Generating Functions and Networks

Last updated: 2023/08/22, 11:48:23 EDT

Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 | @pocsvox

Prof. Peter Sheridan Dodds | @peterdodds

Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont

The PoCSverse Generating Functions and Networks 1 of 60

Generating

Basic Properties Giant Component

A few examples Average Component Size

These slides are brought to you by:

The PoCSverse Generating Functions and Networks 2 of 60

Generating Functions

Definitions

Basic Properties Giant Component Condition

Useful results

Size of the Giant Component A few examples

Average Component Size

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett the cat

The PoCSverse Generating Functions and Networks 3 of 60

Generating Functions

Definitions

Basic Properties Giant Component Condition

Useful results
Size of the Giant

Average Component Size

Component A few examples

Outline

Generating Functions

Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
A few examples
Average Component Size

References

The PocSverse Generating Functions and Networks 4 of 60

Generating Functions

Definition

Basic Properties
Giant Component

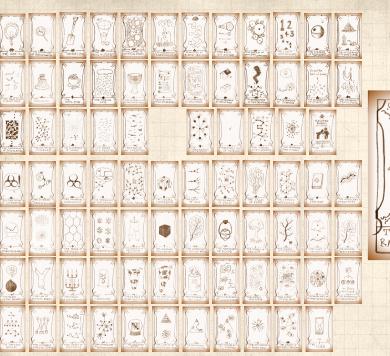
Condition

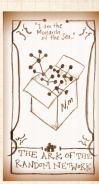
Useful result

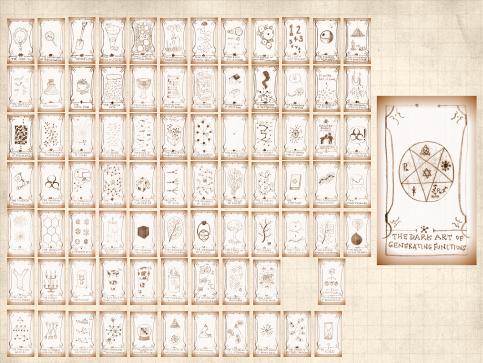
Size of the G

A few examples

Average Component Size







Generating function ology [1]

- ldea: Given a sequence a_0, a_1, a_2, \dots , associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Definition:

 $lap{3}$ The generating function (g.f.) for a sequence $\{a_n\}$ is

$$F(x) = \sum_{n=0}^{\infty} a_n x^n.$$

- Roughly: transforms a vector in R^{∞} into a function defined on R^1 .
- 🙈 Related to Fourier, Laplace, Mellin, ...

The PoCSverse Generating Functions and Networks 8 of 60

Generating Functions

Definitions

Basic Properties Giant Component Condition

Useful results

A few examples
Average Component Size

Simple examples:

Rolling dice and flipping coins:

$$\begin{cases} \&\ p_k^{oldsymbol{(\cdot)}} = \mathbf{Pr}(\mbox{throwing a } k) = 1/6 \mbox{ where } k = 1, 2, \dots, 6. \end{cases}$$

$$F^{(\bigodot)}(x) = \sum_{k=1}^6 p_k^{(\bigodot)} x^k = \frac{1}{6} (x + x^2 + x^3 + x^4 + x^5 + x^6).$$

$$\geqslant p_0^{(\mathsf{coin})} = \mathbf{Pr}(\mathsf{head}) = 1/2, p_1^{(\mathsf{coin})} = \mathbf{Pr}(\mathsf{tail}) = 1/2.$$

$$F^{\text{(coin)}}(x) = p_0^{\text{(coin)}} x^0 + p_1^{\text{(coin)}} x^1 = \frac{1}{2} (1+x).$$

- A generating function for a probability distribution is called a Probability Generating Function (p.g.f.).
- We'll come back to these simple examples as we derive various delicious properties of generating functions.

The PoCSverse Generating Functions and Networks 9 of 60

Generating Functions

Definitions

Basic Properties
Giant Component
Condition

Component sizes
Useful results

Component
A few examples
Average Component Size

Example

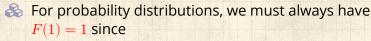
Take a degree distribution with exponential decay:

$$P_k = c e^{-\lambda k}$$

where geometric sumfully, we have $c=1-e^{-\lambda}$ The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

Notice that $F(1) = c/(1-e^{-\lambda}) = 1$.



