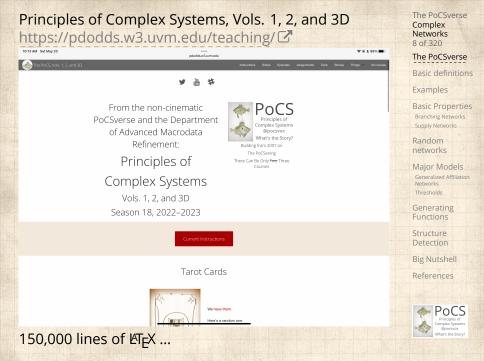
Leveling up—Scaffolded educational mission:

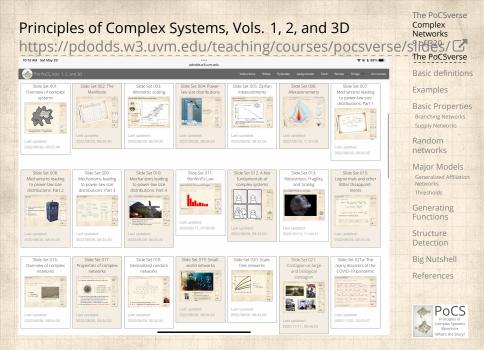
🙈 Data Science Undergrad.

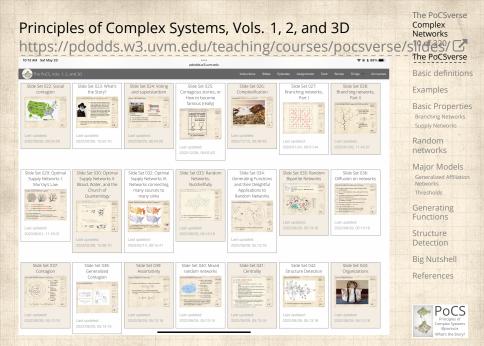
Graduate Certificate in Complex Systems and Data Science

3

Fall, 2015–: MS in Complex Systems and Data Science


Fall, 2018–: PhD in The Study of Interesting Things Complex Systems and Data Science




All the words: http://vermontcomplexsystems.org

Dipoloma-posters:

Principles of Complex Systems, Vols. 1, 2, and 3D

7:48 PM Sun May 21

https://pdodds.w3.uvm.edu/teaching/courses/pocsverse/slides/

Episode 1: The OG rich-get-richer model (1:52:03)

Clip 1: Intro to Simon vs Mandebrot and the mechanism of rich-get-richerness (6:35)

Clip 2: Observations of Zipfery, 1910 on (12:13)

Clip 3: Herbert Simon #awesomeness (2:18)

Clip 4: Toy model of rich-get-richer (14:51)

Clip 5: Observations about our toy model (7:10)

Clip 6: Krugman's math woes (1:34)

Clip 7: We work through an analysis (14:37)

Clip 8: What we find: Micro-to-macro story and surprising agreement with reality (8:30)

Clip 9: An appraisal of catchphrases (3:53)

Clip 10: Simon's model recap (3:47)

Exciting details regarding these slides:

- Three servings (all in pdf):
 - 1. Fresh: For in-class Deliveration.
 - 2. On toast: Flattened for page-turning joy.
 - 3. Freeze-dried: Pack-and-go, 3x3 slides per page.
- Presentation versions are hyperly navigable: $\Rightarrow \Rightarrow e \equiv back + search + forward.$
- 🚳 Web links look like this 🗹.
- $m \ressimes$ References in slides link to full citation at end. $^{[4]}$
- Citations contain links to pdfs for papers (if available).
- 🚳 Some books will be linked to on Amazon.

Brought to you by a frightening melange of X_MT_X C, Beamer C, perl C, PerlTeX C, fevered command-line madness C, and an almost fanatical devotion C to the indomitable emacs C. #totallynormal The PoCSverse Complex Networks 12 of 320

The PoCSverse

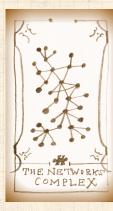
Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

The PoCSverse Complex Networks 13 of 320

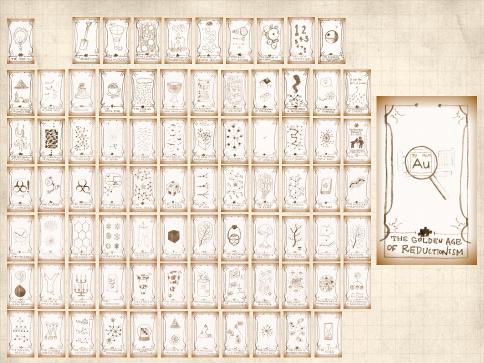
The PoCSverse

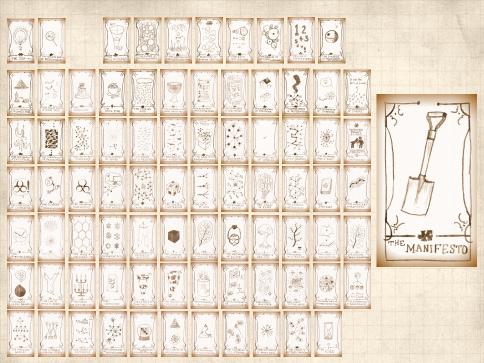
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

The Science of Complex Systems Manifesto:

- 1. Systems are ubiquitous and systems matter.
- 2. Consequently, much of science is about understanding how pieces dynamically fit together.
- 3. 1700 to 2000 = Golden Age of Reductionism: Atoms!, sub-atomic particles, DNA, genes, people, ...
- 4. Understanding and creating systems (including new 'atoms') is the greater part of science and engineering.
- 5. Universality C: systems with quantitatively different micro details exhibit qualitatively similar macro behavior (fate, but real and limited)
- 6. Computing advances make the Science of Complex Systems possible:
 - 6.1 We can measure and record enormous amounts of data, research areas continue to transition from data scarce to data rich.
 - 6.2 We can simulate, model, and create complex systems in extraordinary detail.

The PoCSverse Complex Networks 16 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

net•work |'net,wərk|

noun

1 an arrangement of intersecting horizontal and vertical lines.

• a complex system of roads, railroads, or other transportation routes : *a network of railroads.*

2 a group or system of interconnected people or things : a trade network.

- a group of people who exchange information, contacts, and experience for professional or social purposes : a support network.
- a group of broadcasting stations that connect for the simultaneous broadcast of a program : the introduction of a second TV network | [as adj.] network television.
- a number of interconnected computers, machines, or operations : *specialized computers that manage multiple outside connections to a network* | *a local cellular phone network*.
- a system of connected electrical conductors.

verb [trans.]

connect as or operate with a network : the stock exchanges have proven to be resourceful in networking these deals.

• link (machines, esp. computers) to operate interactively : [as adj.] (**networked**) networked workstations.

• [intrans.] [often as n.] (**networking**) interact with other people to exchange information and develop contacts, esp. to further one's career : *the skills of networking, bargaining, and negotiation.*

The PoCSverse Complex Networks 17 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Thesaurus deliciousness:

network

noun

 a network of arteries WEB, lattice, net, matrix, mesh, crisscross, grid, reticulum, reticulation; Anatomy plexus.
 a network of lanes MAZE, labyrinth, warren, tangle.
 a network of friends SYSTEM, complex, nexus, web, webwork. The PoCSverse Complex Networks 18 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Ancestry:

From Keith Briggs's etymological investigation:

 Opus reticulatum:
 A Latin origin?

[http://serialconsign.com/2007/11/we-put-net-

network]

The PoCSverse Complex Networks 19 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Ancestry:

First known use: Geneva Bible, 1560 'And thou shalt make unto it a grate like networke of brass (Exodus xxvii 4).'

From the OED via Briggs:

- 🚳 1658–: reticulate structures in animals
- \lambda 1839–: rivers and canals
- \lambda 1869–: railways
- \lambda 1883–: distribution network of electrical cables
- 🗞 1914–: wireless broadcasting networks

The PoCSverse Complex Networks 20 of 320

The PoCSverse

Basic definitions

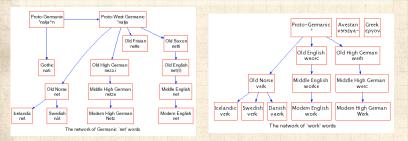
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

Ancestry: Net and Work are venerable old words: 'Net' first used to mean spider web (King Ælfréd,

888).
 Work' appear to have long meant purposeful action.

'Network' = something built based on the idea of natural, flexible lattice or web.

c.f., ironwork, stonework, fretwork.

The PoCSverse Complex Networks 21 of 320

The PoCSverse

Basic definitions

xamples

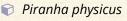
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell

Key Observation:

- Many complex systems can be viewed as complex networks of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of the first decade was of a theoretical-physics/stat-mechish flavor.
- Mindboggling amount of work published on complex networks since 1998 ...
- 🗞 ... largely due to your typical theoretical physicist:

- Hunt in packs.
 - Feast on new and interesting ideas (see chaos, cellular automata, ...)

Soo also: https://wkcd.com/702/

The PoCSverse Complex Networks 22 of 320

The PoCSverse

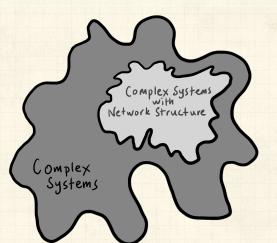
Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Complex Systems is the Big Story:

Only sometimes a bit networky: Fluids-at-large (the atmosphere, oceans, ...), organism cells, ... The PoCSverse Complex Networks 23 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Popularity (according to Google Scholar)

"Collective dynamics of 'small-world' networks" Watts and Strogatz, Nature, **393**, 440–442, 1998.^[112]

Times cited: ~ 51,622 C (as of May 19, 2023)

"Emergence of scaling in random networks" Barabási and Albert, Science, **286**, 509–511, 1999.^[8]

Times cited: ~ 43,853 🖸 (as of May 19, 2023)

The PoCSverse Complex Networks 24 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Review articles:

"Complex Networks: Structure and Dynamics" C Boccaletti et al., Physics Reports, **424**, 175–308, 2006. ^[14]

Times cited: ~ 12,318 🖸 (as of May 9, 2023)

"The structure and function of complex networks" M. E. J. Newman, SIAM Rev., **45**, 167–256, 2003.^[77]

Times cited: ~ 23,611 🖸 (as of May 9, 2023)

"Statistical mechanics of complex networks" Albert and Barabási, Rev. Mod. Phys., **74**, 47–97, 2002. ^[3]

Times cited: ~ 26,636 C (as of May 9, 2023)

The PoCSverse Complex Networks 25 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Popularity according to textbooks:

Textbooks:

- Mark Newman (Physics, Michigan) "Networks: An Introduction"
- David Easley and Jon Kleinberg (Economics and Computer Science, Cornell) "Networks, Crowds, and Markets: Reasoning About a Highly Connected World" ^C

The PoCSverse Complex Networks 26 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Popularity according to popular books:

GLADWELL

(A set of particular and a set of the set of

The Tipping Point: How Little Things can make a Big Difference—Malcolm Gladwell^[43]

Nexus: Small Worlds and the Groundbreaking Science of Networks—Mark Buchanan

The PoCSverse Complex Networks 27 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Popularity according to popular books:

Haw Everything In Connected to Exceptions Else and What Is Means for Datasets, Science, and Everyday Life

Albert-Lészlő Barabési

Linked: How Everything Is Connected to Everything Else and What It Means—Albert-Laszlo Barabási

Six Degrees: The Science of a Connected Age—Duncan Watts^[107]

The PoCSverse Complex Networks 28 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Numerous others ...

- Complex Social Networks—F. Vega-Redondo^[105]
- Fractal River Basins: Chance and Self-Organization—I. Rodríguez-Iturbe and A. Rinaldo^[84]
- 🗞 Random Graph Dynamics—R. Durette
- 🚳 Scale-Free Networks—Guido Caldarelli
- Evolution and Structure of the Internet: A Statistical Physics Approach—Romu Pastor-Satorras and Alessandro Vespignani
- 🚳 Complex Graphs and Networks—Fan Chung
- Social Network Analysis—Stanley Wasserman and Kathleen Faust
- Handbook of Graphs and Networks—Eds: Stefan Bornholdt and H. G. Schuster^[19]
- Evolution of Networks—S. N. Dorogovtsev and J. F. F. Mendes^[34]

The PoCSverse Complex Networks 29 of 320

The PoCSverse

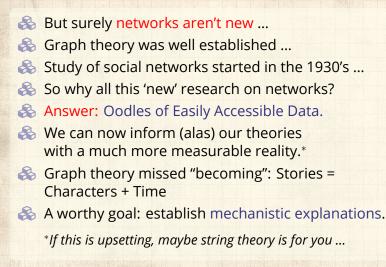
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

More observations

The PoCSverse Complex Networks 30 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

More observations

lnternet-scale data sets can be overly exciting.

Witness:

- The End of Theory: The Data Deluge Makes the Scientific Theory Obsolete (Anderson, Wired)
- "The Unreasonable Effectiveness of Data," Halevy et al.^[51].
- c.f. Wigner's "The Unreasonable Effectiveness of Mathematics in the Natural Sciences" [114]

But:

For scientists, description is only part of the battle.
We still need to understand.

The PoCSverse Complex Networks 31 of 320

The PoCSverse

Basic definitions

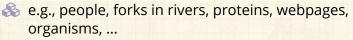
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

Super Basic definitions

Nodes = A collection of entities which have properties that are somehow related to each other

Links = Connections between nodes

Links may be directed or undirected.
 Links may be binary or weighted.

Other spiffing words: vertices and edges.

The PoCSverse Complex Networks 32 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Super Basic definitions

Node degree = Number of links per node

- \aleph Notation: Node *i*'s degree = k_i .
- $\& k_i = 0, 1, 2,$
- Notation: the average degree of a network = $\langle k \rangle$ (and sometimes *z*)
- Connection between number of edges m and average degree:

$$\langle k \rangle = \frac{2m}{N}.$$

 \mathfrak{S} Defn: \mathcal{N}_i = the set of *i*'s k_i neighbors

The PoCSverse Complex Networks 33 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

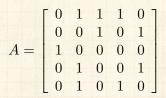
Random networks

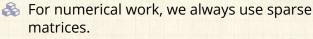
Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell




Super Basic definitions

Adjacency matrix:

💑 e.g.,

We can represent a network by a matrix A with link weight a_{ij} for nodes i and j in entry (i, j).

 \mathfrak{F} For many real networks, A is a function of time.

The PoCSverse Complex Networks 34 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Examples

So what passes for a complex network?

- lin node number) 🚳
- Complex networks are sparse (low edge to node ratio)
- Complex networks are usually dynamic and evolving
- Complex networks can be social, economic, natural, informational, abstract, ...

The PoCSverse Complex Networks 35 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Examples

Physical networks

🙈 River networks Neural networks A Trees and leaves Blood networks

The internet (pipes) 3 Road networks \lambda Power grids

The PoCSverse Complex Networks 36 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

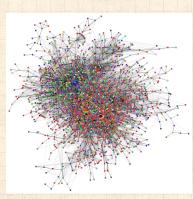
Random networks

Major Models Generalized Affiliation Thresholds

Generating

Structure Detection

Big Nutshell


References

Distribution (branching) versus redistribution (cyclical)

Interaction networks

- 🚳 The Blogosphere (RIP)
 - Biochemical networks
 - Sene-protein networks
- Food webs: who eats whom
- 🚳 Airline networks
 - 🗞 Call networks (AT&T)
- 🚳 The Media
- The internet (World Wide Web)

datamining.typepad.com

The PoCSverse Complex Networks 37 of 320

The PoCSverse

Basic definitions

Examples

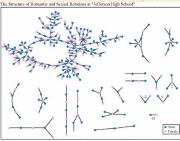
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell

Interaction networks: social networks

- 🚳 Snogging
 - Friendships
 - Acquaintances
 - Boards and directors
- Organizations 🔧 facebook 🖸 twitter 🖸

Each circle represents a student and lines connecting students represent remantic relations occuring within the 6 month preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).

(Bearman et al., 2004)

The PoCSverse Complex Networks 38 of 320

The PoCSverse

Basic definitions

Examples

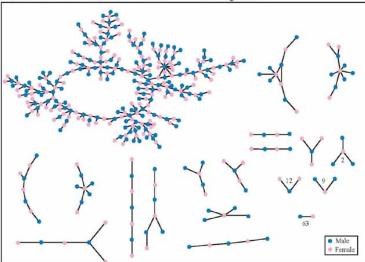
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Thresholds

Generating

Structure


Big Nutshell

References

🚳 'Remotely sensed' by: email activity, instant messaging, phone logs (*cough*).

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else). The PoCSverse Complex Networks 39 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Relational networks

- Consumer purchases (Walmart, Target, Amazon, ...)
- Thesauri: Networks of words generated by meanings
- 🗞 Knowledge/Databases/Ideas
- 🚳 Metadata—Tagging, Keywords bit.ly 🗹 flickr 🗹
- 🚳 Large Language Models

common tags cloud | list

community daily dictionary education **encyclopedia** english free imported info information internet knowledge learning news **reference** research resource resources search tools useful web web2.0 **Wiki wikipedia** The PoCSverse Complex Networks 40 of 320

The PoCSverse

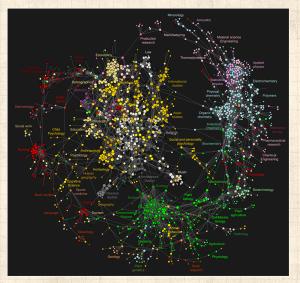
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Clickworthy Science:

The PoCSverse Complex Networks 41 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References

"Clickstream Data Yields High-Resolution Maps of Science", Bollen et al. ^[18], 2009.

The PoCSverse Complex Networks 43 of 320

The PoCSverse

Basic definitions

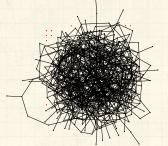
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

A notable feature of large-scale networks:

🚳 Graphical renderings are often just a big mess.

⇐ Typical hairball number of nodes N = 500number of edges m = 1000

average degree $\langle k \rangle = 4$

And even when renderings somehow look good: "That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way" said Ponder [Stibbons] - Making Money, T. Pratchett. We need to extract digestible, meaningful aspects.

The PoCSverse Complex Networks 44 of 320

The PoCSverse

Basic definitions

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Thresholds

Generating

Structure

Big Nutshell

Some key aspects of real complex networks:

degree distribution*
 assortativity
 homophily
 clustering
 motifs
 modularity

concurrency
 hierarchical scaling
 network distances
 centrality
 efficiency
 interconnectedness
 robustness

The PoCSverse Complex Networks 45 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References

Plus coevolution of network structure and processes on networks.

* Degree distribution is the elephant in the room that we are now all very aware of ...

1. degree distribution P_k

- P_k is the probability that a randomly selected node has degree k.
- & k = node degree = number of connections.
- ex 1: Erdős-Rényi random networks have Poisson degree distributions:

$$P_{k} = e^{-\langle k \rangle} \frac{\langle k \rangle^{k}}{k!}$$

♦ ex 2: "Scale-free" networks: P_k ∝ k^{-γ} ⇒ 'hubs'.
 ♦ link cost controls skew.
 ♦ hubs may facilitate or impede contagion.

The PoCSverse Complex Networks 46 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Note:

- Erdős-Rényi random networks are a mathematical construct.
- Scale-free' networks are growing networks that form according to a plausible mechanism.
- Randomness is out there, just not to the degree of a completely random network.
- 🚳 "Becoming": Stories = Characters + Time

The PoCSverse Complex Networks 47 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

2. Assortativity/3. Homophily:

🚳 Social networks: Homophily 🗹 = birds of a feather line and a standard property for sorting: measure degree-degree correlations. Assortative network: ^[74] similar degree nodes connecting to each other. Often social: company directors, coauthors, actors. Disassortative network: high degree nodes connecting to low degree nodes. Often techological or biological: internet, WWW, protein interactions, neural networks, food webs.

The PoCSverse Complex Networks 48 of 320

The PoCSverse

Basic definitions

Examples

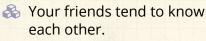
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell

Local socialness:

a

4. Clustering:

- Two measures (explained on following slides):
 - 1. Watts & Strogatz^[112]

$$C_1 = \left\langle \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle$$

2. Newman^[77]

$$C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$$

The PoCSverse Complex Networks 49 of 320

The PoCSverse

Basic definitions

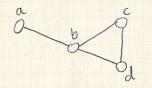
Examples

Basic Properties Branching Networks Supply Networks

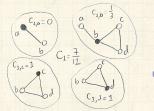
Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

i


Big Nutshell

Example network:

Calculation of C_1 :

 $rightarrow C_1$ is the average fraction of pairs of neighbors who are connected.

Fraction of pairs of neighbors who are connected is

$$\frac{\sum_{j_1j_2\in\mathcal{N}_i}a_{j_1j_2}}{k_i(k_i-1)/2}$$

where k_i is node *i*'s degree, and \mathcal{N}_i is the set of *i*'s neighbors.

Averaging over all nodes, we have:

$$\begin{split} C_1 &= \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \\ \left\langle \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i \end{split}$$

The PoCSverse Complex Networks 50 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

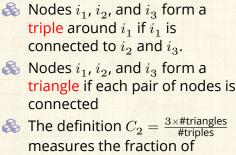
Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell


Triples and triangles

Example network:

Triangles:

, add

Triples:

closed triples

- The '3' appears because for each triangle, we have 3 closed triples.
- Social Network Analysis (SNA): fraction of transitive triples.

The PoCSverse Complex Networks 51 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Clustering:

2

R

Sneaky counting for undirected, unweighted networks:

- \mathfrak{R} If the path i-j- ℓ exists then $a_{ij}a_{j\ell} = 1$.
- \bigotimes Otherwise, $a_{ij}a_{j\ell} = 0$.
- \mathfrak{S} We want $i \neq \ell$ for good triples.
- $\begin{cases} & \text{In general, a path of } n \text{ edges between nodes } i_1 \\ & \text{and } i_n \text{ travelling through nodes } i_2, i_3, \dots i_{n-1} \text{ exists} \\ & \Leftrightarrow a_{i_1i_2}a_{i_2i_3}a_{i_3i_4}\cdots a_{i_{n-2}i_{n-1}}a_{i_{n-1}i_n} = 1. \end{cases}$

$$\# \text{triples} = \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{\ell=1}^{N} \left[A^2 \right]_{i\ell} - \text{Tr}A^2 \right)$$

$$\#$$
triangles $=$ $\frac{1}{6}$ Tr A^3

The PoCSverse Complex Networks 52 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

5. motifs:

line terming section and subnetworks and subnetworks and the section of the secti 🚳 e.g., Feed Forward Loop:

a

feedforward loop

7

Shen-Orr, Uri Alon, et al. [89]

The PoCSverse Complex Networks 53 of 320

The PoCSverse

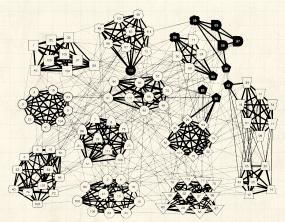
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Thresholds


Generating

Structure Detection

Big Nutshell

6. modularity and structure/community detection:

Clauset et al., 2006 [24]: NCAA football

The PoCSverse Complex Networks 54 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

7. concurrency:

- transmission of a contagious element only occurs during contact
- line a simple model as a simple model a simple model line a simple model line as a simple model as a simple model with the second secon
- dynamic property—static networks are not enough
- 🗞 knowledge of previous contacts crucial
- 🚳 beware cumulated network data
- 🗞 Kretzschmar and Morris, 1996 [58]
- "Temporal networks" become a concrete area of study for Piranha Physicus in 2013.

The PoCSverse Complex Networks 55 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

8. Horton-Strahler ratios:

 $\begin{array}{l} & \underset{()}{\otimes} & \text{Metrics for branching networks:} \\ & \underset{()}{\otimes} & \text{Method for ordering streams hierarchically} \\ & \underset{()}{\otimes} & \text{Number: } R_n = N_\omega/N_{\omega+1} \\ & \underset{()}{\otimes} & \text{Segment length: } R_l = \langle l_{\omega+1} \rangle / \langle l_{\omega} \rangle \\ & \underset{()}{\otimes} & \text{Area/Volume: } R_a = \langle a_{\omega+1} \rangle / \langle a_{\omega} \rangle \\ \end{array}$

The PoCSverse Complex Networks 56 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

9. network distances:

(a) shortest path length d_{ij} :

Fewest number of steps between nodes *i* and *j*.
 (Also called the chemical distance between *i* and *j*.)

(b) average path length $\langle d_{ij} \rangle$:

Average shortest path length in whole network.
 Good algorithms exist for calculation.
 Weighted links can be accommodated.

The PoCSverse Complex Networks 57 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

9. network distances:

- network diameter d_{max}: Maximum shortest path length between any two nodes.
- Solution closeness $d_{cl} = [\sum_{ij} d_{ij}^{-1} / \binom{n}{2}]^{-1}$: Average 'distance' between any two nodes.
- Solution Closeness handles disconnected networks $(d_{ij} = \infty)$
- $d_{cl} = \infty$ only when all nodes are isolated.
- Closeness perhaps compresses too much into one number

The PoCSverse Complex Networks 58 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

10. centrality:

- 🚳 Many such measures of a node's 'importance.'
- \bigotimes ex 1: Degree centrality: k_i .
- ex 2: Node i's betweenness
 = fraction of shortest paths that pass through i.
- ex 3: Edge l's betweenness
 = fraction of shortest paths that travel along l.
- ex 4: Recursive centrality: Hubs and Authorities (Jon Kleinberg^[56])

The PoCSverse Complex Networks 59 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Interconnected networks and robustness (two for one deal):

"Catastrophic cascade of failures in interdependent networks"^[21]. Buldyrev et al., Nature 2010.

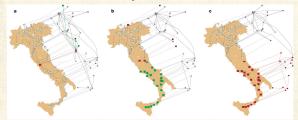


Figure 11 Modelling a blackout in Italy. Illustration of an incrative processor of a scacado of failures using real-world kind from a power network (located on the may of 11ab) and an internet network, (shifted above the map) that were 2000°. The networks are drawn using the real georgraphical locations and every internet server is connected to the georgraphical price of the map. The station. a, One power station is removed for donod cen map [from the power station. a, One power station is removed (for donod cen map] from the power the literate server is the station station of the maps. The nucles that will be disconnected from the gain chart (c alcure that spans the removed). at the next step are marked in green, b, Additional modes that were disconnected from the Internet communication network given in component are removed (red nodes above map). As a result the power stratow, fred nodes on map), Again, the nodes that will be disconnected from the giant cluster at the from the giant cluster strategies and the strategies of the strategies of from the giant component of the power network, fred nodes on map) a set as the nodes in the Internet network that depend on them (red nodes above map). The PoCSverse Complex Networks 60 of 320

The PoCSverse

Basic definitions

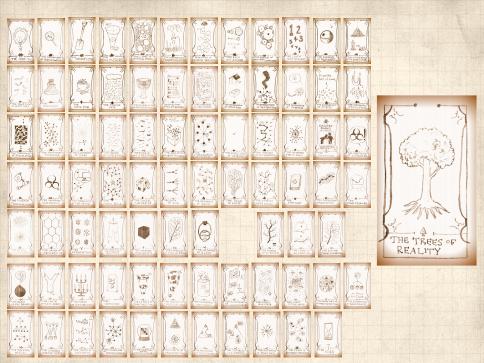
xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

Branching networks are useful things:

- lacktrian section and collection and
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- 🗞 River networks
- 🚳 Cardiovascular networks
- 🚳 Plants
- 🚳 Evolutionary trees
 - Organizations (only in theory ...)

The PoCSverse Complex Networks 65 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Branching networks are everywhere ...

HydroSHEDS Amazon Basin

River network derived from SRTM elevation data at 500 m resolution

The PoCSverse Complex Networks 66 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties

Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References

http://hydrosheds.cr.usgs.gov/

Only maior

rivers and streams are

visualized

River line width proportional to

upstream basin area

500 Kilometers 1000

Branching networks are everywhere ...

http://en.wikipedia.org/wiki/Image:Applebox.JPG

The PoCSverse Complex Networks 67 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties

Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

An early thought piece: Extension and Integration

"The Development of Drainage Systems: A Synoptic View" Waldo S. Glock, The Geographical Review, **21**, 475–482, 1931. ^[45]

Initiation, Elongation Elaboration, Piracy. Abstraction, Absorption. The PoCSverse Complex Networks 68 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties

Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

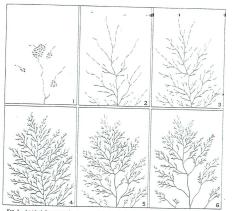


FIG. 3—An ideal diagrammatic summary of the development of a drainage system given for purposes of comparison only. The first four parts show extension, thus: 1, initiation; 2, elongation; 3, elaboration; and 4, maximum extension. Parts 3 and 6 represent steps during integration.

The sequential stages recognized in the evolution of a drainage system are "extension" and "integration"; the first, a stage of increasing complexity; the second, of simplification.

The PoCSverse Complex Networks 69 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties

Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Allometry

🚳 Isometry:

dimensions scale linearly with each other.

Allometry: dimensions scale nonlinearly.

The PoCSverse Complex Networks 70 of 320

The PoCSverse

Basic definitions

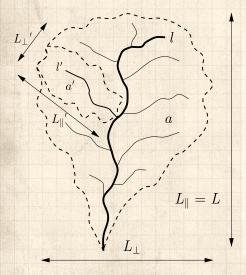
Examples

Basic Properties

Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Basin allometry

Allometric relationships:

2

3

 $\ell \propto a^h$

 $\ell \propto L^d$

🚳 Combine above:

$$a \propto L^{d/h} \equiv L^D$$

The PoCSverse Complex Networks 71 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties

Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

🚳 Hack's law (1957)^[50]:

 $\ell \propto a^h$

reportedly 0.5 < h < 0.7

Scaling of main stream length with basin size:

 $\ell \propto L^d_{\parallel}$

reportedly 1.0 < d < 1.1

🚳 Basin allometry:

 $L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$

 $D < 2 \rightarrow$ basins elongate.

There are a few more 'laws': [31]

Relation: Name or description:

nples $T_{k} = T_{1}(R_{T})^{k-1}$ Tokunaga's law c Properties $\ell \sim L^d$ self-affinity of single channels hing Networks $n_{\omega}/n_{\omega+1}=R_n$ Horton's law of stream numbers $\ell_{\omega+1}/\ell_{\omega} = R_{\ell}$ Horton's law of main stream lengths /orks Horton's law of basin areas $\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$ or Models alized Affiliation $\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$ Horton's law of stream segment lengths $L_{\perp} \sim L^H$ scaling of basin widths erating $P(a) \sim a^{-\tau}$ probability of basin areas cture probability of stream lengths $P(\ell) \sim \ell^{-\gamma}$ $\ell \sim a^h$ Hack's law $a \sim L^D$ scaling of basin areas $\Lambda \sim a^{\beta}$ Langbein's law variation of Langbein's law $\lambda \sim L^{\varphi}$ PoCS

The PoCSverse

PoCSverse definitions

Complex Networks 73 of 320

Reported parameter values: [31]

Parameter:	Real networks:
R_n	3.0-5.0
R_a	3.0-6.0
$R_{\ell} = R_T$	1.5-3.0
T_1	1.0–1.5
d	1.1 ± 0.01
D	1.8 ± 0.1
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
H	0.75-0.80
β	0.50-0.70
arphi	1.05 ± 0.05

The PoCSverse Complex Networks 74 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties

Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Stream Ordering:

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

The PoCSverse Complex Networks 76 of 320

The PoCSverse

Basic definitions

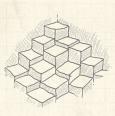
Examples

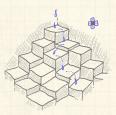
Basic Properties

Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions


Structure Detection

Big Nutshell

Basic algorithm for extracting networks from Digital Elevation Models (DEMs):

The PoCSverse Complex Networks 77 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks

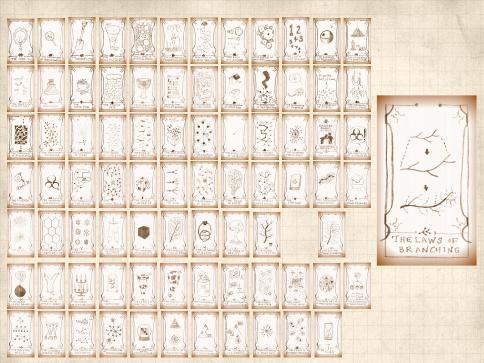
Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell

References

🚳 Also:

/Users/dodds/work/rivers/1998dems/kevinlakewaster.c

Horton's laws Self-similarity of river networks

First quantified by Horton (1945)^[53], expanded by Schumm (1956) [88]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1}=R_n>1$$

Horton's law of stream lengths:

$$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_\ell>1$$

\Lambda Horton's law of basin areas:

$$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a>1$$

The PoCSverse Complex Networks 79 of 320

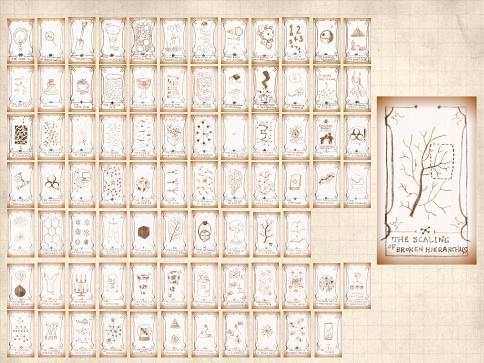
The PoCSverse

Basic definitions

Basic Properties

Branching Networks

Random networks


Major Models Generalized Affiliation Thresholds

Generating

Structure Detection

Big Nutshell

Network Architecture Tokunaga's law [101, 102, 103]

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

 $T_{\mu,\nu} = T_1 (R_T)^{\mu-\nu-1}$

We usually write Tokunaga's law as:

 $T_k = T_1(R_T)^{k-1}$ where $R_T \simeq 2$

The PoCSverse Complex Networks 81 of 320

The PoCSverse

Basic definitions

Basic Properties

Branching Networks

Random networks

Major Models Generalized Affiliation Thresholds

Generating

Structure Detection

Big Nutshell

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: ^[31]
$\ell \sim L^d$	d
$T_k = T_1 (R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = \frac{R_s}{R_s}$
$n_{\omega}/n_{\omega+1}=R_n$	R_n
$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$	$R_a = R_n$
$\ell_{\omega+1}/\ell_\omega=R_\ell$	$R_{\ell} = R_s$
$\ell \sim a^h$	$h = \ln R_s / \ln R_n$
$a \sim L^D$	D = d/h
$L_{\perp} \sim L^H$	H = d/h - 1
$P(a) \sim a^{-\tau}$	$\tau=2-h$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^\beta$	$\beta = 1 + h$
$\lambda \sim L^{\varphi}$	$\varphi = d$

The PoCSverse Complex Networks 82 of 320

The PoCSverse

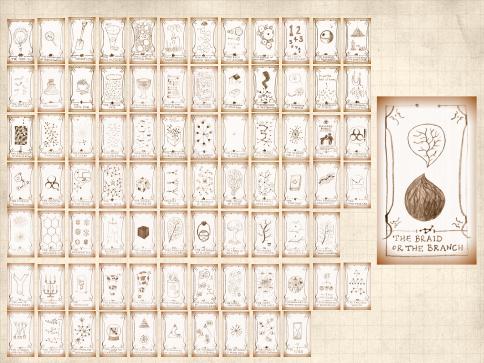
Basic definitions

Examples

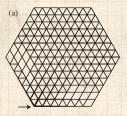
Basic Properties Branching Networks

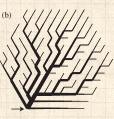
Supply Networks

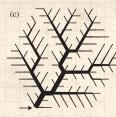
networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection


Big Nutshell



Single source optimal supply

(a) γ > 1: Braided (bulk) flow
(b) γ < 1: Local minimum: Branching flow
(c) γ < 1: Global minimum: Branching flow
Note: This is a single source supplying a region.

From Bohn and Magnasco^[16] See also Banavar *et al.*^[6]: "Topology of the Fittest Transportation Network"; focus is on presence or absence of loops—same story The PoCSverse Complex Networks 85 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Single source optimal supply

Optimal paths related to transport (Monge) problems C:

The PoCSverse Complex Networks 86 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

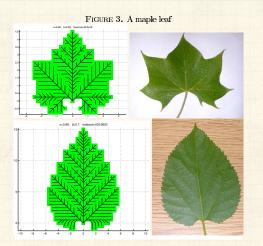
Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell


References

ar Water, Karles Balantes, Na Marian ar Maria (2000) Roy (2000) Ro

"Optimal paths related to transport problems" Qinglan Xia, Communications in Contemporary Mathematics, **5**, 251–279, 2003.^[116]

Growing networks: [117]

The PoCSverse Complex Networks 87 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References

δ Top: $\alpha = 0.66$, $\beta = 0.38$; Bottom: $\alpha = 0.66$, $\beta = 0.70$

Single source optimal supply

An immensely controversial issue ...

- The form of natural branching networks: Random, optimal, or some combination? ^[55, 113, 7, 33, 27]
 - 🗞 River networks, blood networks, trees, ...

Two observations:

- Self-similar networks appear everywhere in nature for single source supply/single sink collection.
- Real networks differ in details of scaling but reasonably agree in scaling relations.

The PoCSverse Complex Networks 88 of 320

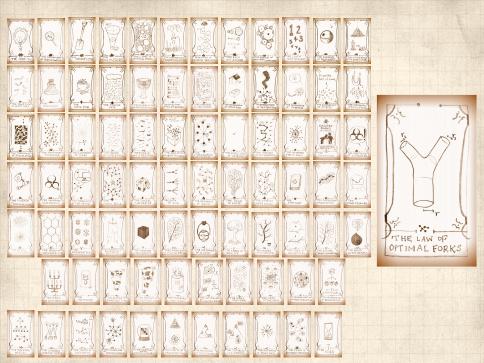
The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Optimization—Murray's law

Murray's law (1926) connects branch radii at forks: ^[72, 71, 73, 59, 100] The PoCSverse Complex Networks 90 of 320

The PoCSverse

Basic definitions

Examples

Random networks

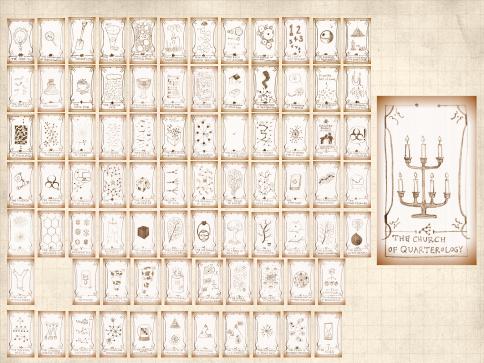
 $r_{\rm parent}^3 = r_{\rm offspring1}^3 + r_{\rm offspring2}^{\rm Basic Properties}_{\rm supply Networks}$

where r_{parent} = radius of 'parent' branch, and $r_{\text{offspring1}}$ and $r_{\text{offspring2}}$ are radii of the two 'offspring' sub-branches.

Major Models Generalized Affiliation Networks

Generating Functions

Structure Detection


Big Nutshell

References

Holds up well for outer branchings of blood networks^[90].

- Also found to hold for trees ^[73, 66] when xylem is not a supporting structure ^[67].
- See D'Arcy Thompson's "On Growth and Form" for background and general inspiration ^[99, 100].

Animal power

Fundamental biological and ecological constraint:

 $P = c \, M^{\,\alpha}$

P = basal metabolic rate M = organismal body mass

The PoCSverse Complex Networks 92 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Stories—The Fraction Assassin:

The PoCSverse Complex Networks 93 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Quarterology spreads throughout the land: The Cabal assassinates 2/3-scaling:

- 🚳 1964: Troon, Scotland.
- 🚳 3rd Symposium on Energy Metabolism.

But the Cabal slipped up by publishing the conference proceedings ...

"Energy Metabolism; Proceedings of the 3rd symposium held at Troon, Scotland, May 1964," Ed. Sir Kenneth Blaxter^[13]

... 29 to zip.

The PoCSverse Complex Networks 94 of 320

The PoCSverse

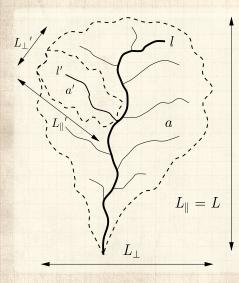
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Somehow, optimal river networks are connected:

 $\begin{array}{l} \bigotimes \ a = \text{drainage} \\ \text{basin area} \\ \end{array} \\ \begin{array}{l} \bigotimes \ \ell = \text{length of} \\ \text{longest (main)} \\ \text{stream} \\ \end{array} \\ \begin{array}{l} \bigotimes \ L = L_{\parallel} = \end{array}$

 $L - L_{\parallel}$ longitudinal length of basin The PoCSverse Complex Networks 95 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Mysterious allometric scaling in river networks

1957: J. T. Hack^[50] "Studies of Longitudinal Stream Profiles in Virginia and Maryland"

 $h \sim 0.6$

 $\ell \sim a^h$

Anomalous scaling: we would expect h = 1/2 ...
Subsequent studies: $0.5 \leq h \leq 0.6$ Another quest to find universality/god ...
A catch: studies done on small scales.