$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1.$$

Check die and coin p.g.f.'s.

The PoCSverse Generating Functions and Networks

Generating

Definitions

Basic Properties Giant Component

A few examples

Average Component Size

Properties:

Average degree:

$$\begin{split} \langle k \rangle &= \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \Bigg|_{x=1} \\ &= \frac{\mathsf{d}}{\mathsf{d} x} F(x) \Bigg|_{x=1} = F'(1) \end{split}$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$

So:
$$\langle k \rangle = F'(1) = \frac{e^{-\lambda}}{(1-e^{-\lambda})}.$$

Check for die and coin p.g.f.'s.

The PoCSverse Generating Functions and Networks 12 of 60

Generating

Basic Properties Giant Component

A few examples Average Component Size

Useful pieces for probability distributions:

Normalization:

$$F(1) = 1$$

First moment:

$$\langle k \rangle = F'(1)$$

Higher moments:

$$\langle k^n \rangle = \left. \left(x \frac{\mathrm{d}}{\mathrm{d}x} \right)^n F(x) \right|_{x=1}$$

& kth element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} F(x) \bigg|_{x=0}$$

The PoCSverse Generating Functions and Networks

Generating Functions

Definitions

Basic Properties
Giant Component

Condition

Useful results

Component A few examples

Average Component Size

A beautiful, fundamental thing:

The generating function for the sum of two random variables

$$W = U + V$$

is

$$F_{W}(x) = F_{U}(x)F_{V}(x).$$

- Convolve yourself with Convolutions: Insert assignment question

 ☐.
- Try with die and coin p.g.f.'s.
 - 1. Add two coins (tail=0, head=1).
 - 2. Add two dice.
 - 3. Add a coin flip to one die roll.

The PoCSverse Generating Functions and Networks 14 of 60

Generating Functions

Definitions

Basic Properties
Giant Component

Condition

Useful results

Component

A few examples

Average Component Size

Edge-degree distribution

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

- Let's re-express our condition in terms of generating functions.
- \mathfrak{S} We first need the g.f. for R_k .
- We'll now use this notation:

$$\frac{F_P(x)}{F_R(x)}$$
 is the g.f. for $\frac{P_k}{R_k}$.

Giant component condition in terms of g.f. is:

$$\langle k \rangle_R = F_R'(1) > 1.$$

 $\red{\$}$ Now find how F_R is related to F_P ...

The PoCSverse Generating Functions and Networks 16 of 60

Generating Functions

Definition

Basic Properties Giant Component Condition

Component si

Size of the Giant

A few examples
Average Component Size

Edge-degree distribution

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k}{k} x^k = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out $\frac{1}{\langle k \rangle}$:

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d} x} x^j$$

$$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-\frac{\mathbf{P_{0}}}{\mathbf{P_{0}}}\right)\\=\frac{1}{\langle k\rangle}F_{P}'(x).$$

Finally, since $\langle k \rangle = F_{\mathcal{D}}'(1)$,

$$F_R(x) = \frac{F_P'(x)}{F_P'(1)}$$

The PoCSverse Generating Functions and Networks

Generating

Basic Properties Giant Component

Condition

A few examples Average Component Size

Edge-degree distribution

- Recall giant component condition is $\langle k \rangle_R = F_R'(1) > 1$.
- $\red {\mathbb S}$ Since we have $F_R(x) = F_P'(x)/F_P'(1)$,

$$F'_{R}(x) = \frac{F''_{P}(x)}{F'_{P}(1)}$$

Setting x=1, our condition becomes

$$\frac{F_P''(1)}{F_P'(1)} > 1$$

The PoCSverse Generating Functions and Networks 18 of 60

Generating Functions

Definitions

Basic Properties

Giant Component

Component size

Useful results
Size of the Gia
Component

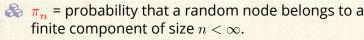
A few examples

Average Component Size

Size distributions

To figure out the size of the largest component (S_1), we need more resolution on component sizes.

Definitions:



 ρ_n = probability that a random end of a random link leads to a finite subcomponent of size $n < \infty$.