The PoCSverse Complex Networks 96 of 320

The PoCSverse

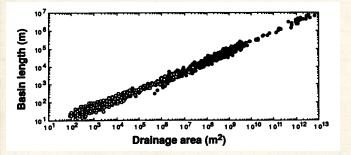
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Large-scale networks: (1992) Montgomery and Dietrich^[69]:

 Composite data set: includes everything from unchanneled valleys up to world's largest rivers.
 Estimated fit:

$$L \simeq 1.78a^{0.49}$$

Mixture of basin and main stream lengths.

The PoCSverse Complex Networks 97 of 320

The PoCSverse

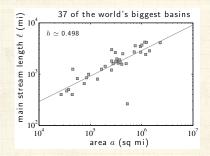
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

World's largest rivers only:

Data from Leopold (1994)^[60, 32]
 Estimate of Hack exponent: $h = 0.50 \pm 0.06$

The PoCSverse Complex Networks 98 of 320

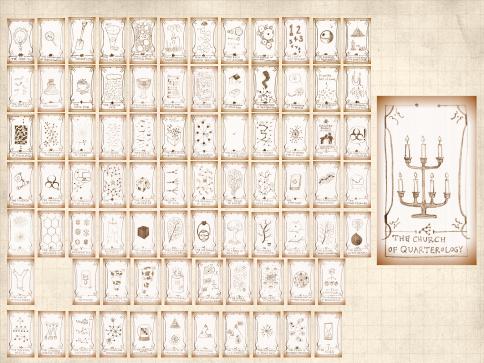
The PoCSverse

Basic definitions

Examples

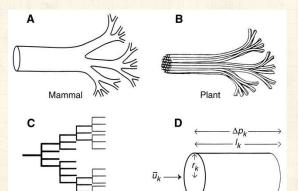
Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell

Nutrient delivering networks:

- 1960's: Rashevsky considers blood networks and finds a 2/3 scaling.
- 1997: West *et al.* ^[113] use a network story to find 3/4 scaling.

. N

The PoCSverse Complex Networks 100 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

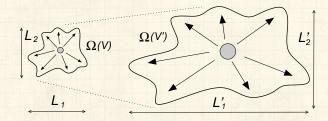
Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References


Mode

k = 0

Parameters

Geometric argument

Allometrically growing regions:

 \mathfrak{S} Have d length scales which scale as

$$L_i \propto V^{\gamma_i}$$
 where $\gamma_1 + \gamma_2 + \ldots + \gamma_d = 1$.

For isometric growth, \(\gamma_i = 1/d\).
For allometric growth, we must have at least two of the \{\(\gamma_i\)\} being different

The PoCSverse Complex Networks 101 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Spherical cows and pancake cows:

Assume an isometrically Scaling family of cows:

Extremes of allometry: The pancake cows-

The PoCSverse Complex Networks 102 of 320

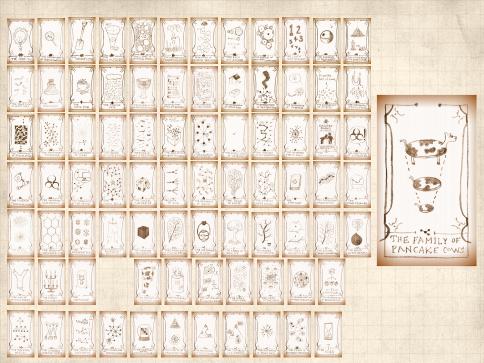
The PoCSverse

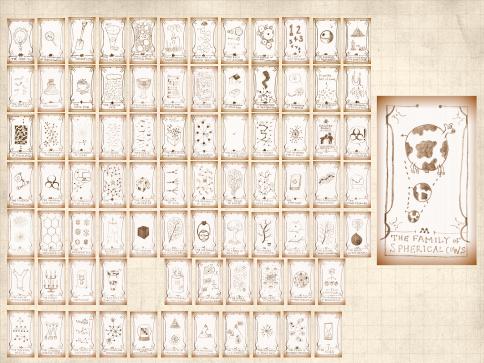
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Minimal network volume:

Real supply networks are close to optimal:

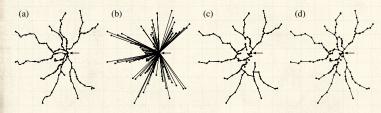


Figure 1. (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph. (c) Minimum spanning tree. (d) The model of equation (3) applied to the same set of stations.

Gastner and Newman (2006): "Shape and efficiency in spatial distribution networks" ^[41]

The PoCSverse Complex Networks 105 of 320

The PoCSverse

Basic definitions

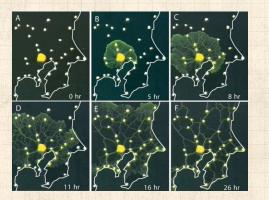
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

And a second sec

"Rules for Biologically Inspired Adaptive Network Design" Tero et al., Science, **327**, 439-442, 2010.^[98]

Urban deslime in action: https://www.youtube.com/watch?v=GwKuFREOgmo The PoCSverse Complex Networks 106 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Blood networks

Then *P*, the rate of overall energy use in Ω, can at most scale with volume as

 $P\propto \rho V\propto \rho\,M\propto M^{\,(d-1)/d}$

 $rac{2}{8}$ For d = 3 dimensional organisms, we have

 $P \propto M^{\,2/3}$

Including other constraints may raise scaling exponent to a higher, less efficient value.

The PoCSverse Complex Networks 107 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Exciting bonus: Scaling obtained by the supply network story and the surface-area law only match for isometrically growing shapes.

The surface area-supply network mismatch for allometrically growing shapes:

SerV1-

P oc Ninks of V

The PoCSverse Complex Networks 108 of 320

The PoCSverse

Basic definitions

Examples

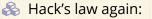
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell

Hack's law

Volume of water in river network can be calculated by adding up basin areas
 Flows sum in such a way that

$$V_{\mathsf{net}} = \sum_{\mathsf{all pixels}} a_{\mathsf{pixel } i}$$

$$\ell \sim a^h$$

🚳 Can argue

$$V_{\rm net} \propto V_{\rm basin}^{1+h} = a_{\rm basin}^{1+h}$$

$$h = 1/2$$

The PoCSverse Complex Networks 109 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Real data:

Banavar et al.'s approach^[7] is okay because ρ really is constant.

The irony: shows optimal basins are isometric

Solution Optimal Hack's law: $\ell \sim a^h$ with h = 1/2(Zzzz)

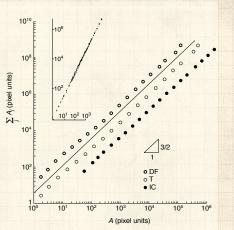


Figure 2 Allometric scaling in river networks. Double logarithmic plot of $C \propto \Sigma_{xeq} A_x$ versus A for three river networks characterized by different climates, geology and geographic locations (Dv; Fork, West Virginia, 568 km², digital terrain map (DTM) size 30 × 30 m²; Island Creek, Idaho, 260 km², DTM size 30 × 30 m²; Tirso, Italy, 2,024 km², DTM size 237 × 237 m²). The experimental points are obtained by binning total contributing areas, and computing the ensemble average of the sum of the inner areas for each sub-basin within the binned interval. The figure uses pixel units in which the smallest area element is assigned a unit value. Also plotted is the predicted scaling relationship with slope 5/2. The inset shows the raw data from the Tirso basin before any binning total contributing areas for each sub-basin before any binning total contributing the predicted scaling relationship with slope 5/2. The inset shows the raw data from the Tirso basin before any binning total contributing areas for each sub-basin before any binning total contributing the predicted scaling relationship with slope 5/2. The inset shows the raw data from the Tirso basin before any binning total contributing areas for each sub-basin before any binning base base data.

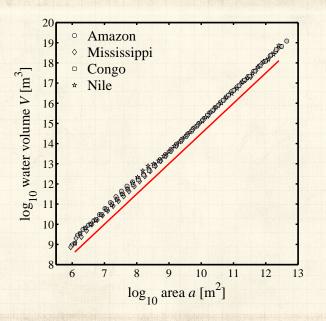
The PoCSverse Complex Networks 110 of 320 The PoCSverse Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Even better—prefactors match up:

The PoCSverse Complex Networks 111 of 320

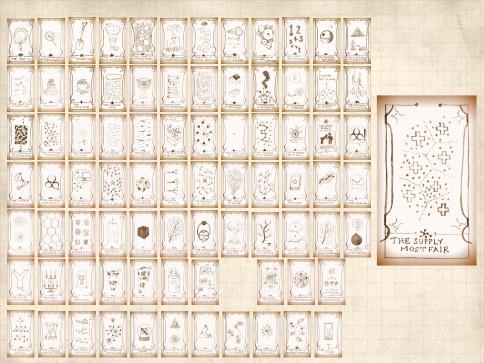
The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

"Optimal design of spatial distribution networks" Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. ^[40] The PoCSverse Complex Networks 113 of 320

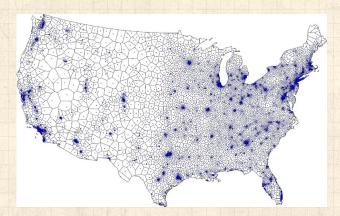
The PoCSverse

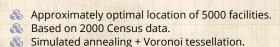
Basic definitions

Examples

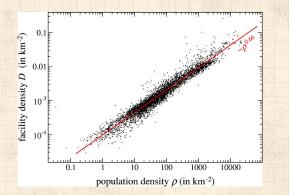
Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection


Big Nutshell

Optimal source allocation

Optimal facility density \(\rho_{fac}\) vs. population density \(\rho_{pop}\).
 Fit is \(\rho_{fac}\) \(\phi\) \(\rho_{pop}\)^{0.66} with \(r^2 = 0.94\).
 Looking good for a 2/3 power ...

The PoCSverse Complex Networks 114 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. ^[40]
- \mathfrak{F} Assume given a fixed population density ρ_{pop} defined on a spatial region Ω .
- Sormally, we want to find the locations of nsources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1, \dots, \vec{x}_n\}) = \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) \min_i ||\vec{x} - \vec{x}_i|| \mathsf{d}\vec{x} + \mathbf{d}\vec{x}_i|| \mathsf{d}\vec{$$

🚳 Also known as the p-median problem, and connected to cluster analysis.

- Not easy ... in fact this one is an NP-hard problem.^[40]
- Approximate solution originally due to 3 Gusein-Zade^[49].

The PoCSverse Complex Networks 115 of 320

The PoCSverse

Basic definitions

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Thresholds

Generating

Big Nutshell

Global redistribution networks

One more thing:

- How do we supply these facilities?
- 🗞 How do we best redistribute mail? People?
- 🚳 How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

 $C_{\text{maint}} + \gamma C_{\text{travel}}.$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

 $(1-\delta)\ell_{ij} + \delta(\#hops).$

& When $\delta = 1$, only number of hops matters.

The PoCSverse Complex Networks 116 of 320

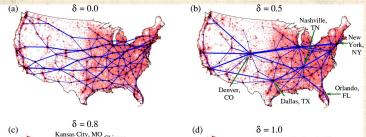
The PoCSverse

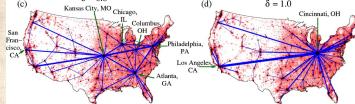
Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Global redistribution networks

From Gastner and Newman (2006)^[40]

The PoCSverse Complex Networks 117 of 320

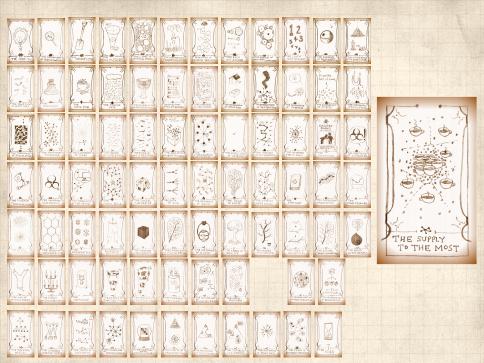
The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

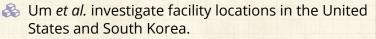

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Public versus private facilities


Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um *et al.*, Proc. Natl. Acad. Sci., 2009.^[104]
- Um et al. find empirically and argue theoretically that the connection between facility and population density

 $ho_{\rm fac} \propto
ho_{
m pop}^{lpha}$

does not universally hold with $\alpha = 2/3$. Solution Weightson We

- 1. For-profit, commercial facilities: $\alpha = 1$;
- 2. Pro-social, public facilities: $\alpha = 2/3$.

The PoCSverse Complex Networks 119 of 320

The PoCSverse

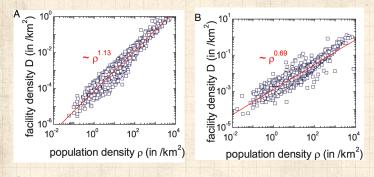
Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Public versus private facilities: evidence

Left plot: ambulatory hospitals in the U.S.
Right plot: public schools in the U.S.
Note: break in scaling for public schools. Transition from \$\alpha\$ \approx 2/3 to \$\alpha\$ = 1 around \$\rho_{pop}\$ \approx 100. The PoCSverse Complex Networks 120 of 320 The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

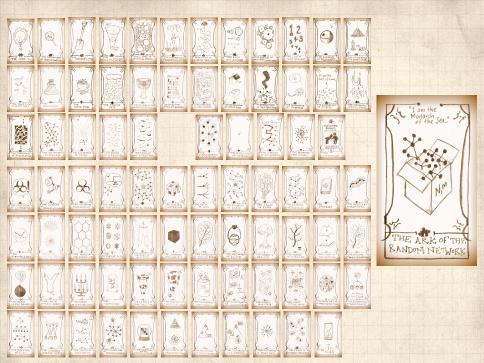
Random networks

Major Models Generalized Affiliation Networks Thresholds

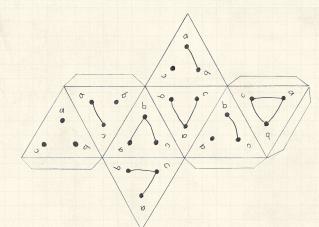
Generating Functions

Structure Detection

Big Nutshell



Public versus private facilities: evidence


US facility	α (SE)	R ²	
Ambulatory hospital	1.13(1)	0.93	
Beauty care	1.08(1)	0.86	
Laundry	1.05(1)	0.90	
Automotive repair	0.99(1)	0.92	
Private school	0.95(1)	0.82	
Restaurant	0.93(1)	0.89	
Accommodation	0.89(1)	0.70 R	20
Bank	0.88(1)	0.80	
Gas station	0.86(1)	0.94 C	pet
Death care	0.79(1)	0.80 a	in
* Fire station	0.78(3)	0.93	
* Police station	0.71(6)	0.75 C	χ -
Public school	0.69(1)	0.87	
SK facility	α (SE)	_{R2} N	10
Bank	1.18(2)	_{0.96} a	ina
Parking place	1.13(2)	0.91 c	ta
* Primary clinic	1.09(2)	1.00	la
* Hospital	0.96(5)	0.97	ev
* University/college	0.93(9)	0.89	-
Market place	0.87(2)	0.90 C	0
* Secondary school	0.77(3)	0.98	
* Primary school	0.77(3)	0.97	
Social welfare org.	0.75(2)	0.84	
* Police station	0.71(5)	0.94	
Government office	0.70(1)	0.93	
* Fire station	0.60(4)	0.93	
* Public health center	0.09(5)	0.19	

Complex Networks 121 of 320 The PoCSverse **Basic definitions** Examples **Basic Properties** ugh transition Branching Networks Supply Networks tween public Random d private at networks $\simeq 0.8.$ Major Models Generalized Affiliation te: * indicates Thresholds alysis is at Generating te/province Structure Detection el; otherwise **Big Nutshell** unty level. References

The PoCSverse

Random network generator for N = 3:

Set your own exciting generator here ☑.
 As N ↗, polyhedral die rapidly becomes a ball ...

The PoCSverse Complex Networks 123 of 320

The PoCSverse

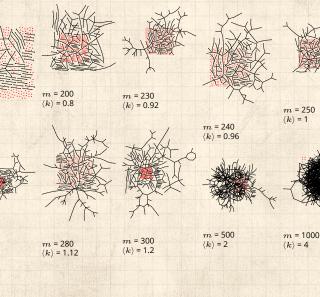
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Random networks: examples for N=500

The PoCSverse Complex Networks 124 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

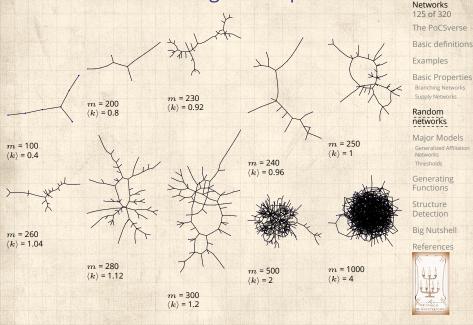
Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

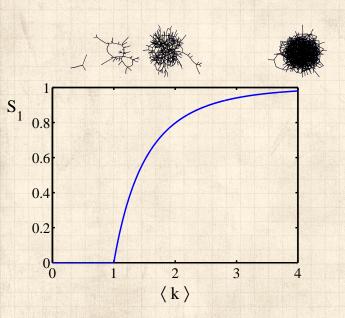
References



m = 260 $\langle k \rangle = 1.04$

m = 100

 $\langle k \rangle = 0.4$


Random networks: largest components

The PoCSverse

Complex

Giant component

The PoCSverse Complex Networks 126 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Clustering in random networks:

So for large random networks (N → ∞), clustering drops to zero.
 Key structural feature of random networks is that they locally look like pure branching networks
 No small loops.

The PoCSverse Complex Networks 127 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Degree distribution:

- Recall P_k = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N-1 choose k' ways the node can be connected to k of the other N-1 nodes.
- Each connection occurs with probability p, each non-connection with probability (1-p).
- Therefore have a binomial distribution 🗹:

$$P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}.$$

The PoCSverse Complex Networks 128 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Limiting form of P(k; p, N):

- Solution: $P(k; p, N) = \binom{N-1}{k} p^k (1-p)^{N-1-k}.$
- \mathfrak{S} What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- Solution If p is fixed, then we would end up with a Gaussian with average degree $\langle k \rangle \simeq pN \rightarrow \infty$.
- \mathfrak{S} But we want to keep $\langle k \rangle$ fixed ...
- So examine limit of P(k; p, N) when $p \to 0$ and $N \to \infty$ with $\langle k \rangle = p(N-1)$ = constant.

$$P(k;p,N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1} \right)^{N-1-k} \rightarrow \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

 \mathfrak{B} This is a Poisson distribution \mathfrak{C} with mean $\langle k \rangle$.

The PoCSverse Complex Networks 129 of 320

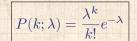
The PoCSverse

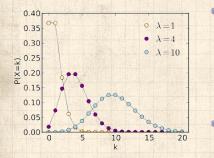
Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Poisson basics:

 $\lambda > 0$ $k = 0, 1, 2, 3, \dots$ 🚳 Classic use: probability that an event occurs ktimes in a given time period, given an average rate of occurrence. 3 e.g.:

phone calls/minute, horse-kick deaths. 'Law of small numbers' The PoCSverse Complex Networks 130 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Models

Generalized random networks:

- & Arbitrary degree distribution P_k .
- Solution Create (unconnected) nodes with degrees sampled from P_k .
- 🚳 Wire nodes together randomly.
- Create ensemble to test deviations from randomness.

The PoCSverse Complex Networks 131 of 320

The PoCSverse

Basic definitions

Examples

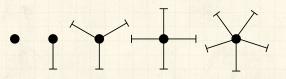
Basic Properties Branching Networks Supply Networks

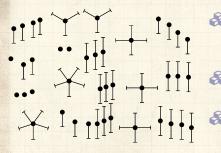
Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell



Building random networks: Stubs

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):

Randomly select stubs (not nodes!) and connect them. Must have an even number of stubs. Initially allow self- and repeat connections. The PoCSverse Complex Networks 132 of 320

The PoCSverse

Basic definitions

Examples

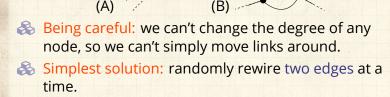
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell

Building random networks: First rewiring

Phase 2:

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.

The PoCSverse Complex Networks 133 of 320

The PoCSverse

Basic definitions

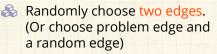
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

General random rewiring algorithm

e'

Check to make sure edges are disjoint.

- Rewire one end of each edge.
 - Node degrees do not change.
 - Works if e₁ is a self-loop or repeated edge.
 - Same as finding on/off/on/off 4-cycles. and rotating them.

The PoCSverse Complex Networks 134 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Sampling random networks

Phase 2:

Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

Randomize network wiring by applying rewiring algorithm liberally.

Rule of thumb: # Rewirings $\simeq 10 \times \#$ edges^[68].

The PoCSverse Complex Networks 135 of 320

The PoCSverse

Basic definitions

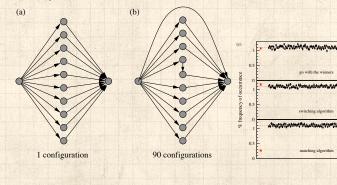
xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

Random sampling

Problem with only joining up stubs is failure to randomly sample from all possible networks.
 Example from Milo et al. (2003)^[68]:

The PoCSverse Complex Networks 136 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Network motifs

- Idea of motifs^[89] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- 🚳 Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- Solution Used network randomization to produce ensemble of alternate networks with same degree frequency N_k .
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

The PoCSverse Complex Networks 137 of 320

The PoCSverse

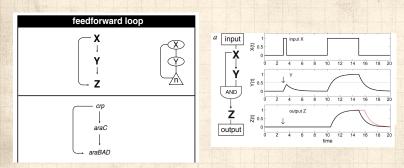
Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Network motifs

rightarrow Z only turns on in response to sustained activity in X.

- \mathfrak{S} Turning off X rapidly turns off Z.
- \lambda Analogy to elevator doors.

The PoCSverse Complex Networks 138 of 320

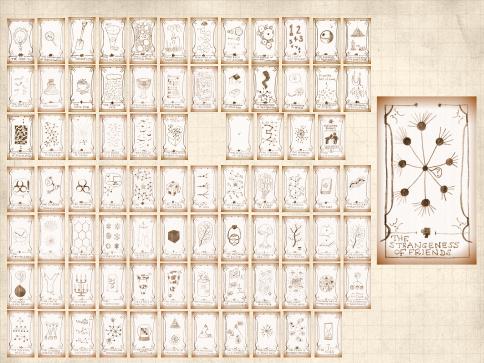
The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

The edge-degree distribution:

- The degree distribution P_k is fundamental for our description of many complex networks
- Solution Again: P_k is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Solution Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
- 🚳 Now choosing nodes based on their degree (i.e., size):

Normalized form:

$$Q_{k} = \frac{kP_{k}}{\sum_{k'=0}^{\infty} k'P_{k'}} = \frac{kP_{k}}{\langle k \rangle}$$

 $Q_k \propto k P_k$

Big deal: Rich-get-richer mechanism is built into this selection process.

The PoCSverse Complex Networks 140 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

The edge-degree distribution:

R

For networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.
 Useful variant on Q_k:

 R_k = probability that a friend of a random node has k other friends.

$$R_k = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

Equivalent to friend having degree k + 1.
 Natural question: what's the expected number of other friends that one friend has?

The PoCSverse Complex Networks 141 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Probability of randomly selecting a node of degree k by choosing from nodes: $P_1 = 3/7, P_2 = 2/7, P_3 = 1/7,$ $P_6 = 1/7.$

Probability of landing on a node of degree k after randomly selecting an edge and then randomly choosing one direction to travel: $Q_1 = 3/16, Q_2 = 4/16,$ $Q_3 = 3/16, Q_6 = 6/16.$

Probability of finding # outgoing edges = k after randomly selecting an edge and then randomly choosing one direction to travel: $R_0 = 3/16 R_1 = 4/16$,

 $R_2 = 3/16, R_5 = 6/16.$

The PoCSverse Complex Networks 142 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Two reasons why this matters

Reason #1:

Average # friends of friends per node is

$$egin{aligned} &\langle k_2
angle = \langle k
angle imes \langle k
angle_R = \langle k
angle rac{1}{\langle k
angle} \left(\langle k^2
angle - \langle k
angle
ight) = \langle k^2
angle - \langle k
angle. \end{aligned}$$

Key: Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.

🚳 Three peculiarities:

- 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1) \rangle$.
- If P_k has a large second moment, then ⟨k₂⟩ will be big. (e.g., in the case of a power-law distribution)
 Your friends really are different from you ...^[37, 76]
- 4. See also: class size paradoxes (nod to: Gelman)

The PoCSverse Complex Networks 143 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

"Generalized friendship paradox in complex networks: The case of scientific collaboration" Eom and Jo, Nature Scientific Reports, **4**, 4603, 2014. ^[35]

Your friends really are monsters #winners:¹

- Go on, hurt me: Friends have more coauthors, citations, and publications.
- Other horrific studies: your connections on Twitter have more followers than you, are happier than you^[17], more sexual partners than you, ...
- The hope: Maybe they have more enemies and diseases too.
- 🗞 Research possibility: The Frenemy Paradox.

¹Some press here C [MIT Tech Review].

The PoCSverse Complex Networks 144 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Spreading on Random Networks

- For random networks, we know local structure is pure branching.
- Successful spreading is .. contingent on single edges infecting nodes.

Success Failure:

Focus on binary case with edges and nodes either infected or not.

First big question: for a given network and contagion process, can global spreading from a single seed occur? The PoCSverse Complex Networks 145 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Global spreading condition

We need to find: ^[30]
 R = the average # of infected edges that one random infected edge brings about.
 Call R the gain ratio.
 Define B_{k1} as the probability that a node of degree k is infected by a single infected edge.

 $\mathbf{R} = \sum$

prob. of connecting to a degree *k* node

(k - 1)

outgoing infected edges

 $\underbrace{B_{k1}}_{\text{Prob. of infection}}$

Examples **Basic Properties** Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

The PoCSverse

Basic definitions

Complex Networks

146 of 320 The PoCSverse

Generating Functions

Structure Detection

Big Nutshell

 $+\sum_{k=0}^{\infty}\frac{\widehat{kP_k}}{\langle k\rangle}$

outgoing infected edges

 $(1 - B_{k1})$

Prob. of no infection

Global spreading condition

Our global spreading condition is then:

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

Solution Case 1-Rampant spreading: If $B_{k1} = 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) = \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1.$$

The PoCSverse Complex Networks 147 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References

Good: This is just our giant component condition again.

Global spreading condition

So Case 2—Simple disease-like: If $B_{k1} = \beta < 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet \beta > 1$$

A fraction (1-β) of edges do not transmit infection.
 Analogous phase transition to giant component case but critical value of (k) is increased.

Aka bond percolation C.

Resulting degree distribution \tilde{P}_k :

$$\tilde{P}_k = \beta^k \sum_{i=k}^{\infty} \binom{i}{k} (1-\beta)^{i-k} P_i.$$

The PoCSverse Complex Networks 148 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Random directed networks:

- So far, we've largely studied networks with undirected, unweighted edges.
- 🚳 Now consider directed, unweighted edges.
- Nodes have k_i and k_o incoming and outgoing edges, otherwise random.
- Network defined by joint in- and out-degree distribution: P_{k_i,k_o}
- Normalization: $\sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} P_{k_i,k_o} = 1$
 - Marginal in-degree and out-degree distributions:

$$P_{k_{\mathrm{i}}} = \sum_{k_{\mathrm{o}}=0}^{\infty} P_{k_{\mathrm{i}},k_{\mathrm{o}}} \text{ and } P_{k_{\mathrm{o}}} = \sum_{k_{\mathrm{i}}=0}^{\infty} P_{k_{\mathrm{i}},k}$$

Required balance:

$$\langle k_{\rm i}\rangle = \sum_{k_{\rm i}=0}^{\infty}\sum_{k_{\rm o}=0}^{\infty}k_{\rm i}P_{k_{\rm i},k_{\rm o}} = \sum_{k_{\rm i}=0}^{\infty}\sum_{k_{\rm o}=0}^{\infty}k_{\rm o}P_{k_{\rm i},k_{\rm o}} = \langle k_{\rm o}\rangle$$

The PoCSverse Complex Networks 149 of 320

The PoCSverse

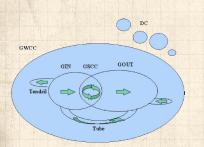
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Directed network structure:

From Boguñá and Serano.^[15]

GWCC = Giant Weakly Connected Component (directions removed);

GIN = Giant In-Component;

2

3

2

GOUT = Giant Out-Component;

GSCC = Giant Strongly Connected Component;

DC = Disconnected Components (finite). The PoCSverse Complex Networks 150 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References

When moving through a family of increasingly connected directed random networks, GWCC usually appears before GIN, GOUT, and GSCC which tend to appear together. ^[80, 15]

Observation:

- Directed and undirected random networks are separate families ...
- 🚳 ...and analyses are also disjoint.
- Need to examine a larger family of random networks with mixed directed and undirected edges.

Consider nodes with three types of edges:

- 1. $k_{\rm u}$ undirected edges,
- 2. k_i incoming directed edges,
- 3. k_{o} outgoing directed edges.

Define a node by generalized degree:

$$\vec{k} = [k_{\mathrm{u}} k_{\mathrm{i}} k_{\mathrm{o}}]^{\mathrm{T}}.$$

The PoCSverse Complex Networks 151 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Correlations:

🛞 Now add correlations (two point or Markovian) 🗆:

- 1. $P^{(u)}(\vec{k} | \vec{k}')$ = probability that an undirected edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node.
- P⁽ⁱ⁾(k | k') = probability that an edge leaving a degree k' nodes arrives at a degree k node is an in-directed edge relative to the destination node.
 P^(o)(k | k') = probability that an edge leaving a degree k' nodes arrives at a degree k node is an out-directed edge relative to the destination node.

Now require more refined (detailed) balance.
 Conditional probabilities cannot be arbitrary.
 1. P^(u)(k | k') must be related to P^(u)(k' | k).

2. $P^{(0)}(\vec{k} | \vec{k}')$ and $P^{(i)}(\vec{k} | \vec{k}')$ must be connected.

The PoCSverse Complex Networks 152 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Correlations—Undirected edge balance:

- Randomly choose an edge, and randomly choose one end.
- Say we find a degree \vec{k} node at this end, and a degree \vec{k}' node at the other end.
- \clubsuit Define probability this happens as $P^{(u)}(\vec{k},\vec{k}')$.
 - Observe we must have $P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k}', \vec{k})$.

 $\begin{array}{l} \bigotimes \\ \text{Conditional probability} \\ \text{connection:} \\ P^{(\mathsf{u})}(\vec{k},\vec{k}') &= P^{(\mathsf{u})}(\vec{k} \,|\, \vec{k}') \frac{k'_{\mathsf{u}} P(\vec{k}')}{\langle k'_{\mathsf{u}} \rangle} \end{array}$

 $P^{(\mathsf{u})}(\vec{k}',\vec{k}) = P^{(\mathsf{u})}(\vec{k}' \mid \vec{k}) \frac{k_{\mathsf{u}} P(\vec{k})}{\langle k_{\mathsf{u}} \rangle}.$

The PoCSverse Complex Networks 153 of 320

The PoCSverse

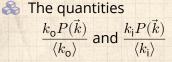
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

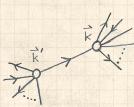
Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Correlations—Directed edge balance:


give the probabilities that in starting at a random end of a randomly selected edge, we begin at a degree \vec{k} node and then find ourselves travelling:

- 1. along an outgoing edge, or
- 2. against the direction of an incoming edge.

🚳 We therefore have

$$P^{(\mathsf{dir})}(\vec{k},\vec{k}') = P^{(\mathsf{i})}(\vec{k}\,|\,\vec{k}')\frac{k_{\mathsf{o}}'P(\vec{k}')}{\langle k_{\mathsf{o}}' \rangle} = P^{(\mathsf{o})}(\vec{k}'\,|\,\vec{k})\frac{k_{\mathsf{i}}P(\vec{k})}{\langle k_{\mathsf{i}} \rangle}$$

Note that $P^{(\text{dir})}(\vec{k}, \vec{k}')$ and $P^{(\text{dir})}(\vec{k}', \vec{k})$ are in general not related if $\vec{k} \neq \vec{k}'$.

The PoCSverse Complex Networks 154 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Summary of contagion conditions for uncorrelated networks:

 \mathfrak{R} I. Undirected, Uncorrelated— $f(d+1) = \mathbf{f}(d)$:

$$\mathbf{R} = \sum_{k_{\mathsf{u}}} P^{(\mathsf{u})}(k_{\mathsf{u}} \,|\, *) \bullet (k_{\mathsf{u}} - 1) \bullet B_{k_{\mathsf{u}}, *}$$

 \mathfrak{R} II. Directed, Uncorrelated— $f(d+1) = \mathbf{f}(d)$:

$$\mathbf{R} = \sum_{k_{\mathrm{i}},k_{\mathrm{o}}} P^{(\mathrm{i})}(k_{\mathrm{i}},k_{\mathrm{o}}\,|\,*) \bullet k_{\mathrm{o}} \bullet B_{k_{\mathrm{i}},*}$$

🚳 III. Mixed Directed and Undirected, Uncorrelated—

$$\begin{bmatrix} f^{(\mathrm{u})}(d+1) \\ f^{(\mathrm{o})}(d+1) \end{bmatrix} = \mathbf{R} \begin{bmatrix} f^{(\mathrm{u})}(d) \\ f^{(\mathrm{o})}(d) \end{bmatrix}$$
$$\mathbf{R} = \sum_{\vec{k}} \begin{bmatrix} P^{(\mathrm{u})}(\vec{k} \mid *) \bullet (k_{\mathrm{u}} - 1) & P^{(\mathrm{i})}(\vec{k} \mid *) \bullet k_{\mathrm{u}} \\ P^{(\mathrm{u})}(\vec{k} \mid *) \bullet k_{\mathrm{o}} & P^{(\mathrm{i})}(\vec{k} \mid *) \bullet k_{\mathrm{o}} \end{bmatrix} \bullet B_{k_{\mathrm{u}}k_{\mathrm{i}}}$$

The PoCSverse Complex Networks 155 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Summary of contagion conditions for correlated networks:

$$R_{k_{\mathsf{u}}k_{\mathsf{u}}'} = P^{(\mathsf{u})}(k_{\mathsf{u}} \,|\, k_{\mathsf{u}}') \bullet (k_{\mathsf{u}} - 1) \bullet B_{k_{\mathsf{u}}k_{\mathsf{u}}'}$$

 $\textcircled{\begin{subarray}{c} \& \\ & \mathsf{Correlated}-f_{k_{\mathsf{i}}k_{\mathsf{o}}}(d+1) = \sum_{k_{\mathsf{i}}',k_{\mathsf{o}}'} R_{k_{\mathsf{i}}k_{\mathsf{o}}k_{\mathsf{i}}'k_{\mathsf{o}}'}f_{k_{\mathsf{i}}'k_{\mathsf{o}}'}(d) \end{array}$

$$R_{k_{\mathrm{i}}k_{\mathrm{o}}k_{\mathrm{i}}'k_{\mathrm{o}}'} = P^{(\mathrm{i})}(k_{\mathrm{i}},k_{\mathrm{o}}\,|\,k_{\mathrm{i}}',k_{\mathrm{o}}') \bullet k_{\mathrm{o}} \bullet B_{k_{\mathrm{i}}k_{\mathrm{o}}k_{\mathrm{i}}'k_{\mathrm{o}}'}$$

🗞 VI. Mixed Directed and Undirected, Correlated—

$$\begin{bmatrix} f_{\vec{k}}^{(\mathrm{u})}(d+1) \\ f_{\vec{k}}^{(\mathrm{o})}(d+1) \end{bmatrix} = \sum_{k'} \mathbf{R}_{\vec{k}\vec{k}'} \begin{bmatrix} f_{\vec{k}'}^{(\mathrm{u})}(d) \\ f_{\vec{k}'}^{(\mathrm{o})}(d) \end{bmatrix}$$
$$\mathbf{R}_{\vec{k}\vec{k}'} = \begin{bmatrix} P^{(\mathrm{u})}(\vec{k} \mid \vec{k}') \bullet (k_{\mathrm{u}} - 1) & P^{(\mathrm{i})}(\vec{k} \mid \vec{k}') \bullet k_{\mathrm{u}} \\ P^{(\mathrm{u})}(\vec{k} \mid \vec{k}') \bullet k_{\mathrm{o}} & P^{(\mathrm{i})}(\vec{k} \mid \vec{k}') \bullet k_{\mathrm{o}} \end{bmatrix} \bullet B_{\vec{k}\vec{k}'}$$

The PoCSverse Complex Networks 156 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Full generalization:

 $\vec{\alpha} = (\nu, \lambda)$

 $= (\nu', \lambda')$

$$f_{\vec{\alpha}}(d+1) = \sum_{\vec{\alpha}'} R_{\vec{\alpha}\vec{\alpha}'} f_{\vec{\alpha}'}(d)$$

 $R_{\vec{\alpha}\vec{\alpha}'}$ is the gain ratio matrix and has the form:

$$R_{\vec{\alpha}\vec{\alpha}'} = P_{\vec{\alpha}\vec{\alpha}'} \bullet k_{\vec{\alpha}\vec{\alpha}'} \bullet B_{\vec{\alpha}\vec{\alpha}'}$$

P_{\$\vec{a}\vec{a}\vec{a}'\$} = conditional probability that a type \$\lambda'\$ edge emanating from a type \$\nu'\$ node leads to a type \$\nu\$ node.

& k_{α̃α̃'} = potential number of newly infected edges of type λ emanating from nodes of type ν.
 & B_{α̃α̃'} = probability that a type ν node is eventually infected by a single infected type λ' link arriving from a neighboring node of type ν'.
 & Generalized contagion condition:

 $\max|\mu|:\mu\in\sigma\left(\mathbf{R}\right)>1$

The PoCSverse Complex Networks 157 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Some claims for social networks:

Social networks yes, but groups, groups, groups
 Sufficiently large social groups are:

- 1. Fandoms.
- 2. Pyramid Schemes,
- 3. Or both.
- Homo narrativus: Storytellers, believers, spreaders.
- 🚳 Stories ~ Characters + Time.
- 🗞 Characters are shortcuts to stories.

The PoCSverse Complex Networks 158 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

For novel diseases:

- 1. Can we predict the size of an epidemic?
- 2. How important is the reproduction number R_0 ?

R_0 approximately same for all of the following:

- 1918-19 "Spanish Flu" ~ 75,000,000 world-wide, 500,000 deaths in US.
- 1957-58 "Asian Flu" ~ 2,000,000 world-wide, 70,000 deaths in US.
- 1968-69 "Hong Kong Flu" ~ 1,000,000 world-wide, 34,000 deaths in US.
- 🗞 2003 "SARS Epidemic" ~ 800 deaths world-wide.

The PoCSverse Complex Networks 160 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Improving simple models

Idea for social networks: incorporate identity

Identity is formed from attributes such as:

- 🚳 Geographic location
- 🚳 Type of employment
- 🚳 Age
- 🚳 Recreational activities

Groups are crucial ...

- formed by people with at least one similar attribute
 - Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.^[110]

The PoCSverse Complex Networks 161 of 320

The PoCSverse

Basic definitions

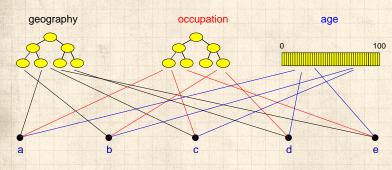
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Generalized context space

(Blau & Schwartz^[12], Simmel^[91], Breiger^[20])

The PoCSverse Complex Networks 162 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

A toy agent-based model:

"Multiscale, resurgent epidemics in a hierarchcial metapopulation model" Watts et al., Proc. Natl. Acad. Sci., **102**, 11157–11162, 2005. [111]

Geography: allow people to move between contexts

- 🗞 Locally: standard SIR model with random mixing
- 🚳 discrete time simulation
- $\beta = infection probability$
- $rightarrow \gamma$ = recovery probability
- rightarrow P = probability of travel
- Solution Movement distance: $Pr(d) \propto exp(-d/\xi)$
- $\mathfrak{K} = \mathsf{typical travel distance}$

The PoCSverse Complex Networks 163 of 320

The PoCSverse

Basic definitions

Examples

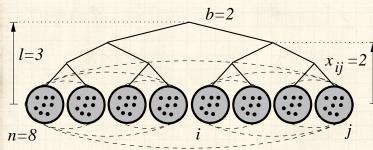
Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

A toy agent-based model

Schematic:

The PoCSverse Complex Networks 164 of 320

The PoCSverse

Basic definitions

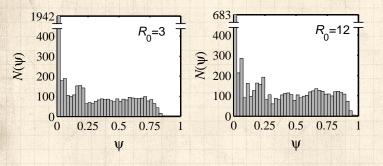
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Example model output: size distributions

Flat distributions are possible for certain ξ and P.
 Different R₀'s may produce similar distributions
 Same epidemic sizes may arise from different R₀'s

The PoCSverse Complex Networks 165 of 320

The PoCSverse

Basic definitions

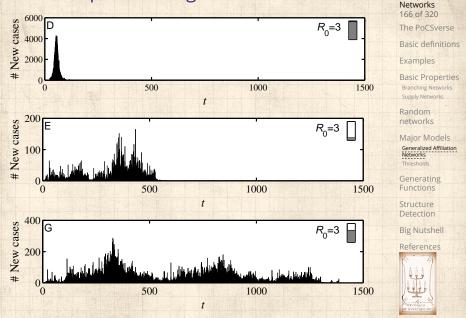
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Model output—resurgence

The PoCSverse

Complex

Journal entry, 2020/02/21:

Twitter DMs to Sam Scarpino:

- Solution Okay: The scientists studying pandemics need to be able to present some kind set of numbers that show how bad things are. The whole R_0 disaster has been waiting to happen because people have been ... lazily having fun with math models? Unconcerned about how to communicate vital scientific information? Stupid? I don't know. Maybe a radar plot visualization. I don't know.
- When these three boundaries are crossed, we are in trouble"
- Measles has an R_0 of 20. We should all have it. Of course, there's no f**king time scale for R_0 so we don't know when that happens.