Local-global connection:

$$P_k, R_k \Leftrightarrow \pi_n, \rho_n$$
 neighbors \Leftrightarrow components

The PoCSverse Generating Functions and Networks 20 of 60

Generating Functions

Basic Pro

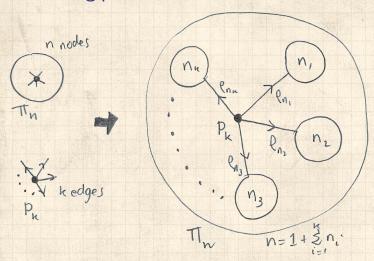
Basic Properties Giant Component Condition

Component sizes

Size of the Giant Component

A few examples
Average Component Size

Connecting probabilities:



Markov property of random networks connects π_n , ρ_n , and P_k .

The PoCSverse Generating Functions and Networks 21 of 60

Generating

Definitions

Basic Properties Giant Component Condition

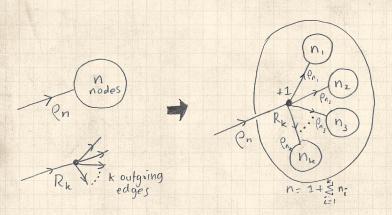
Component sizes

Useful results
Size of the Giant
Component

A few examples

Average Component Size

Connecting probabilities:



The PoCSverse Generating Functions and Networks 22 of 60

Generating

Definitions

Basic Properties Giant Component

Component sizes

Useful results

Component A few examples

Average Component Size

References

 \Re Markov property of random networks connects ρ_n and R_k .

G.f.'s for component size distributions:

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n \text{ and } F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$$

The largest component:

- Subtle key: $F_{\pi}(1)$ is the probability that a node belongs to a finite component.
- $\red{solution}$ Therefore: $S_1=1-F_\pi(1)$.

Our mission, which we accept:

Determine and connect the four generating functions

$$F_P, F_R, F_{\pi}, \text{ and } F_{\rho}.$$

The PoCSverse Generating Functions and Networks 23 of 60

Generating Functions

Definitions

Basic Properties Giant Component Condition

Component sizes
Useful results

A few examples

Average Component Size

Useful results we'll need for g.f.'s

Sneaky Result 1:

- Consider two random variables \underline{U} and \underline{V} whose values may be 0, 1, 2, ...
- \ref{Model} Write probability distributions as \ref{U}_k and \ref{V}_k and g.f.'s as F_U and F_V .
- SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{U} V^{(i)}$$
 with each $V^{(i)} \stackrel{d}{=} V$

then

$$F_W(x) = F_U(F_V(x))$$

The PoCSverse Generating Functions and Networks 25 of 60

Generating Functions

Basic Properties

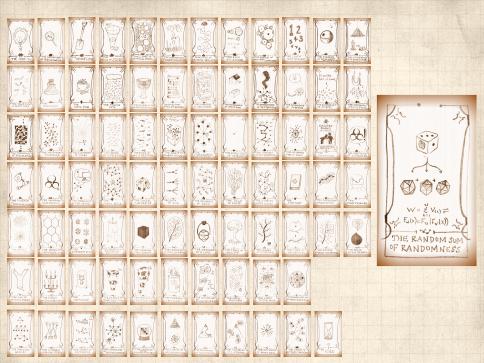
Giant Component Condition

Component

Useful results

Component A few examples

Average Component Size



Proof of SR1:

Write probability that variable W has value k as W_k .

$$W_k = \sum_{j=0}^{\infty} U_j \times \operatorname{Pr}(\operatorname{sum of} j \operatorname{draws of variable} V = k)$$

$$= \sum_{j=0}^{\infty} U_j \sum_{\substack{\{i_1,i_2,\dots,i_j\}|\\ i_1+i_2+\dots+i_j=k}} V_{i_1} V_{i_2} \cdots V_{i_j}$$

$$= \sum_{j=0}^{\infty} \frac{\textit{U}_{j}}{\sum_{k=0}^{\infty}} \sum_{\stackrel{\{i_{1},i_{2},\ldots,i_{j}\}|}{i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \cdots V_{i_{j}} x^{i_{j}}$$

The PoCSverse Generating Functions and Networks 27 of 60

Generating Functions

Definit

Basic Properties Giant Component Condition

Componen

Useful results

Size of the Giant Component A few examples

Average Component Size

Proof of SR1:

With some concentration, observe:

$$F_W(x) = \sum_{j=0}^{\infty} \frac{\mathbf{U}_j}{\mathbf{V}_j} \sum_{k=0}^{\infty} \underbrace{\sum_{\substack{\{i_1,i_2,\dots,i_j\}|\\i_1+i_2+\dots+i_j=k}}}_{\mathbf{V}_{i_1}x^{i_1}V_{i_2}x^{i_2}\dots V_{i_j}x^{i_j}} \\ x^k \text{ piece of } \left(\sum_{i'=0}^{\infty} V_{i'}x^{i'}\right)^j \\ \left(\sum_{i'=0}^{\infty} V_{i'}x^{i'}\right)^j = \left(F_V(x)\right)^j \\ = \sum_{j=0}^{\infty} \underbrace{\mathbf{U}_j}_{\mathbf{V}}\left(F_V(x)\right)^j \\ = F_U\left(F_V(x)\right)$$

Alternate, groovier proof in the accompanying assignment.

The PoCSverse Generating Functions and Networks 28 of 60

Generating

Basic Properties Giant Component

Useful results

Component A few examples

Average Component Size

Useful results we'll need for g.f.'s

Sneaky Result 2:

- Start with a random variable \underline{U} with distribution \underline{U}_k (k=0,1,2,...)
- SR2: If a second random variable is defined as

$$V = U + 1$$
 then $F_V(x) = xF_U(x)$

 \Re Reason: $V_k = U_{k-1}$ for $k \ge 1$ and $V_0 = 0$.

$$\begin{split} :&F_V(x) = \sum_{k=0}^\infty V_k x^k = \sum_{k=1}^\infty \underbrace{U_{k-1}} x^k \\ &= x \sum_{j=0}^\infty \underbrace{U_j} x^j = x F_U(x). \end{split}$$

Generating Functions

Basic Properties

Giant Component Condition

Component

Useful results

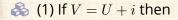
Component

A few examples

Average Component Size

Useful results we'll need for g.f.'s

Generalization of SR2:



$$F_V(x) = x^i F_U(x).$$

 \clubsuit (2) If V = U - i then

$$F_V(x) = x^{-i} F_U(x)$$

$$=x^{-i}\sum_{k=0}^{\infty}U_kx^k$$

The PoCSverse Generating Functions and Networks 30 of 60

Generating Functions

Definitions

Basic Properties
Giant Component

Condition Component size

Component size

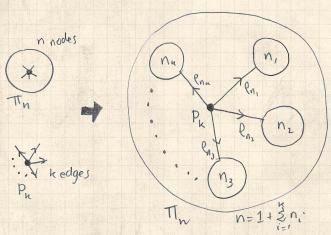
Useful results

Component

A few examples

Average Component Size

Soal: figure out forms of the component generating functions, F_{π} and F_{o} .



 $\begin{cases} \clubsuit \\ \end{cases}$ Relate π_n to P_k and ρ_n through one step of recursion.

The PoCSverse Generating Functions and Networks 32 of 60

Generating

Basic Properties Giant Component

Size of the Giant Component

A few examples Average Component Size

 $\Re \pi_n$ = probability that a random node belongs to a finite component of size n

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array} \right)$$

The PoCSverse Generating Functions and Networks 33 of 60

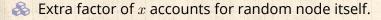
Generating

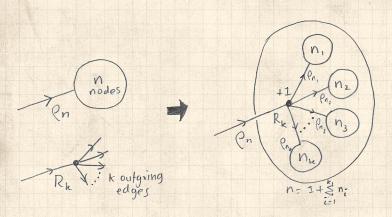
Basic Properties Giant Component

Size of the Giant Component

Average Component Size

Therefore:
$$F_{\pi}(x) = \underbrace{x}_{\text{SR2}} \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text{SR1}}$$





 $\ \, \hbox{$\stackrel{>}{ \sim}$} \, \, \hbox{Relate} \, \rho_n \, \hbox{to} \, R_k \, \hbox{and} \, \rho_n \, \hbox{through one step of recursion.}$

The PoCSverse Generating Functions and Networks 34 of 60

Generating Functions

Definitions

Basic Properties Giant Component Condition

Useful results
Size of the Giant

Component

A few examples

Average Component Size

 ρ_n = probability that a random link leads to a finite subcomponent of size n.

Invoke one step of recursion:

 ρ_n = probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size n-1,

$$= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

The PoCSverse Generating Functions and Networks 35 of 60

Generating

Basic Properties Giant Component

Size of the Giant Component

Average Component Size

References

3

Therefore:
$$F_{\rho}(x) = \underbrace{x}_{\text{SR2}} \underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text{SR1}}$$

itself.