The PoCSverse Complex Networks 167 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Generating Functions

Structure Detection

Big Nutshell References

The PoCSverse Complex Networks 168 of 320

The PoCSverse

The Last of Us: Groups.

Understanding distributed social search

Milgram's social search experiment

THE MAN WHO Shocked the World

The Life and Legacy of Stanley Milgram

http://www.stanleymilgram.com

- Target person = Boston stockbroker.
- 296 senders from Boston and Omaha.
- 20% of senders reached target.
- 🚳 chain length \simeq 6.5.

Popular terms:

- The Small World Phenomenon;
- lix Degrees of Separation."

The PoCSverse Complex Networks 169 of 320

The PoCSverse

Basic definitions

Examples

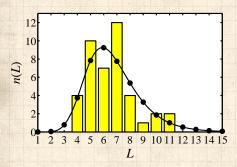
Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

The model—results

Milgram's Nebraska-Boston data:

Model parameters: $N = 10^8$, z = 300, g = 100, b = 10, $\alpha = 1, H = 2$;

$$\begin{array}{l} & \& \\ & \& \\ & L_{\mathsf{model}} \end{pmatrix} \simeq 6.5 \\ & & L_{\mathsf{data}} \simeq 6.5 \end{array}$$

The PoCSverse Complex Networks 170 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Social search—the Columbia experiment

local countries 60,000+ participants in 166 countries

- 🚳 18 targets in 13 countries including
 - a professor at an Ivy League university,
 - 文 an archival inspector in Estonia,
 - a technology consultant in India,
 - a policeman in Australia, and

a veterinarian in the Norwegian army.

🗞 24,000+ chains

We were lucky and contagious:

"Using E-Mail to Count Connections" 🕝, Sarah Milstein, New York Times, Circuits Section (December, 2001) The PoCSverse Complex Networks 171 of 320

The PoCSverse

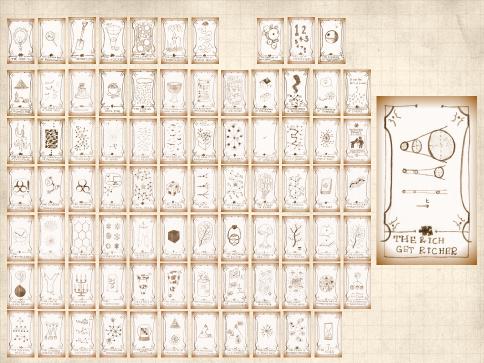
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models


Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Jonathan Harris's Wordcount:

A word frequency distribution explorer:

		Basic demnitions
WORDC	OUNT	Evenenles
		Examples
PREVIOUS WORD NE	XT WORD	Basic Properties
11		Branching Networks
		Supply Networks
		Random
1 2 3 4 5 5		networks
CURRENT WORD		Major Models
		Generalized Affiliation
FIND WORD: BY RANK: REQUESTED WORD: THE 86800 WORDS	IN ARCHIVE	Networks
RANK: 1 ABOUT V	VORDCOUNT	
		Generating
WORD	OUNT	Functions
		Structure
PREVIOUS WORD NE	XT WORD	Detection
		Big Nutshell
anitaharganaylaaturhanrannaha	Irol	
spitsbergeneylesturboproppaho		References
55059 55060 55061 55062	t is a	R. A
CURRENT WORD		
		1 m
FIND WORD: BY RANK: REQUESTED WORD: SPITSBERGEN 86600 WORDS RANK: 55059 ABOUT V	VORDCOUNT	THE CHURCH
10001 P		The WOWLEV-COL.

The PoCSverse Complex Networks 173 of 320

The PoCSverse

Pacie definitions

The long tail of knowledge:

Take a scrolling voyage to the citational abyss, starting at the surface with the lonely, giant citaceans, moving down to the legion of strange, sometimes misplaced, unloved creatures, that dwell in Kahneman's Google Scholar page

The PoCSverse Complex Networks 174 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

"Thing Explainer: Complicated Stuff in Simple Words " a, C by Randall Munroe (2015).^[70]

BOAT THAT GOES UNDER THE SEA

We've always had boats that go under the At first, we used those boats to shoot at Later, we found a new use for these boats sea, but in the last few hundred years, we've other boats, make holes in them, or stick keeping our city-burning machines hidden, learned to make ones that come back up. things to them that blew up.

safe, and ready to use if there's a war.

WORLD-ENDING BOAT

SLEEPING ROOMS

BREATHING STICK

SPECIAL SEA WORDS. HEAVY METAL POWER MACHINE.

EMPTY ROOMS -----

OTHER BOATS THAT GO UNDER THE SEA These are some other boats, drawn to show how big

MACHINES FOR BURNING CITIES.

MACHINES FOR SHOOTING BOATS

MIRROR LOOKERS

SOUND LOOKERS

The PoCSverse Complex Networks 175 of 320

The PoCSverse

Basic definitions

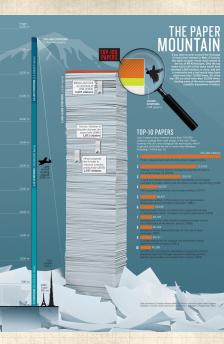
Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks

Generating


Structure Detection

Big Nutshell

Up goer five

Nature (2014): Most cited papers of all time

The PoCSverse Complex Networks 176 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell

Size distributions:

...

The, of, and, to, a, ...= 'objects'
 'Size' = word frequency
 Beep: (Important) CCDF and Zipf plots are related

The PoCSverse Complex Networks 177 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Pre-Zipf's law observations of Zipf's law

1910s: Word frequency examined re Stenography (a construction of brachygraphy or tachygraphy), Jean-Baptiste Estoup (a [36].

1910s: Felix Auerbach pointed out the Zipfitude of city sizes in

"Das Gesetz der Bevölkerungskonzentration" ("The Law of Population Concentration")^[5].

4 1924: G. Udny Yule [118]:

Species per Genus (offers first theoretical mechanism)

1926: Lotka^[61]:

Scientific papers per author (Lotka's law)

The PoCSverse Complex Networks 178 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation

Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Theoretical Work of Yore:

- 1949: Zipf's "Human Behaviour and the Principle of Least-Effort" is published. ^[120]
- 1953: Mandelbrot ^[62]: Optimality argument for Zipf's law; focus on language.
- 1955: Herbert Simon ^[92, 120]: Zipf's law for word frequency, city size, income, publications, and species per genus.
- 1965/1976: Derek de Solla Price ^[26, 83]: Network of Scientific Citations.
- 1999: Barabasi and Albert^[8]: The World Wide Web, networks-at-large.

The PoCSverse Complex Networks 179 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Essential Extract of a Growth Model:

Random Competitive Replication (RCR):

- 1. Start with 1 elephant (or element) of a particular flavor at t = 1
- 2. At time t = 2, 3, 4, ..., add a new elephant in one of two ways:
 - With probability ρ, create a new elephant with a new flavor
 - = Mutation/Innovation
 - With probability 1 ρ, randomly choose from all existing elephants, and make a copy.
 = Replication/Imitation

Elephants of the same flavor form a group

The PoCSverse Complex Networks 180 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Random Competitive Replication:

Example: Words appearing in a language

- Consider words as they appear sequentially.
 With probability *ρ*, the next word has not previously appeared
 = Mutation/Innovation
- Solution With probability 1ρ , randomly choose one word from all words that have come before, and reuse this word
 - = Replication/Imitation

Note: This is a terrible way to write a novel.

The PoCSverse Complex Networks 181 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks


Generating Functions

Structure Detection

Big Nutshell

For example:

o 21 words used	0	21	words	used
-----------------	---	----	-------	------

- · next word is new with prob p
- next word is a Copy with prob 1- ρ prob: next word; $6/_{21}$ ook $4/_{21}$ the $3/_{21}$ and $2/_{21}$ penguin Y_{21} library

The PoCSverse Complex Networks 182 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

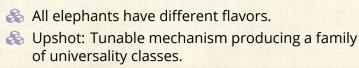
Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell


\Im Micro-to-Macro story with ρ and γ measurable.

$$\gamma = \frac{(2-\rho)}{(1-\rho)} = 1 + \frac{1}{(1-\rho)}$$

$\gamma \simeq 2$

Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.
 For $\rho \simeq 1$ (high innovation rate):

$\gamma \simeq \infty$

The PoCSverse Complex Networks 183 of 320

The PoCSverse

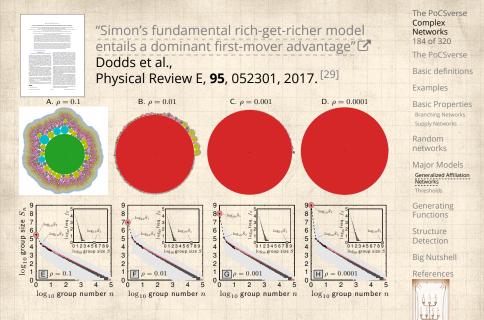
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

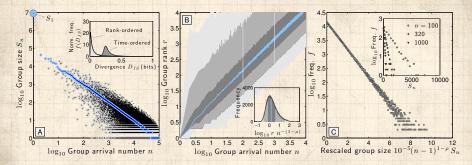
Random networks

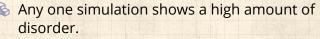
Major Models


Generalized Affiliation Networks Thresholds

Generating Functions

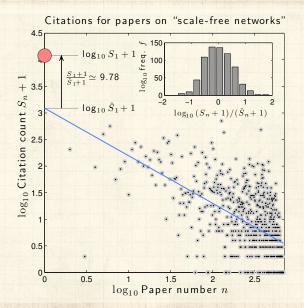
Structure Detection


Big Nutshell



🚳 See visualization at paper's online app-endices 🗹

Arrival variability:



Two orders of magnitude variation in possible rank.

Rank ordering creates a smooth Zipf distribution.
 Size distribution for the *n*th arriving group show exponential decay.

Self-referential citation data:

The PoCSverse Complex Networks 186 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

The Quickening C — Mandelbrot v. Simon: There Can Be Only One: C

Things there should be only one of: Theory, Highlander Films.

Feel free to play Queen's It's a Kind of Magic I' in your head (funding remains tight).

The PoCSverse Complex Networks 187 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

We were born to be Princes of the Universe

vs.

Mandelbrot vs. Simon:

- Mandelbrot (1953): "An Informational Theory of the Statistical Structure of Languages" [62]
- Simon (1955): "On a class of skew distribution functions" ^[92]
- Mandelbrot (1959): "A note on a class of skew distribution functions: analysis and critique of a paper by H.A. Simon" [63]
 - Simon (1960): "Some further notes on a class of skew distribution functions" ^[93]

The PoCSverse Complex Networks 188 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Generating Functions

Structure Detection

Big Nutshell

I have no rival, No man can be my equal

vs.

Mandelbrot vs. Simon:

- Mandelbrot (1961): "Final note on a class of skew distribution functions: analysis and critique of a model due to H.A. Simon" [64]
- Simon (1961): "Reply to 'final note' by Benoit Mandelbrot" ^[95]
- Mandelbrot (1961): "Post scriptum to 'final note" [65]
 - Simon (1961): "Reply to Dr. Mandelbrot's post scriptum"^[94]

The PoCSverse Complex Networks 189 of 320

The PoCSverse

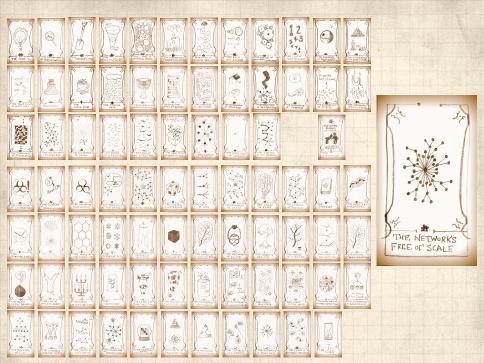
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation


Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Scale-free networks

- Real networks with power-law degree distributions became known as scale-free networks.
- Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

One of the seminal works in complex networks:

"Emergence of scaling in random networks" Barabási and Albert, Science, **286**, 509–511, 1999.^[8]

Times cited: $\sim 43,853$ C (as of May 19, 2023) Somewhat misleading nomenclature ... The PoCSverse Complex Networks 191 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models

Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

"Organization of Growing Random Networks" Krapivsky and Redner, Phys. Rev. E, **63**, 066123, 2001.^[57]

Fooling with the mechanism:

Krapivsky & Redner ^[57] explored the general attachment kernel:

 $\mathbf{Pr}(\text{attach to node } i) \propto A_k = k_i^{\nu}$

where A_k is the attachment kernel and $\nu > 0$. KR also looked at changing the details of the attachment kernel. The PoCSverse Complex Networks 192 of 320

The PoCSverse

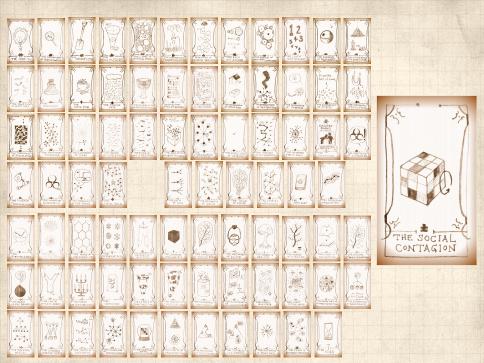
Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models


Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

'The rumor spread through the city like wildfire which had quite often spread through Ankh-Morpork since its citizens had learned the words "fire insurance").'

"The Truth" **3** C by Terry Pratchett (2000). ^[82] The PoCSverse Complex Networks 195 of 320

The PoCSverse

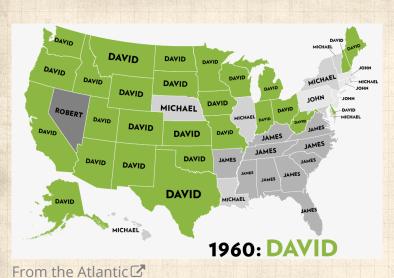
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks


Thresholds

Generating Functions

Structure Detection

Big Nutshell

The PoCSverse Complex Networks 196 of 320

The PoCSverse

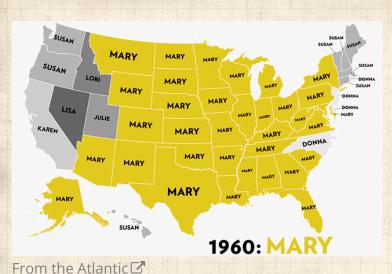
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks


Thresholds

Generating Functions

Structure Detection

Big Nutshell

The PoCSverse Complex Networks 197 of 320

The PoCSverse

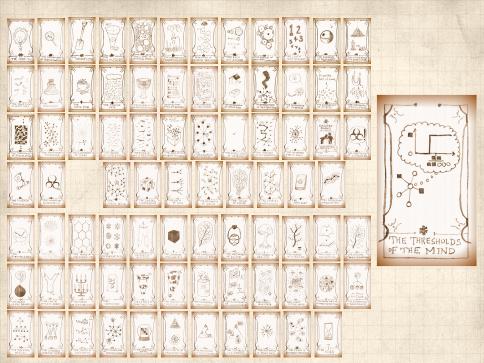
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks


Thresholds

Generating Functions

Structure Detection

Big Nutshell

Social Contagion

Some important models:

Tipping models—Schelling (1971)^[85, 86, 87]

- 📦 Simulation on checker boards
- ldea of thresholds
- Polygon-themed online visualization. (Includes optional diversity-seeking proclivity.)
- Threshold models—Granovetter (1978)^[47]
- Herding models—Bikhchandani, Hirschleifer, Welch (1992)^[10, 11]
 - Social learning theory, Informational cascades,...

The PoCSverse Complex Networks 199 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection

Big Nutshell

Social contagion models

Thresholds

- Basic idea: individuals adopt a behavior when a certain fraction of others have adopted
- Others' may be everyone in a population, an individual's close friends, any reference group.
- 🚳 Response can be probabilistic or deterministic.
- 🚳 Individual thresholds can vary
- Assumption: order of others' adoption does not matter... (unrealistic).
- Assumption: level of influence per person is uniform (unrealistic).

The PoCSverse Complex Networks 200 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection

Big Nutshell

Social Contagion

Some possible origins of thresholds:

- Inherent, evolution-devised inclination to coordinate, to conform, to imitate. [9]
- Lack of information: impute the worth of a good or behavior based on degree of adoption (social proof)
 - Economics: Network effects or network externalities
 - Externalities = Effects on others not directly involved in a transaction
 - Examples: telephones, fax machine, TikTok, operating systems
 - An individual's utility increases with the adoption level among peers and the population in general

The PoCSverse Complex Networks 201 of 320

The PoCSverse

Basic definitions

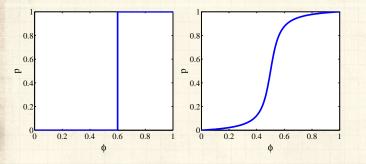
xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds


Generating Functions

Structure Detection

Big Nutshell

Threshold models—response functions

Example threshold influence response functions: deterministic and stochastic

- $\Leftrightarrow \phi$ = fraction of contacts 'on' (e.g., rioting)
- 🚳 Two states: S and I.

The PoCSverse Complex Networks 202 of 320

The PoCSverse

Basic definitions

Examples

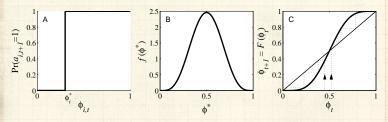
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions


Structure Detection

Big Nutshell

Threshold models

Action based on perceived behavior of others:

- 🚳 Two states: S and I.
- $\Leftrightarrow \phi$ = fraction of contacts 'on' (e.g., rioting)
- Discrete time update (strong assumption!)
- lis is a Critical mass model

The PoCSverse Complex Networks 203 of 320

The PoCSverse

Basic definitions

Examples

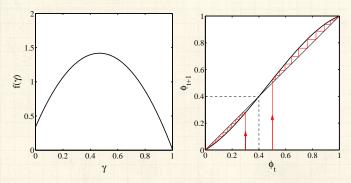
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions


Structure Detection

Big Nutshell

Threshold models

Another example of critical mass model:

Solution Fragility of fixed point at $\phi = 0$. Critical slope = 1. The PoCSverse Complex Networks 204 of 320

The PoCSverse

Basic definitions

Examples

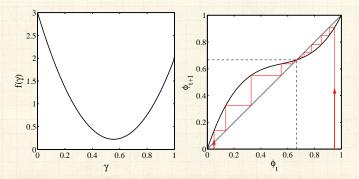
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions


Structure Detection

Big Nutshell

Threshold models

Example of single stable state model:

The PoCSverse Complex Networks 205 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection

Big Nutshell

Threshold models—Nutshell

Implications for collective action theory:

- 1. Collective uniformity \Rightarrow individual uniformity
- 2. Small individual changes \Rightarrow large global changes
- The stories/dynamics of complex systems are conceptually inaccessible for individual-centric narratives.
- 4. System stories live in left null space of our stories—we can't even see them.
- 5. But we happily impose simplistic, individual-centric stories—we can't help ourselves ☑.

The PoCSverse Complex Networks 206 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

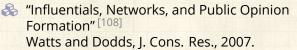
Generating Functions

Structure Detection

Big Nutshell

Many years after Granovetter and Soong's work:

"A simple model of global cascades on random networks" D L Watts Proc Natl Acad Sci 2002 [106]


D. J. Watts. Proc. Natl. Acad. Sci., 2002^[106]

⑦ Mean field model → network model
 ⑦ Individuals now have a limited view of the world

Also consider:

"Seed size strongly affects cascades on random networks" [44] Gleeson and Cahalane, Phys. Rev. E, 2007.