We now have two functional equations connecting our generating functions:

$$F_{\pi}(x) = x F_{P}\left(F_{\rho}(x)\right) \text{ and } F_{\rho}(x) = x F_{R}\left(F_{\rho}(x)\right)$$

- $\ref{Robinson}$ Taking stock: We know $F_P(x)$ and $F_R(x) = F_P'(x)/F_P'(1)$.
- $lap{8}$ We first untangle the second equation to find $F_{
 ho}$
- $\red{\&}$ We can do this because it only involves $F_{
 ho}$ and F_{R} .

The PoCSverse Generating Functions and Networks 36 of 60

Generating Functions

Definition

Basic Properties Giant Component Condition

Component size

Iseful results

Size of the Giant Component A few examples

Average Component Size

Component sizes

Remembering vaguely what we are doing: Finding F_{π} to obtain the fractional size of the largest component $S_1 = 1 - F_{\pi}(1)$.

Set x = 1 in our two equations:

$$F_{\pi}(1) = F_{P}\left(F_{\rho}(1)\right) \text{ and } F_{\rho}(1) = F_{R}\left(F_{\rho}(1)\right)$$

- $\red solve$ Solve second equation numerically for $F_{
 ho}(1).$
- $\ensuremath{\mathfrak{S}}$ Plug $F_{
 ho}(1)$ into first equation to obtain $F_{\pi}(1)$.

The PoCSverse Generating Functions and Networks 37 of 60

Generating Functions

Definition

Basic Properties Giant Component Condition

Useful results

Size of the Giant Component A few examples

Average Component Size

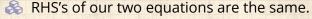
Component sizes

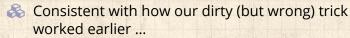
Example: Standard random graphs.

$$\Rightarrow F_R(x) = F_P'(x)/F_P'(1)$$

$$= \langle k \rangle e^{-\langle k \rangle (1-x)}/\langle k \rangle e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$=e^{-\langle k\rangle(1-x)}=F_{P}(x)$$
 ...aha!





$$\ \ \, \ \, \ \, \pi_n=\rho_n \ \, \text{just as} \, P_k=R_k.$$

The PoCSverse Generating Functions and Networks 38 of 60

Generating Functions

Definitions

Basic Properties Giant Component Condition

Useful results

Size of the Giant Component A few examples

A few examples

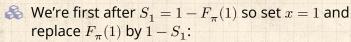
Average Component Size

Component sizes

We are down to

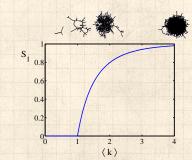
$$F_\pi(x) = x F_R(F_\pi(x))$$
 and $F_R(x) = e^{-\langle k
angle (1-x)}.$

$$: F_\pi(x) = x e^{-\langle k \rangle (1 - F_\pi(x))}$$



$$1 - S_1 = e^{-\langle k \rangle S_1}$$

$$\text{Or: } \langle k \rangle = \frac{1}{S_1} \text{In} \frac{1}{1-S_1}$$



Just as we found with our dirty trick ...

Again, we (usually) have to resort to numerics ...

The PoCSverse Generating Functions and Networks 39 of 60

Generating

Basic Properties Giant Component

Size of the Giant

Component A few examples Average Component Size

A few simple random networks to contemplate and play around with:

 \Re Notation: The Kronecker delta function $\Im \delta_{ij} = 1$ if i = j and 0 otherwise.

$$P_k = \delta_{k1}.$$

$$P_k = \delta_{k2}.$$

$$P_k = \delta_{k3}.$$

$$\Re P_k = \delta_{kk'}$$
 for some fixed $k' \ge 0$.

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

$$\Re P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{kk'}$$
 for some fixed $k' \geq 2$.

$$P_k = a\delta_{k1} + (1-a)\delta_{kk'} \text{ for some fixed } k' \geq 2 \text{ with } 0 \leq a \leq 1.$$

The PoCSverse Generating Functions and Networks 41 of 60

Generating

Definitions **Basic Properties**

Giant Component

A few examples Average Component Size

A joyful example □:

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

- $\mbox{\&}$ We find (two ways): $R_k = \frac{1}{4} \delta_{k0} + \frac{3}{4} \delta_{k2}.$
- A giant component exists because: $\langle k \rangle_R = 0 \times 1/4 + 2 \times 3/4 = 3/2 > 1$.

$$\&$$
 Generating functions for P_k and R_k :

$$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3 \text{ and } F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2$$

- Check for goodness:
 - $F_R(x) = F_P'(x)/F_P'(1) \text{ and } F_P(1) = F_R(1) = 1.$
 - ho $F_P'(1) = \langle k \rangle_P = 2$ and $F_R'(1) = \langle k \rangle_R = \frac{3}{2}$.
- $\ \ \,$ Things to figure out: Component size generating functions for π_n and ρ_n , and the size of the giant component.

The PoCSverse Generating Functions and Networks 42 of 60

Generating Functions

Functions

Basic Properties Giant Component Condition

Useful results
Size of the Giant

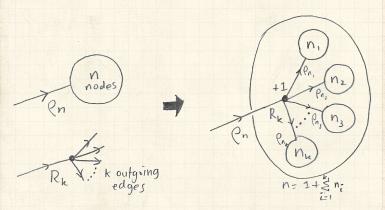
A few examples

Average Component Size

Find $F_{\rho}(x)$ first:

We know:

$$F_{\rho}(x) = xF_{R}(F_{\rho}(x)).$$



The PoCSverse Generating Functions and Networks 43 of 60

Generating

Basic Properties Giant Component

Component A few examples

Average Component Size

Sticking things in things, we have:

$$F_{\rho}(x) = x \left(\frac{1}{4} + \frac{3}{4} \left[F_{\rho}(x)\right]^2\right).$$

Rearranging:

$$3x \left[F_{\rho}(x) \right]^2 - 4F_{\rho}(x) + x = 0.$$

Please and thank you:

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1 - \frac{3}{4}x^2} \right)$$

- Time for a Taylor series expansion.
- The promise: non-negative powers of x with non-negative coefficients.
- First: which sign do we take?

The PoCSverse Generating Functions and Networks 44 of 60

Generating

Basic Properties Giant Component

A few examples Average Component Size

- & Because ρ_n is a probability distribution, we know $F_o(1) \le 1$ and $F_o(x) \le 1$ for $0 \le x \le 1$.
- \clubsuit Thinking about the limit $x \to 0$ in

$$F_{\rho}(x)=\frac{2}{3x}\left(1\pm\sqrt{1-\frac{3}{4}x^2}\right),$$

we see that the positive sign solution blows to smithereens, and the negative one is okay.

So we must have:

$$F_{\rho}(x) = \frac{2}{3x} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right),$$

We can now deploy the Taylor expansion:

$$(1+z)^{\theta} = {\theta \choose 0} z^0 + {\theta \choose 1} z^1 + {\theta \choose 2} z^2 + {\theta \choose 3} z^3 + \dots$$

The PoCSverse Generating Functions and Networks 45 of 60

Generating Functions

Definitions Basic Prope

Basic Properties
Giant Component
Condition
Component sizes

Iseful results

A few examples

Average Component Size

 \clubsuit Let's define a binomial for arbitrary θ and k = 0, 1, 2, ...:

$$\binom{\theta}{k} = \frac{\Gamma(\theta+1)}{\Gamma(k+1)\Gamma(\theta-k+1)}$$

 \Re For $\theta = \frac{1}{2}$, we have:

$$(1+z)^{\frac{1}{2}} = {\frac{1}{2} \choose 0} z^0 + {\frac{1}{2} \choose 1} z^1 + {\frac{1}{2} \choose 2} z^2 + \dots$$

$$= \frac{\Gamma(\frac{3}{2})}{\Gamma(1)\Gamma(\frac{3}{2})} z^0 + \frac{\Gamma(\frac{3}{2})}{\Gamma(2)\Gamma(\frac{1}{2})} z^1 + \frac{\Gamma(\frac{3}{2})}{\Gamma(3)\Gamma(-\frac{1}{2})} z^2 + \dots$$
$$= 1 + \frac{1}{2} z - \frac{1}{8} z^2 + \frac{1}{16} z^3 - \dots$$

where we've used $\Gamma(x+1) = x\Gamma(x)$ and noted that $\Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$.

Solution Note: $(1+z)^{\theta} \sim 1 + \theta z$ always.