"Direct, phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks"^[30] Dodds, Harris, and Payne, Phys. Rev. E, 2011

The PoCSverse Complex Networks 207 of 320

The PoCSverse

Basic definitions

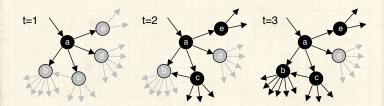
xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds


Generating Functions

Structure Detection

Big Nutshell

Threshold model on a network

 \clubsuit All nodes have threshold $\phi = 0.2$.

The PoCSverse Complex Networks 208 of 320

The PoCSverse

Basic definitions

Examples

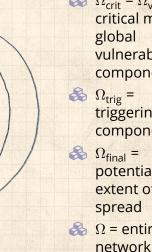
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions


Structure Detection

Big Nutshell

Example random network structure:

inal

 $\Re \Omega_{\rm crit} = \Omega_{\rm vuln} =$ critical mass = vulnerable component triggering component potential extent of spread Ω = entire

The PoCSverse Complex Networks 209 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation

Thresholds

Generating

Structure Detection

Big Nutshell

$$\Omega_{\text{crit}} \subset \Omega_{\text{trig}}; \ \Omega_{\text{crit}} \subset \Omega_{\text{final}}; \text{ and } \Omega_{\text{trig}}, \Omega_{\text{final}} \subset \Omega.$$

Back to following a link:

- A randomly chosen link, traversed in a random direction, leads to a degree k node with probability $\propto kP_k$.
- Follows from there being k ways to connect to a node with degree k.
- 🚳 Normalization:

So

$$\sum_{k=0}^{\infty} k P_k = \langle k \rangle$$

 $P(\text{linked node has degree } k) = \frac{kP_k}{\langle k \rangle}$

The PoCSverse Complex Networks 210 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection

Big Nutshell

Next: Vulnerability of linked node Linked node is vulnerable with probability

$$\beta_k = \int_{\phi'_*=0}^{1/k} f(\phi'_*) \mathsf{d} \phi'_*$$

- Solution If linked node is vulnerable, it produces k 1 new outgoing active links
- If linked node is not vulnerable, it produces no active links.

The PoCSverse Complex Networks 211 of 320

The PoCSverse

Basic definitions

xamples

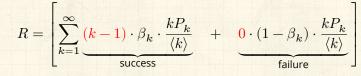
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions


Structure Detection

Big Nutshell

Putting things together:

Expected number of active edges produced by an active edge:

$$=\sum_{k=1}^{\infty}(k-1)\cdot\beta_k\cdot\frac{kP_k}{\langle k\rangle}$$

The PoCSverse Complex Networks 212 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection

Big Nutshell

So... for random networks with fixed degree distributions, cacades take off when:

$$\sum_{k=1}^{\infty} (k-1) \cdot \beta_k \cdot \frac{kP_k}{\langle k \rangle} > 1.$$

 $\beta_k = \text{probability a degree } k \text{ node is vulnerable.}$ $P_k = \text{probability a node has degree } k.$

The PoCSverse Complex Networks 213 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection

Big Nutshell

Two special cases:

 \mathfrak{R} (1) Simple disease-like spreading succeeds: $\beta_k = \beta$

$$\beta \cdot \sum_{k=1}^\infty (k-1) \cdot \frac{kP_k}{\langle k \rangle} > 1$$

rightarrow (2) Giant component exists: eta=1

$$1\cdot \sum_{k=1}^\infty (k-1)\cdot \frac{kP_k}{\langle k\rangle}>1.$$

The PoCSverse Complex Networks 214 of 320

The PoCSverse

Basic definitions

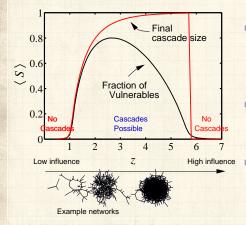
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds


Generating Functions

Structure Detection

Big Nutshell

Cascades on random networks

Cascades occur 2 only if size of max vulnerable cluster > 0. System may be 8 'robust-yetfragile'. 'Ignorance' 2 facilitates spreading.

The PoCSverse Complex Networks 215 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

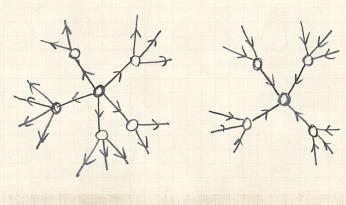
Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection


Big Nutshell

Expected size of spread

Pleasantness:

- Taking off from a single seed story is about expansion away from a node.
- Extent of spreading story is about contraction at a node.

The PoCSverse Complex Networks 216 of 320

The PoCSverse

Basic definitions

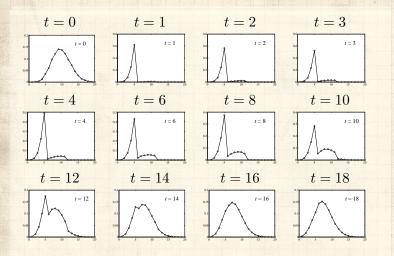
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds


Generating Functions

Structure Detection

Big Nutshell

Early adopters—degree distributions

The PoCSverse Complex Networks 217 of 320 The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

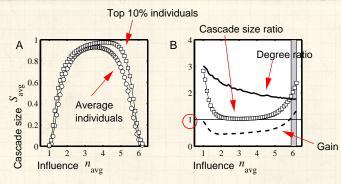
Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection


Big Nutshell

References

 $P_{k,t} \operatorname{versus} k$

The multiplier effect:

Fairly uniform levels of individual influence.
 Multiplier effect is mostly below 1.

The PoCSverse Complex Networks 218 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection

Big Nutshell

Extensions

We have a second second in the second second

"Threshold Models of Social Influence" Watts and Dodds, The Oxford Handbook of Analytical Sociology, **63**, 475–497, 2009. ^[109]

 Assumption of sparse interactions is good
 Degree distribution is (generally) key to a network's function

- Still, random networks don't represent all networks
- 🚳 Major element missing: group structure

The PoCSverse Complex Networks 219 of 320

The PoCSverse

Basic definitions

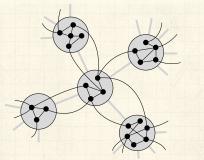
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds


Generating Functions

Structure Detection

Big Nutshell

Group structure—Ramified random networks

p = intergroup connection probability q = intragroup connection probability.

The PoCSverse Complex Networks 220 of 320

The PoCSverse

Basic definitions

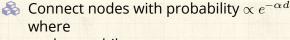
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds


Generating Functions

Structure Detection

Big Nutshell

Generalized affiliation model networks with triadic closure

 α = homophily parameter and

d = distance between nodes (height of lowest common ancestor)

- $rac{1}{\tau_1}$ = intergroup probability of friend-of-friend connection
- $rac{1}{2}$ = intragroup probability of friend-of-friend connection

The PoCSverse Complex Networks 221 of 320

The PoCSverse

Basic definitions

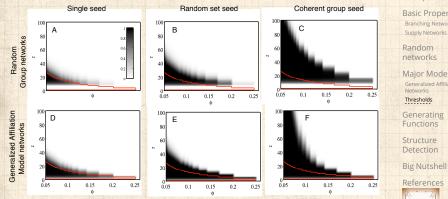
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds


Generating Functions

Structure Detection

Big Nutshell

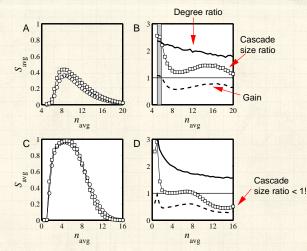
Cascade windows for group-based networks

The PoCSverse Complex Networks 222 of 320

The PoCSverse

Basic definitions

Examples


Basic Properties Branching Networks

Major Models Generalized Affiliation

Big Nutshell

Multiplier effect for group-based networks:

The PoCSverse Complex Networks 223 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

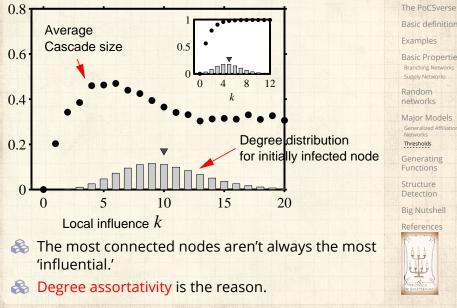
Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection


Big Nutshell

References

🚳 Multiplier almost always below 1.

Assortativity in group-based networks

The PoCSverse Complex Networks 224 of 320

Basic definitions

Basic Properties Branching Networks Supply Networks

Major Models Generalized Affiliation

Big Nutshell

Social contagion

"Without followers, evil cannot spread." –Leonard Nimoy

Summary

- linfluential vulnerables' are key to spread.
- \lambda Early adopters are mostly vulnerables.
- 🗞 Vulnerable nodes important but not necessary.
- 🚳 Groups may greatly facilitate spread.
- Seems that cascade condition is a global one.
- Most extreme/unexpected cascades occur in highly connected networks
- linfluentials' are posterior constructs.
 - 🗞 Many potential influentials exist.

The PoCSverse Complex Networks 225 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection

Big Nutshell

Social contagion

Implications

- Focus on the influential vulnerables.
- Create entities that can be transmitted successfully through many individuals rather than broadcast from one 'influential.'
- Only simple ideas can spread by word-of-mouth. (Idea of opinion leaders spreads well...)
- Want enough individuals who will adopt and display.
- Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages; even so: buttons and hats).
- Entities can be novel or designed to combine with others, e.g. block another one.

The PoCSverse Complex Networks 226 of 320

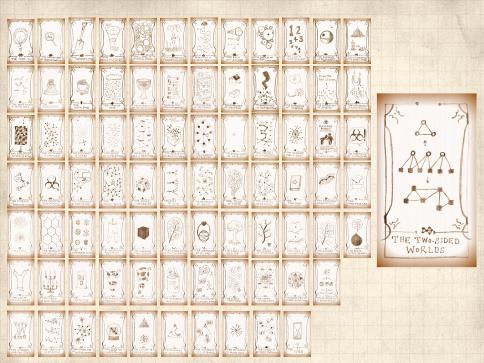
The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection

Big Nutshell References

"Flavor network and the principles of food pairing" Ahn et al., Nature Scientific Reports, **1**, 196, 2011.^[1]

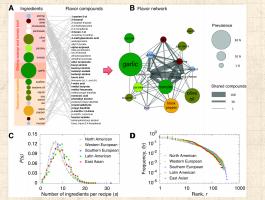


Figure 11 Have network (. 10) The impedents contained in two recipies (left column), together with the flavor compounds that are hown to be present in the impedience (regional). Each show compound is hinked to be impedient and notating is a hyperite track. Since compounds (shown in hisding) are already implicit impedients, (1)) We project the impedient approximation (histing a short interbasic, some compounds (shown in hisding) are already by multiple impedients, (1)) We project the impedient approximation (histing and the impedient approximation) are already of the impedient approximation (histing and the impedient approximation) are already of the impedient approximation (histing and histing The PoCSverse Complex Networks 228 of 320

The PoCSverse

Basic definitions

xamples

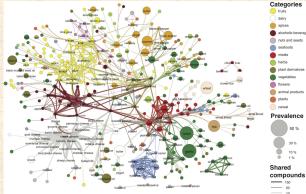
Basic Properties Branching Networks Supply Networks

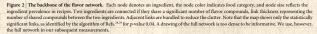
Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions


Structure Detection


Big Nutshell

"Flavor network and the principles of food pairing" Ahn et al., Nature Scientific Reports, 1, 196, 2011.^[1]

Categories alcoholic beverages nuts and seeds seafoods plant derivatives vegetables animal products Prevalence 50 % 30.%

The PoCSverse Complex Networks 229 of 320

The PoCSverse

Basic definitions

Examples

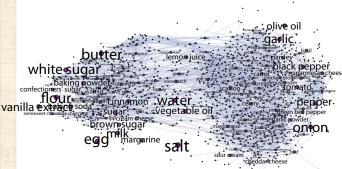
Basic Properties Branching Networks Supply Networks

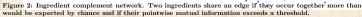
Random networks

Major Models Generalized Affiliation

Thresholds

Generating


Structure Detection


Big Nutshell

"Recipe recommendation using ingredient networks" Teng, Lin, and Adamic, Proceedings of the 3rd Annual ACM Web Science Conference, **1**, 298–307, 2012.^[97]

The PoCSverse Complex Networks 230 of 320

The PoCSverse

Basic definitions

xamples

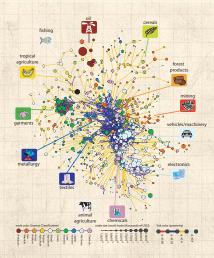
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions


Structure Detection

Big Nutshell

"The Product Space Conditions the Development of Nations" Hidalgo et al., Science, **317**, 482–487, 2007.^[52]

The PoCSverse Complex Networks 231 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions

Structure Detection

Big Nutshell

Networks and creativity:

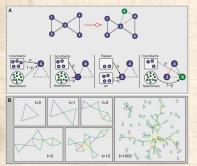


Fig. 2. Modeling the emergence of collaboration networks in creative enterprises. (A) Creation of a team with m - 3 agents. Consider, at time zero, a collaboration network comprising five agents, all incumbents (blue circles). Along with the incumbents, there is a large pool of newcomers (green circles) available to participate in new teams. Each agent in a team has a probability p of being drawn from the pool of incumbents and a probability 1 - p of being drawn from the pool of newcorners. For the second and subsequent agents selected from the incumbents' pool: (i) with probability q, the new agent is randomly selected from among the set of collaborators of a randomly selected incumbent already in the team: (ii) otherwise, he or she is selected at random among all incumbents in the network. For concreteness, let us assume that incumbent 4 is selected as the first agent in the new team (leftmost box). Let us also assume that the second agent is an incumbent, too (center-left box). In this example, the second agent is a past collaborator of agent 4, specifically agent 3 (center-right box). Lastly, the third agent is selected from the pool of newcomers: this agent becomes incumbent 6 (rightmost box). In these boxes and in the following panels and figures, blue lines indicate newcomernewcomer collaborations, green lines indicate newcomer-incumbent collaborations, vellow lines indicate new incumbent-incumbent collaborations, and red lines indicate repeat collaborations. (B) Time evolution of the network of collaborations according to the model for p = 0.5, q = 0.5, and m = 3.

Guimerà et al., Science 2005: ^[48] "Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance" **Broadway** musical industry Scientific collaboration in Social Psychology, Economics, Ecology, and Astronomy.

The PoCSverse Complex Networks 232 of 320

The PoCSverse

Basic definitions

xamples

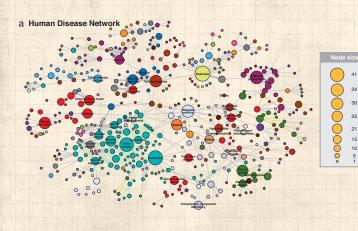
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds

Generating Functions


Structure Detection

Big Nutshell

"The human disease network" Goh et al., Proc. Natl. Acad. Sci., **104**, 8685–8690, 2007. ^[46]

The PoCSverse Complex Networks 233 of 320

The PoCSverse

Basic definitions

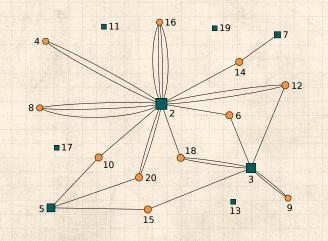
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks

Thresholds


Generating Functions

Structure Detection

Big Nutshell

"The complex architecture of primes and natural numbers" García-Pérez, Serrano, and Boguñá, https://arxiv.org/abs/1402.3612, 2014.^[39]

The PoCSverse Complex Networks 234 of 320

The PoCSverse

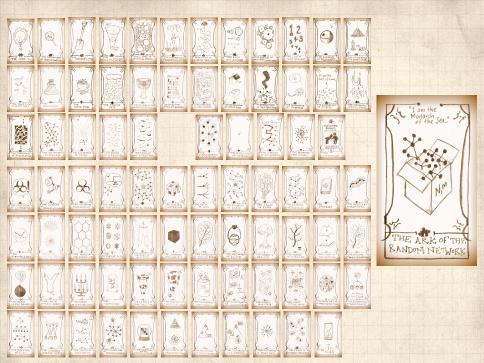
Basic definitions

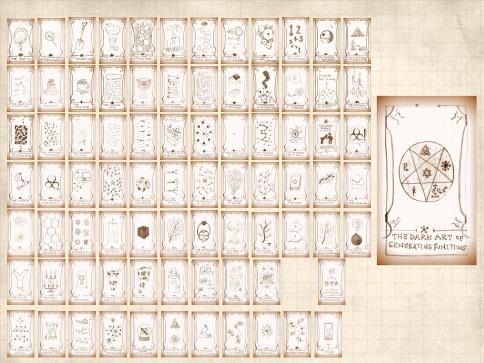
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks


Thresholds


Generating Functions

Structure Detection

Big Nutshell

Generatingfunctionology

- 3 Idea: Given a sequence a_0, a_1, a_2, \dots , associate each element with a distinct function or other mathematical object.
- 🚳 Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Definition:

 \mathbb{R} The generating function (g.f.) for a sequence $\{a_n\}$ is

$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$

 \mathfrak{S} Roughly: transforms a vector in R^{∞} into a function defined on R^1 .

🚳 Related to Fourier, Laplace, Mellin, ...

The PoCSverse Complex Networks 237 of 320

The PoCSverse

Basic definitions

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Thresholds

Generating Functions

Structure

Big Nutshell

Simple examples:

Rolling dice and flipping coins:

 $\bigotimes p_k^{(\textcircled{o})} = \mathbf{Pr}(\text{throwing a } k) = 1/6 \text{ where } k = 1, 2, \dots, 6.$

$$F^{(\textcircled{\bullet})}(x) = \sum_{k=1}^{6} p_k^{(\textcircled{\bullet})} x^k = \frac{1}{6} (x + x^2 + x^3 + x^4 + x^5 + x^6)$$

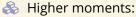
$$p_0^{(coin)} = \mathbf{Pr}(head) = 1/2, p_1^{(coin)} = \mathbf{Pr}(tail) = 1/2.$$

$$F^{(\text{coin})}(x) = p_0^{(\text{coin})} x^0 + p_1^{(\text{coin})} x^1 = \frac{1}{2}(1+x).$$

 A generating function for a probability distribution is called a Probability Generating Function (p.g.f.).
 We'll come back to these simple examples as we derive various delicious properties of generating functions. The PoCSverse **Basic definitions** Examples **Basic Properties** Branching Networks Supply Networks Random networks Major Models Generalized Affiliation Thresholds Generating Functions Structure **Big Nutshell** References

The PoCSverse

Complex Networks 238 of 320


Useful pieces for probability distributions:

🚳 Normalization:

F(1) = 1

🚳 First moment:

 $\langle k\rangle = F'(1)$

$$\left| k^n \right\rangle = \left. \left(x \frac{\mathsf{d}}{\mathsf{d}x} \right)^n F(x) \right|_{x=1}$$

*k*th element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathsf{d}^k}{\mathsf{d} x^k} F(x) \bigg|_{x=0}$$

The PoCSverse Complex Networks 239 of 320

The PoCSverse

Basic definitions

Examples

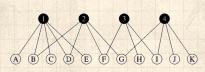
Basic Properties Branching Networks Supply Networks

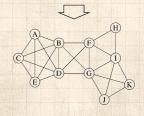
Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell



Random bipartite networks: We'll follow this rather well cited C paper:

"Random graphs with arbitrary degree distributions and their applications" Newman, Strogatz, and Watts, Phys. Rev. E, **64**, 026118, 2001.^[80]

The PoCSverse Complex Networks 240 of 320

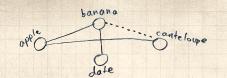
The PoCSverse

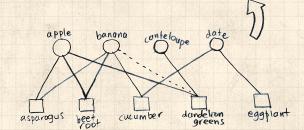
Basic definitions

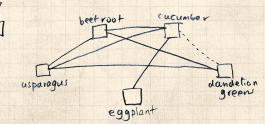
Examples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds


Generating Functions


Structure Detection

Big Nutshell

The PoCSverse Complex Networks 241 of 320

The PoCSverse

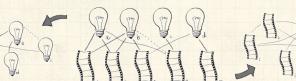
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Example of a bipartite affiliation network and the induced networks:

Center: A small story-trope bipartite graph. ^[28]
 Induced trope network and the induced story network are on the left and right.

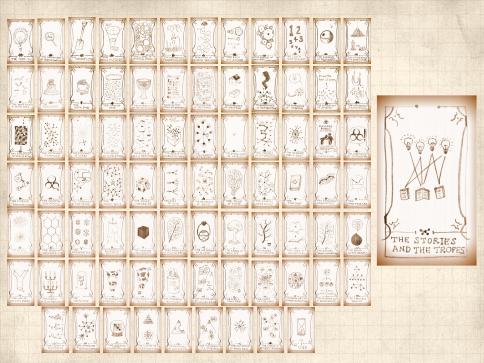
The dashed edge in the bipartite affiliation network indicates an edge added to the system, resulting in the dashed edges being added to the two induced networks. The PoCSverse Complex Networks 242 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks


Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Basic story:

- 🚳 Stories contain tropes, tropes are in stories.
- Solution Consider a story-trope system with N_{\blacksquare} = # stories and N_{Q} = # tropes.
- ♦ $m_{\blacksquare, \heartsuit}$ = number of edges between \blacksquare and \heartsuit .
- Solution Let's have some underlying distributions for numbers of affiliations: $P_k^{(\textcircled{B})}$ (a story has k tropes) and $P_k^{(\textcircled{Q})}$ (a trope is in k stories).
- Average number of affiliations: ⟨k⟩_□ and ⟨k⟩_♀.
 ⟨k⟩_□ = average number of tropes per story.
 ⟨k⟩_♀ = average number of stories containing a given trope.

 $Must have balance: N_{\blacksquare} \cdot \langle k \rangle_{\blacksquare} = m_{\blacksquare, \Im} = N_{\heartsuit} \cdot \langle k \rangle_{\heartsuit}.$

The PoCSverse Complex Networks 244 of 320

The PoCSverse

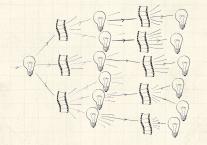
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Spreading through bipartite networks:

- View as bouncing back and forth between the two connected populations.^[28]
- Actual spread may be within only one population (ideas between between people) or through both (failures in physical and communication networks).
- The gain ratio for simple contagion on a bipartite random network = product of two gain ratios.

The PoCSverse Complex Networks 245 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Usual helpers for understanding network's structure:

Randomly select an edge connecting a \blacksquare to a \Im . Probability the \blacksquare contains k other tropes:

$$R_{k}^{(\textcircled{\hbox{\rm I}})} = \frac{(k+1)P_{k+1}^{(\textcircled{\hbox{\rm I}})}}{\sum_{j=0}^{N_{\textcircled{\hbox{\rm I}}}}(j+1)P_{j+1}^{(\textcircled{\hbox{\rm I}})}} = \frac{(k+1)P_{k+1}^{(\textcircled{\hbox{\rm I}})}}{\langle k\rangle_{\textcircled{\hbox{\rm I}}}}.$$

 \mathfrak{S} Probability the \mathfrak{P} is in k other stories:

$$R_k^{(\mathbf{\widehat{Q}})} = \frac{(k+1)P_{k+1}^{(\mathbf{\widehat{Q}})}}{\sum_{j=0}^{N_\mathbf{\widehat{Q}}}(j+1)P_{j+1}^{(\mathbf{\widehat{Q}})}} = \frac{(k+1)P_{k+1}^{(\mathbf{\widehat{Q}})}}{\langle k\rangle_\mathbf{\widehat{Q}}}.$$

The PoCSverse Complex Networks 246 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Networks of 🖽 and 🛿 within bipartite structure:

- $P_{\text{ind},k}^{(\textcircled{H})} = \text{probability a random} \textcircled{H} \text{ is connected to } k$ stories by sharing at least one \Im .
- $P_{\text{ind},k}^{(Q)} = \text{probability a random } Q \text{ is connected to } k$ tropes by co-occurring in at least one **H**.
- $\Re_{\text{ind},k}^{(\mathbb{Q}-\mathbb{H})} = \text{probability a random edge leads to a } \mathbb{H}$ which is connected to k other stories by sharing at least one \mathbb{Q} .
- $R_{ind,k}^{(\blacksquare \mathbb{Q})} = \text{probability a random edge leads to a } \\ \text{which is connected to } k \text{ other tropes by} \\ \text{co-occurring in at least one } \blacksquare.$
 - 🗞 Goal: find these distributions 🛛.
- Another goal: find the induced distribution of component sizes and a test for the presence or absence of a giant component.
 - Unrelated goal: be 10% happier/weep less.

The PoCSverse Complex Networks 247 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

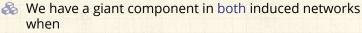
Structure Detection

Big Nutshell

Unstoppable spreading: Is this thing connected?

- Always about the edges: when following a random edge toward a , what's the expected number of new edges leading to other stories via tropes?
- $\label{eq:constraint} \begin{array}{l} & \& \ensuremath{\mathbb{R}} \\ & \& \ensuremath{\mathbb{R}} \\ & & F'_{R_{\mathrm{ind}}^{(\mathbb{Q}} \longrightarrow \mathbb{Q})}(1) \ensuremath{\text{for the trope side of things).}} \end{array} \\ & & F'_{R_{\mathrm{ind}}^{(\mathbb{Q}} \longrightarrow \mathbb{Q})}(1) \ensuremath{\text{for the trope side of things).}} \end{array}$
- 🚳 We compute with joy:

$$\langle k \rangle_{R,\boxplus,\mathrm{ind}} = \left. \frac{\mathrm{d}}{\mathrm{d}x} F_{R_{\mathrm{ind},k}^{(\mathrm{Q}-\mathrm{le})}}(x) \right|_{x=1} = \left. \frac{\mathrm{d}}{\mathrm{d}x} F_{R^{(\mathrm{le})}}\left(F_{R^{(\mathrm{Q})}}(x)\right) \right|_{x=1}$$


 $=F'_{R^{(\underline{\mathbb{Q}})}}(1)F'_{R^{(\underline{\mathbb{H}})}}\left(F_{R^{(\underline{\mathbb{Q}})}}(1)\right)=F'_{R^{(\underline{\mathbb{Q}})}}(1)F'_{R^{(\underline{\mathbb{H}})}}(1)=\frac{F''_{P^{(\underline{\mathbb{Q}})}}(1)}{F'_{P^{(\underline{\mathbb{Q}})}}(1)}\frac{F''_{P^{(\underline{\mathbb{H}})}}(1)}{F'_{P^{(\underline{\mathbb{H}})}}(1)}$

- 🚳 Note symmetry.
- \$happiness++;

.

ln terms of the underlying distributions:

$$\langle k \rangle_{R,\boxplus,\mathrm{ind}} = \frac{\langle k(k-1) \rangle_{\boxplus}}{\langle k \rangle_{\boxplus}} \frac{\langle k(k-1) \rangle_{\mathbb{Q}}}{\langle k \rangle_{\mathbb{Q}}}$$

 $\langle k \rangle_{B} \equiv ind \equiv \langle k \rangle_{B,Q}$ ind > 1

- See this as the product of two gain ratios. #excellent #physics
- lacktrian webs with this condition to make it webs with the second secon mathematically pleasant and pleasantly inscrutable:

$$\sum_{k=0}^{\infty}\sum_{k'=0}^{\infty}kk'(kk'-k-k')P_k^{(\textcircled{H})}P_{k'}^{(\textcircled{Q})}=0.$$

The PoCSverse Complex Networks 249 of 320

The PoCSverse

Basic definitions

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation

Generating Functions

Structure

Big Nutshell

Nutshell

Generating functions allow us to strangely calculate features of random networks.

- line a bit scary and magical.
- Generating functions can be used to study contagion.
- But: For essential results like possibility and probability of global spread, more direct, physics-bearing calculations are possible.
- 🗞 Good real thing: Bipartite affiliation structures.
 - 🗞 Groups, groups, groups, ...

The PoCSverse Complex Networks 250 of 320

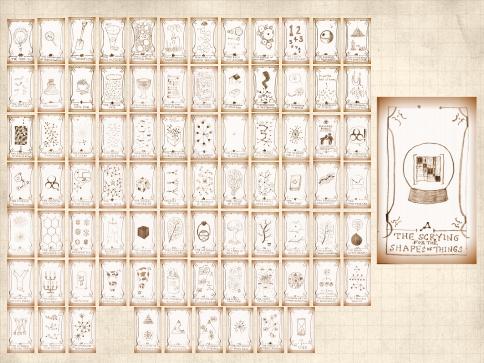
The PoCSverse

Basic definitions

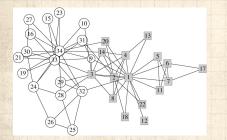
xamples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

Structure detection

▲ Zachary's karate club ^[119, 79]

 Possible substructures: hierarchies, cliques, rings, ...
 Plus: All combinations of substructures.
 Much focus on hierarchies (pyramids)

The issue:

how do we elucidate the internal structure of large networks across many scales? The PoCSverse Complex Networks 252 of 320

The PoCSverse

Basic definitions

Examples

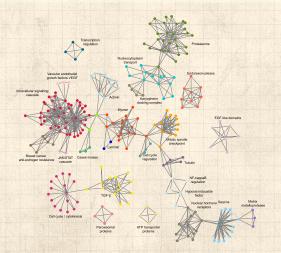
Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection


Big Nutshell

"Community detection in graphs" Santo Fortunato, Physics Reports, **486**, 75–174, 2010. ^[38]

The PoCSverse Complex Networks 253 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Hierarchy by division

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- We'll first work through "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004).^[79]
- 🚳 See also
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001). ^[75, 78]
 - "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002).^[42]

The PoCSverse Complex Networks 254 of 320

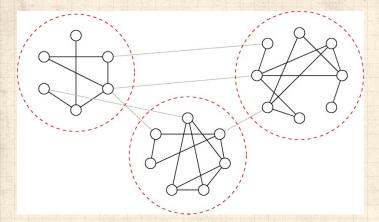
The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Hierarchy by division

The PoCSverse Complex Networks 255 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References

Idea: Edges that connect communities have higher betweenness than edges within communities.

Hierarchy by division

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

Red line indicates appearance of four (4) components at a certain level. The PoCSverse Complex Networks 256 of 320

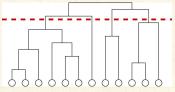
The PoCSverse

Basic definitions

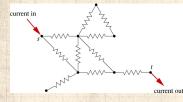
Examples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

Betweenness for electrons:

Unit resistors on each edge. For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t. Measure absolute current along each edge ℓ , $|I_{\ell,st}|$.

The PoCSverse Complex Networks 257 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References

Sum |I_{ℓ,st}| over all pairs of nodes to obtain electronic betweenness for edge ℓ.
 (Equivalent to random walk betweenness.)
 Contributing electronic betweenness for edge between nodes *i* and *j*:

$$B_{ij,st}^{\text{elec}} = a_{ij} |V_{i,st} - V_{j,st}|.$$

Electronic betweenness

Define some arbitrary voltage reference. 🛞 Kirchhoff's laws: current flowing out of node *i* must balance:

$$\sum_{j=1}^N \frac{1}{R_{ij}}(V_j-V_i) = \delta_{is}-\delta_{it}.$$

 \mathfrak{R} Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$. Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$. We can therefore write:

$$\sum_{j=1}^N a_{ij}(V_i-V_j) = \delta_{is}-\delta_{it}.$$

Some gentle jiggery-pokery on the left hand side: $\sum_{i} a_{ij} (V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$ $= V_i k_i - \sum_j a_{ij} V_j = \sum_j \left[k_i \delta_{ij} V_j - a_{ij} V_j \right]$ $= [(\mathbf{K} - \mathbf{A})\vec{V}]_{i}$

The PoCSverse Complex Networks 258 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Thresholds

Generating

Structure Detection

Big Nutshell

Electronic betweenness

Write right hand side as $[I^{\text{ext}}]_{i,st} = \delta_{is} - \delta_{it}$, where I_{st}^{ext} holds external source and sink currents. Matrixingly then:

$$(\mathbf{K} - \mathbf{A})\vec{V} = I_{st}^{\mathsf{ext}}$$

- L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector \vec{V} by **LU** decomposition (Gaussian elimination).
- Do not compute an inverse!
 - Note: voltage offset is arbitrary so no unique solution.
- Presuming network has one component, null space of K A is one dimensional.
 - In fact, $\mathcal{N}(\mathbf{K} \mathbf{A}) = \{c\vec{1}, c \in R\}$ since $(\mathbf{K} \mathbf{A})\vec{1} = \vec{0}$.

The PoCSverse Complex Networks 259 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Alternate betweenness measures:

Random walk betweenness:

- Asking too much: Need full knowledge of network to travel along shortest paths.
- One of many alternatives: consider all random walks between pairs of nodes *i* and *j*.
- Walks starts at node i, traverses the network randomly, ending as soon as it reaches j.
- Record the number of times an edge is followed by a walk.
- 🚳 Consider all pairs of nodes.
- Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.
 - Equivalent to electronic betweenness (see also diffusion).

The PoCSverse Complex Networks 260 of 320

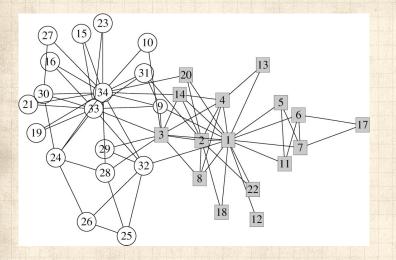
The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Hierarchy by division

🚳 Factions in Zachary's karate club network. [119]

The PoCSverse Complex Networks 261 of 320

The PoCSverse

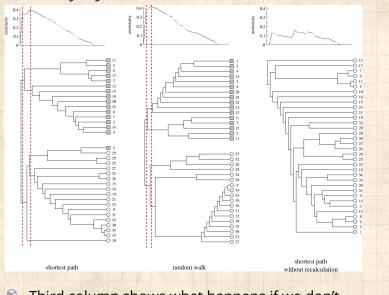
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Hierarchy by division

Third column shows what happens if we don't recompute betweenness after each edge removal.

The PoCSverse Complex Networks 262 of 320

The PoCSverse

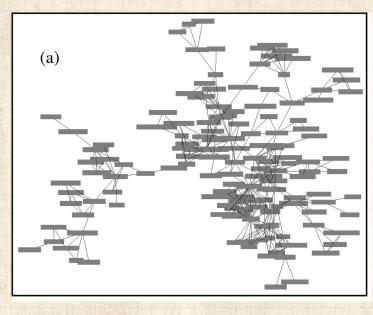
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Scientists working on networks (2004)

The PoCSverse Complex Networks 263 of 320

The PoCSverse

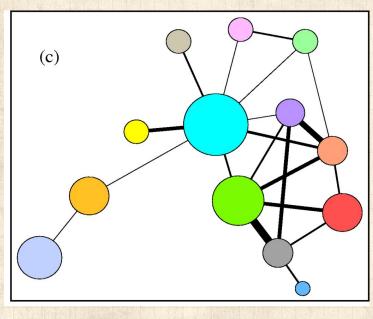
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Scientists working on networks (2004)

The PoCSverse Complex Networks 264 of 320

The PoCSverse

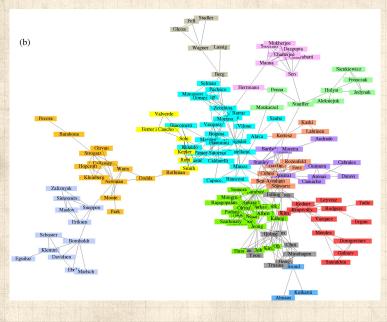
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Scientists working on networks (2004)

The PoCSverse Complex Networks 265 of 320

The PoCSverse

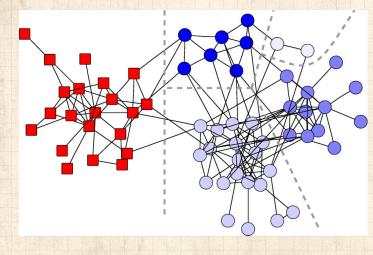
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Dolphins!

The PoCSverse Complex Networks 266 of 320

The PoCSverse

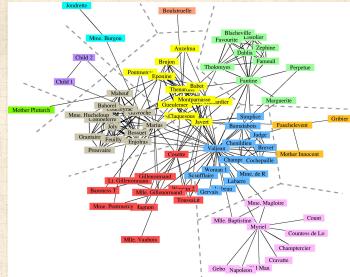
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Les Miserables

More network analyses for Les Miserables here and here . The PoCSverse Complex Networks 267 of 320

The PoCSverse

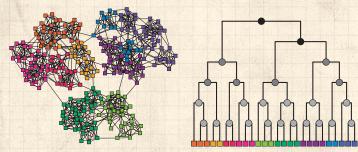
Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Hierarchies and missing links Clauset *et al.*, Nature (2008)^[25]

- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- 🚳 Handle: Hierarchical random graph models.
- Plan: Infer consensus dendogram for a given real network.
- Obtain probability that links are missing (big problem...).

The PoCSverse Complex Networks 268 of 320

The PoCSverse

Basic definitions

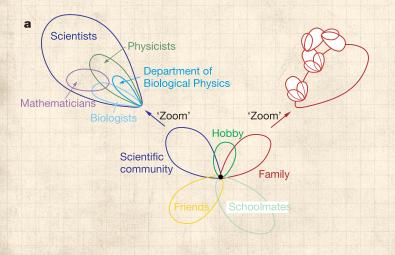
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

"Uncovering the overlapping community structure of complex networks in nature and society" Palla et al., Nature, **435**, 814–818, 2005. ^[81]

The PoCSverse Complex Networks 269 of 320

The PoCSverse

Basic definitions

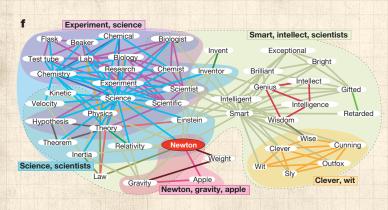
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

"Link communities reveal multiscale complexity in networks" Ahn, Bagrow, and Lehmann, Nature, **466**, 761–764, 2010.^[2]

The PoCSverse Complex Networks 270 of 320

The PoCSverse

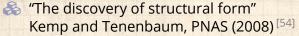
Basic definitions

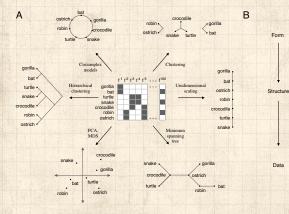
xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions


Structure Detection

Big Nutshell

General structure detection

Tree oorilla . bat turtle • snake • crocodile robin ostrich ·

Form

Data

The PoCSverse Complex Networks 271 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Thresholds

Generating

Structure Detection

Big Nutshell

Example learned structures:

Brever White

Ginsburg

Blackmun Stevens Souter

Marshall

Brennan

С

O'Conno

Kennedy

The PoCSverse Complex Networks 272 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References

Biological features; Supreme Court votes; perceived color differences; face differences; & distances between cities.

Nutshell:

Overview Key Points:

- The field of complex networks came into existence in the late 1990s.
- 🗞 Explosion of papers and interest since 1998/99.
- Hardened up much thinking about complex systems.
- Specific focus on networks that are large-scale, sparse, natural or people-made, evolving and dynamic, and (crucially) measurable.
- 🚳 Three main (blurred) categories:
 - 1. Physical (e.g., river networks),
 - 2. Interactional (e.g., social networks),
 - 3. Abstract (e.g., thesauri).

To solve network problems: "Follow the edges."

The PoCSverse Complex Networks 273 of 320

The PoCSverse

Basic definitions

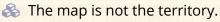
Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions


Structure Detection

Big Nutshell

More Allegations:

- Sometimes the map is not the territory because the territory does not exist.
- "But it might one day!" yelled Captain Survivor Bias IV while holding up two pineapples to gauge the distance between waves.
- 🚳 And the mapper is never the map.
- (Scientific truths shouldn't be named after individuals.)

The PoCSverse Complex Networks 274 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Rather silly but great example of real science:

"How Cats Lap: Water Uptake by *Felis catus*" C Reis et al., *Science*, 2010.

A Study of Cat Lapping

Adult cats and dogs are unable to create suction in their mouths and must use their tongues to drink. A dog will scoop up liquid with the back of its tongue, but a cat will only touch the surface with the smooth tip of its tongue and pull a column of liquid into its mouth.

The PoCSverse Complex Networks 275 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References

Source: Science

THE NEW YORK TIMES; IMAGES FROM VIDEO BY ROMAN STOCKER, SUNGHWAN JUNG, JEFFREY M. ARISTOFF AND PEDRO M. REIS

Amusing interview here

Warnings:

\delta Networks aren't everything.