The PoCSverse Generating Functions and Networks 46 of 60

Generating

Basic Properties Giant Component

A few examples Average Component Size

Totally psyched, we go back to here:

$$F_{\rho}(x)=\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right).$$

 $\ref{Setting } z = -\frac{3}{4}x^2$ and expanding, we have:

$$F_{\rho}(x) =$$

$$\frac{2}{3x} \left(1 - \left[1 + \frac{1}{2} \left(-\frac{3}{4}x^2 \right)^1 - \frac{1}{8} \left(-\frac{3}{4}x^2 \right)^2 + \frac{1}{16} \left(-\frac{3}{4}x^2 \right)^3 \right] + \dots \right)$$

备 Giving:

$$F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n =$$

$$\frac{1}{4}x + \frac{3}{64}x^3 + \frac{9}{512}x^5 + \ldots + \frac{2}{3}\left(\frac{3}{4}\right)^k \frac{(-1)^{k+1}\Gamma(\frac{3}{2})}{\Gamma(k+1)\Gamma(\frac{3}{2}-k)}x^{2k-1} + \ldots$$

Do odd powers make sense?

 $\red{solution}$ We can now find $F_\pi(x)$ with:

$$\begin{split} F_{\pi}(x) &= x F_{P} \left(F_{\rho}(x) \right) \\ &= x \frac{1}{2} \left(\left(F_{\rho}(x) \right)^{1} + \left(F_{\rho}(x) \right)^{3} \right) \end{split}$$

$$= x\frac{1}{2} \left[\frac{2}{3x} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right) + \frac{2^3}{(3x)^3} \left(1 - \sqrt{1 - \frac{3}{4}x^2} \right)^3 \right].$$

The PoCSverse Generating Functions and Networks 48 of 60

Generating Functions

Definitions

Basic Properties
Giant Component
Condition

Useful results

ize of the Giant

A few examples
Average Component Size

References

Delicious.

 $\ensuremath{\&}$ In principle, we can now extract all the π_n .

But let's just find the size of the giant component.

 \Re First, we need $F_o(1)$:

$$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$

- This is the probability that a random edge leads to a sub-component of finite size.
- Next:

$$F_{\pi}(1) = 1 \cdot F_{P} \left(F_{\rho}(1) \right) \\ = F_{P} \left(\frac{1}{3} \right) \\ = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \left(\frac{1}{3} \right)^{3} \\ = \frac{5}{27}.$$

- This is the probability that a random chosen node belongs to a finite component.
- Finally, we have

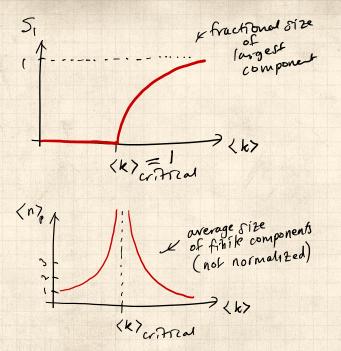
$$S_1 = 1 - F_\pi(1) = 1 - \frac{5}{27} = \frac{22}{27}.$$

The PoCSverse Generating Functions and Networks 49 of 60

Generating

Basic Properties Giant Component

A few examples Average Component Size



The PoCSverse Generating Functions and Networks 51 of 60

Generating

Definitions

Basic Properties
Giant Component

Component size

Size of the Gia

A few examples

Average Component Size

- \aleph Next: find average size of finite components $\langle n \rangle$.
- \Leftrightarrow Using standard G.F. result: $\langle n \rangle = F'_{\pi}(1)$.
- $\red{\$}$ Try to avoid finding $F_{\pi}(x)$...
- \Longrightarrow Starting from $F_{\pi}(x)=xF_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$F_\pi'(x) = F_P\left(F_\rho(x)\right) + x F_\rho'(x) F_P'\left(F_\rho(x)\right)$$

 $\mbox{\@ifnextchar[{\@model{A}}{\@model{A}}}\ \mbox{While}\ F_{\rho}(x) = x F_{R}\left(F_{\rho}(x)\right) \mbox{ gives}$

$$F_{\rho}'(x) = F_{R}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{R}'\left(F_{\rho}(x)\right)$$

- Now set x = 1 in both equations.
- We solve the second equation for $F_{\rho}'(1)$ (we must already have $F_{\rho}(1)$).
- \Re Plug $F'_{\rho}(1)$ and $F_{\rho}(1)$ into first equation to find $F'_{\pi}(1)$.