- Famous models of networks aren't everything in networks.
- Even when networks are core to a system, the best level of analysis may involve some scale of grouping/averaging.
- 🚳 Groups, groups, groups.
 - \diamond And pyramids (\sim hierarchies)

The PoCSverse Complex Networks 276 of 320

The PoCSverse

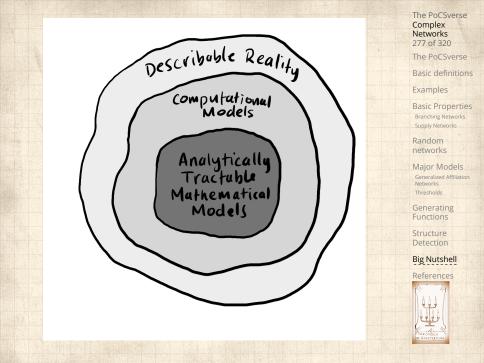
Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds


Generating Functions

Structure Detection

Big Nutshell

Describuble Reality computational Models Analytically Tractuble Mathematical Models

The PoCSverse Complex Networks 278 of 320

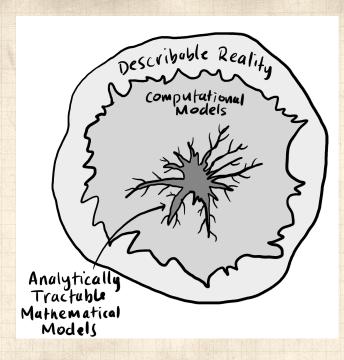
The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

The PoCSverse Complex Networks 279 of 320

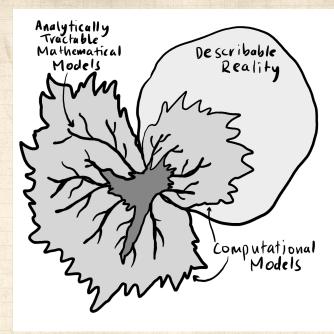
The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks


Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

The PoCSverse Complex Networks 280 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

Basic Science \simeq Describe + Explain:

Lord Kelvin (possibly): 😤 "To measure is to know." 🚳 "lf you cannot measure it, you cannot improve it."

Bonus:

- 🚳 "X-rays will prove to be a hoax."
- 🚳 "There is nothing new to be discovered in physics now, All that remains is more and more precise measurement."

🚓 "Beards will always be cool."

The PoCSverse Complex Networks 281 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Thresholds

Generating

Structure Detection

Big Nutshell

The Pyramid C knows what you did.

O TOP

Mass surveillance by story.

The PoCSverse Complex Networks 282 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

The absolute basics:

Modern basic science in three steps:

- 1. Find interesting/meaningful/important phenomena, optionally involving spectacular amounts of data.
- 2. Describe what you see.
- 3. Explain it.

If you succeed at 1–3:4. Create.5. Share.

Always: 6. Be good people. The PoCSverse Complex Networks 283 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References I

 Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabási. Flavor network and the principles of food pairing. Nature Scientific Reports, 1:196, 2011. pdf
 Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multiscale complexity in networks.

Nature, 466(7307):761–764, 2010. pdf

- [3] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74:47–97, 2002. pdf
- P. W. Anderson.
 More is different.
 Science, 177(4047):393–396, 1972. pdf

The PoCSverse Complex Networks 284 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References II

- [5] F. Auerbach. Das gesetz der bevölkerungskonzentration. <u>Petermanns Geogr. Mitteilungen</u>, 59:73–76, 1913.
- [6] J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan, and A. Rinaldo.
 Topology of the fittest transportation network. Phys. Rev. Lett., 84:4745–4748, 2000. pdf C
- [7] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks. <u>Nature</u>, 399:130–132, 1999. pdf 7
- [8] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. <u>Science</u>, 286:509–511, 1999. pdf 2

The PoCSverse Complex Networks 285 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References III

- [9] A. Bentley, M. Earls, and M. J. O'Brien.
 I'll Have What She's Having: Mapping Social Behavior.
 MIT Press, Cambridge, MA, 2011.
- S. Bikhchandani, D. Hirshleifer, and I. Welch.
 A theory of fads, fashion, custom, and cultural change as informational cascades.
 J. Polit. Econ., 100:992–1026, 1992.
- [11] S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others: Conformity, fads, and informational cascades. J. Econ. Perspect., 12(3):151–170, 1998. pdf C
- [12] P. M. Blau and J. E. Schwartz. Crosscutting Social Circles. Academic Press, Orlando, FL, 1984.

The PoCSverse Complex Networks 286 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References IV

[13] K. L. Blaxter, editor. Energy Metabolism; Proceedings of the 3rd symposium held at Troon, Scotland, May 1964. Academic Press, New York, 1965.

 S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang.
 Complex networks: Structure and dynamics. Physics Reports, 424:175–308, 2006. pdf C

[15] M. Boguñá and M. Ángeles Serrano. Generalized percolation in random directed networks. Phys. Rev. E, 72:016106, 2005. pdf 7 The PoCSverse Complex Networks 287 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References V

- [16] S. Bohn and M. O. Magnasco. Structure, scaling, and phase transition in the optimal transport network. Phys. Rev. Lett., 98:088702, 2007. pdf 7
- [17] J. Bollen, B. Gonçalves, I. van de Leemput, and G. Ruan. The happiness paradox: Your friends are happier than you. EPJ Data Science, 6:4, 2017. pdf C
- J. Bollen, H. Van de Sompel, A. Hagberg,
 L. Bettencourt, R. Chute, M. A. Rodriguez, and
 B. Lyudmila.
 Clickstream data yields high-resolution maps of science.
 PLoS ONE, 4:e4803, 2009. pdf ^C

The PoCSverse Complex Networks 288 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References VI

- [19] S. Bornholdt and H. G. Schuster, editors. Handbook of Graphs and Networks. Wiley-VCH, Berlin, 2003.
- [20] R. L. Breiger. The duality of persons and groups. <u>Social Forces</u>, 53(2):181–190, 1974. pdf C.
- [21] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. Catastrophic cascade of failures in

interdependent networks. Nature, 464:1025–1028, 2010. pdf

[22] J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in designed systems. Phys. Rev. E, 60(2):1412–1427, 1999. pdf The PoCSverse Complex Networks 289 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References VII

- [23] J. M. Carlson and J. Doyle. Highly Optimized Tolerance: Robustness and design in complex systems. Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf C
- [24] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks, 2006. pdf C
- [25] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks. <u>Nature</u>, 453:98–101, 2008. pdf
- [26] D. J. de Solla Price. Networks of scientific papers. Science, 149:510–515, 1965. pdf C.

The PoCSverse Complex Networks 290 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References VIII

 P. S. Dodds.
 Optimal form of branching supply and collection networks.
 Phys. Rev. Lett., 104(4):048702, 2010. pdf

[28] P. S. Dodds.

A simple person's approach to understanding the contagion condition for spreading processes on generalized random networks. In S. Lehmann and Y.-Y. Ahn, editors, <u>Spreading</u> Dynamics in Social Systems. 2017. pdf

[29] P. S. Dodds, D. R. Dewhurst, F. F. Hazlehurst, C. M. Van Oort, L. Mitchell, A. J. Reagan, J. R. Williams, and C. M. Danforth. Simon's fundamental rich-get-richer model entails a dominant first-mover advantage. Physical Review E, 95:052301, 2017. pdf The PoCSverse Complex Networks 291 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References IX

[30] P. S. Dodds, K. D. Harris, and J. L. Payne. Direct, phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks. Phys. Rev. E, 83:056122, 2011. pdf

P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf C

[32] P. S. Dodds and D. H. Rothman. Scaling, universality, and geomorphology. <u>Annu. Rev. Earth Planet. Sci.</u>, 28:571–610, 2000. pdf The PoCSverse Complex Networks 292 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References X

[33] P. S. Dodds and D. H. Rothman. Geometry of river networks. I. Scaling, fluctuations, and deviations. Physical Review E, 63(1):016115, 2001. pdf C

- [34] S. N. Dorogovtsev and J. F. F. Mendes.
 <u>Evolution of Networks</u>.
 Oxford University Press, Oxford, UK, 2003.
- [35] Y.-H. Eom and H.-H. Jo. Generalized friendship paradox in complex networks: The case of scientific collaboration. Nature Scientific Reports, 4:4603, 2014. pdf

[36] J.-B. Estoup. Gammes sténographiques: méthode et exercices pour l'acquisition de la vitesse. Institut Sténographique, 1916. The PoCSverse Complex Networks 293 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XI

- [37] S. L. Feld. Why your friends have more friends than you do. Am. J. of Sociol., 96:1464–1477, 1991. pdf 7
- [38] S. Fortunato. Community detection in graphs. Physics Reports, 486:75–174, 2010. pdf C
- [39] L. P. García-Pérez, M. A. Serrano, and M. Boguñá.

The complex architecture of primes and natural numbers, 2014. https://arxiv.org/abs/1402.3612. pdf

[40] M. T. Gastner and M. E. J. Newman. Optimal design of spatial distribution networks. <u>Phys. Rev. E</u>, 74:016117, 2006. pdf The PoCSverse Complex Networks 294 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XII

[41] M. T. Gastner and M. E. J. Newman. Shape and efficiency in spatial distribution networks. J. Stat. Mech.: Theor. & Exp., 1:P01015, 2006. pdf

[42] M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proc. Natl. Acad. Sci., 99:7821–7826, 2002. pdf C

[43] M. Gladwell. <u>The Tipping Point</u>. Little, Brown and Company, New York, 2000. The PoCSverse Complex Networks 295 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XIII

J. P. Gleeson and D. J. Cahalane. [44] Seed size strongly affects cascades on random networks. Phys. Rev. E, 75:056103, 2007. pdf [45] W. S. Glock. The development of drainage systems: A synoptic view. The Geographical Review, 21:475-482, 1931. pdf K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, [46] M. Vidal, and A.-L. Barabási. The human disease network. Proc. Natl. Acad. Sci., 104:8685-8690, 2007. pdf

The PoCSverse Complex Networks 296 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XIV

[47] M. Granovetter. Threshold models of collective behavior. Am. J. Sociol., 83(6):1420–1443, 1978. pdf

[48] R. Guimerà, B. Uzzi, J. Spiro, and L. A. N. Amaral. Team assembly mechanisms determine collaboration network structure and team performance. <u>Science</u>, 308:697–702, 2005. pdf C

[49]

S. M. Gusein-Zade.

Bunge's problem in central place theory and its generalizations. Geogr. Anal., 14:246–252, 1982. pdf The PoCSverse Complex Networks 297 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XV

[50] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf

- [51] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. IEEE Intelligent Systems, 24:8–12, 2009. pdf
- [52] C. A. Hidalgo, B. Klinger, A.-L. Barabási, and R. Hausman. The product space conditions the development of nations. Science, 317:482–487, 2007. pdf 2

The PoCSverse Complex Networks 298 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XVI

[53] R. E. Horton. Erosional development of streams and their Examples drainage basins; hydrophysical approach to quatitative morphology. Bulletin of the Geological Society of America, Random 56(3):275-370, 1945. pdf networks [54] C. Kemp and J. B. Tenenbaum. The discovery of structural form. Thresholds Proc. Natl. Acad. Sci., 105:10687-10692, 2008. Generating pdf Structure Detection [55] J. W. Kirchner. Statistical inevitability of Horton's laws and the References apparent randomness of stream channel networks. Geology, 21:591–594, 1993. pdf

The PoCSverse Complex Networks 299 of 320

The PoCSverse

Basic definitions

Basic Properties Branching Networks Supply Networks

Major Models Generalized Affiliation

Big Nutshell

References XVII

[56] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf

[57] P. L. Krapivsky and S. Redner. Organization of growing random networks. Phys. Rev. E, 63:066123, 2001. pdf 7

[58] M. Kretzschmar and M. Morris. Measures of concurrency in networks and the spread of infectious disease. Math. Biosci., 133:165–95, 1996. pdf 7 The PoCSverse Complex Networks 300 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XVIII

[59] P. La Barbera and R. Rosso. Reply. Water Resources Research, 26(9):2245–2248, 1990. pdf

[60] L. B. Leopold.
 <u>A View of the River</u>.
 Harvard University Press, Cambridge, MA, 1994.

[61] A. J. Lotka. The frequency distribution of scientific productivity. <u>Journal of the Washington Academy of Science</u>, 16:317–323, 1926.

The PoCSverse Complex Networks 301 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XIX

- [62] B. B. Mandelbrot.
 An informational theory of the statistical structure of languages.
 In W. Jackson, editor, <u>Communication Theory</u>, pages 486–502. Butterworth, Woburn, MA, 1953.
 pdf C
- [63] B. B. Mandelbrot.
 A note on a class of skew distribution function.
 Analysis and critique of a paper by H. A. Simon.
 Information and Control, 2:90–99, 1959.
- [64] B. B. Mandelbrot.

Final note on a class of skew distribution functions: analysis and critique of a model due to H. A. Simon. Information and Control, 4:198–216, 1961. The PoCSverse Complex Networks 302 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XX

- [65] B. B. Mandelbrot.
 Post scriptum to 'final note'.
 Information and Control, 4:300–304, 1961.
- [66] K. A. McCulloh, J. S. Sperry, and F. R. Adler. Water transport in plants obeys Murray's law. Nature, 421:939–942, 2003. pdf 7
- [67] K. A. McCulloh, J. S. Sperry, and F. R. Adler. Murray's law and the hydraulic vs mechanical functioning of wood. <u>Functional Ecology</u>, 18:931–938, 2004. pdf

 [68] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon.
 On the uniform generation of random graphs with prescribed degree sequences, 2003. pdf The PoCSverse Complex Networks 303 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXI

[69] D. R. Montgomery and W. E. Dietrich. Channel initiation and the problem of landscape scale. <u>Science</u>, 255:826–30, 1992. pdf C

[70] R. Munroe. Thing Explainer: Complicated Stuff in Simple Words. Houghton Mifflin Harcourt, 2015.

[71] C. D. Murray.

The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol., 9(9):835–841, 1926. pdf

The PoCSverse Complex Networks 304 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXII

[72] C. D. Murray.

The physiological principle of minimum work. I. The vascular system and the cost of blood volume.

Proc. Natl. Acad. Sci., 12:207–214, 1926. pdf

[73] C. D. Murray.

A relationship between circumference and weight in trees and its bearing on branching angles. J. Gen. Physiol., 10:725–729, 1927. pdf

[74] M. Newman.

Assortative mixing in networks. Phys. Rev. Lett., 89:208701, 2002. pdf The PoCSverse Complex Networks 305 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXIII

[75] M. E. J. Newman. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E, 64(1):016132, 2001. pdf

[76] M. E. J. Newman. Ego-centered networks and the ripple effect,. Social Networks, 25:83–95, 2003. pdf 7

[77] M. E. J. Newman. The structure and function of complex networks. SIAM Rev., 45(2):167–256, 2003. pdf

The PoCSverse Complex Networks 306 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXIV

[78] M. E. J. Newman.

Erratum: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality [Phys. Rev. E 64, 016132 (2001)]. Phys. Rev. E, 73:039906(E), 2006. pdf

[79] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys. Rev. E, 69(2):026113, 2004. pdf

[80] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E, 64:026118, 2001. pdf C The PoCSverse Complex Networks 307 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXV

[81] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. <u>Nature</u>, 435(7043):814–818, 2005. pdf 7

[82] T. Pratchett. The Truth. HarperCollins, 2000.

[83]

D. D. S. Price. A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, pages 292–306, 1976. pdf The PoCSverse Complex Networks 308 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXVI

[84] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997. T. C. Schelling. [85] Dynamic models of segregation. J. Math. Sociol., 1:143–186, 1971. pdf 🗹 T. C. Schelling. [86] Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. J. Conflict Resolut., 17:381–428, 1973. pdf

The PoCSverse Complex Networks 309 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXVII

[87] T. C. Schelling. <u>Micromotives and Macrobehavior</u>. Norton, New York, 1978.

[88] S. A. Schumm. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. <u>Bulletin of the Geological Society of America</u>, 67:597–646, 1956. pdf C

[89] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of *Escherichia coli*. Nature Genetics, 31:64–68, 2002. pdf

The PoCSverse Complex Networks 310 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXVIII

[90] T. F. Sherman. On connecting large vessels to small. The meaning of Murray's law. <u>The Journal of general physiology</u>, 78(4):431–453, 1981. pdf

 [91] G. Simmel. The number of members as determining the sociological form of the group. I. American Journal of Sociology, 8:1–46, 1902.

[92] H. A. Simon. On a class of skew distribution functions. <u>Biometrika</u>, 42:425–440, 1955. pdf C

The PoCSverse Complex Networks 311 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXIX

The PoCSverse [93] H. A. Simon. Some further notes on a class of skew Examples distribution functions. Information and Control, 3:80-88, 1960. Supply Networks Random [94] H. A. Simon. networks Reply to Dr. Mandelbrot's post scriptum. Major Models Information and Control, 4:305-308, 1961. Thresholds Generating [95] H. A. Simon. Reply to 'final note' by Benoît Mandelbrot. Structure Information and Control, 4:217-223, 1961. **Big Nutshell** [96] D. Sornette. References Critical Phenomena in Natural Sciences.

Springer-Verlag, Berlin, 1st edition, 2003.

The PoCSverse Complex Networks 312 of 320

Basic definitions

Basic Properties Branching Networks

Generalized Affiliation

References XXX

[97] C.-Y. Teng, Y.-R. Lin, and L. A. Adamic. Recipe recommendation using ingredient networks. In Proceedings of the 3rd Annual ACM Web Science Conference, WebSci '12, pages 298-307, New York, NY, USA, 2012. ACM. pdf A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, [98] M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki. Rules for biologically inspired adaptive network

design. Science, 327(5964):439–442, 2010. pdf 🗹

[99] D. W. Thompson. On Growth and Form. Cambridge University Pres, Great Britain, 2nd edition, 1952. The PoCSverse Complex Networks 313 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXXI

[100] D. W. Thompson. On Growth and Form — Abridged Edition. Cambridge University Press, Great Britain, 1961.

[101] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. <u>Geophysical Bulletin of Hokkaido University</u>, 15:1–19, 1966. pdf

[102] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution. Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf

The PoCSverse Complex Networks 314 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXXII

[103] E. Tokunaga. Ordering of divide segments and law of divide segment numbers. Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984. [104] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities. Proc. Natl. Acad. Sci., 106:14236-14240, 2009. pdf

[105] F. Vega-Redondo. Complex Social Networks. Cambridge University Press, 2007. The PoCSverse Complex Networks 315 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXXIII

[106] D. J. Watts. A simple model of global cascades on random networks. Proc. Natl. Acad. Sci., 99(9):5766-5771, 2002. pdf [107] D. J. Watts. Six Degrees. Norton, New York, 2003. [108] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation. Journal of Consumer Research, 34:441-458, 2007. pdf

The PoCSverse Complex Networks 316 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXXIV

[109] D. J. Watts and P. S. Dodds. Threshold models of social influence. In P. Hedström and P. Bearman, editors, <u>The</u> Oxford Handbook of Analytical Sociology, chapter 20, pages 475–497. Oxford University Press, Oxford, UK, 2009. pdf^C

[110] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf

 [111] D. J. Watts, R. Muhamad, D. Medina, and P. S. Dodds.
 Multiscale, resurgent epidemics in a hierarchcial metapopulation model.

Proc. Natl. Acad. Sci., 102(32):11157–11162, 2005. pdf

The PoCSverse Complex Networks 317 of 320

The PoCSverse

Basic definitions

xamples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXXV

[112] D. J. Watts and S. J. Strogatz. Collective dynamics of 'small-world' networks. Nature, 393:440–442, 1998. pdf 7

[113] G. B. West, J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in biology. Science, 276:122–126, 1997. pdf

[114] E. Wigner.

The unreasonable effectivenss of mathematics in the natural sciences. Communications on Pure and Applied

Mathematics, 13:1–14, 1960. pdf

[115] H. S. Wilf. <u>Generatingfunctionology</u>. A K Peters, Natick, MA, 3rd edition, 2006. pdf C The PoCSverse Complex Networks 318 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXXVI

[116] Q. Xia. Optimal paths related to transport problems. <u>Communications in Contemporary Mathematics</u>, 5:251–279, 2003. pdf C

[117] Q. Xia. The formation of a tree leaf. ESAIM: Control, Optimisation and Calculus of Variations, 13:359–377, 2007. pdf

[118] G. U. Yule.

A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. B, 213:21–87, 1925. pdf The PoCSverse Complex Networks 319 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

References XXXVII

[119] W. W. Zachary. An information flow model for conflict and fission in small groups. J. Anthropol. Res., 33:452–473, 1977.

[120] G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

The PoCSverse Complex Networks 320 of 320

The PoCSverse

Basic definitions

Examples

Basic Properties Branching Networks Supply Networks

Random networks

Major Models Generalized Affiliation Networks Thresholds

Generating Functions

Structure Detection

Big Nutshell