The PoCSverse Generating Functions and Networks 52 of 60

Generating Functions

Definitions

Basic Properties
Giant Component
Condition

seful results ze of the Giant

A few examples
Average Component Size

Example: Standard random graphs.

- \clubsuit Use fact that $F_P = F_R$ and $F_\pi = F_o$.
- Two differentiated equations reduce to only one:

$$F_\pi'(x) = F_P\left(F_\pi(x)\right) + xF_\pi'(x)F_P'\left(F_\pi(x)\right)$$

Rearrange:
$$F_{\pi}'(x) = \frac{F_P\left(F_{\pi}(x)\right)}{1 - xF_P'\left(F_{\pi}(x)\right)}$$

- \Longrightarrow Simplify denominator using $F_P(x) = \langle k \rangle F_P(x)$
- Replace $F_{\mathcal{P}}(F_{\pi}(x))$ using $F_{\pi}(x) = xF_{\mathcal{P}}(F_{\pi}(x))$.
- \Longrightarrow Set x=1 and replace $F_{\pi}(1)$ with $1-S_1$.

End result:
$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

The PoCSverse Generating Functions and Networks 53 of 60

Generating

Basic Properties

Giant Component

Useful results

A few examples

Average Component Size

Our result for standard random networks:

$$\langle n \rangle = F_\pi'(1) = \frac{(1 - S_1)}{1 - \langle k \rangle (1 - S_1)}$$

- Recall that $\langle k \rangle = 1$ is the critical value of average degree for standard random networks.
- \ref{look} Look at what happens when we increase $\langle k \rangle$ to 1 from below.
- $\red {\$}$ We have $S_1=0$ for all $\langle k \rangle <1$ so

$$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$

- \clubsuit This blows up as $\langle k \rangle \to 1$.
- Reason: we have a power law distribution of component sizes at $\langle k \rangle = 1$.
- Typical critical point behavior ...

The PoCSverse Generating Functions and Networks 54 of 60

Generating Functions

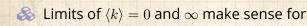
Definitions

Basic Properties
Giant Component
Condition

Useful results

Component
A few examples

Average Component Size



$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

- \clubsuit As $\langle k \rangle \to 0$, $S_1 = 0$, and $\langle n \rangle \to 1$.
- All nodes are isolated.
- \clubsuit As $\langle k \rangle \to \infty$, $S_1 \to 1$ and $\langle n \rangle \to 0$.
- No nodes are outside of the giant component.

Extra on largest component size:

The PoCSverse Generating Functions and Networks 55 of 60

Generating Functions

Definitions

Basic Properties Giant Component Condition

Jseful results

ze of the Giant emponent

A few examples

Average Component Size

& Let's return to our example: $P_k = \frac{1}{2}\delta_{k,1} + \frac{1}{2}\delta_{k,3}$.

We're after:

$$\langle n \rangle = F_\pi'(1) = F_P\left(F_\rho(1)\right) + F_\rho'(1)F_P'\left(F_\rho(1)\right)$$

where we first need to compute

$$F_{\rho}'(1) = F_R \left(F_{\rho}(1) \right) + F_{\rho}'(1) F_R' \left(F_{\rho}(1) \right). \label{eq:free_point}$$

Place stick between teeth, and recall that we have:

$$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3 \text{ and } F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2.$$

Differentiation gives us:

$$F_P'(x) = \frac{1}{2} + \frac{3}{2} x^2 \text{ and } F_R'(x) = \frac{3}{2} x.$$

Generating

Basic Properties Giant Component

A few examples

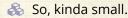
Average Component Size

 $\mathfrak{F}_{0}(1) = \frac{1}{3}$ to find:

$$\begin{split} F_{\rho}'(1) &= F_{R}\left(F_{\rho}(1)\right) + F_{\rho}'(1)F_{R}'\left(F_{\rho}(1)\right) \\ &= F_{R}\left(\frac{1}{3}\right) + F_{\rho}'(1)F_{R}'\left(\frac{1}{3}\right) \\ &= \frac{1}{4} + \frac{3}{4}\frac{1}{3^{2}} + F_{\rho}'(1)\frac{3}{2}\frac{1}{3}. \end{split}$$

After some reallocation of objects, we have $F_o(1) = \frac{13}{2}$.

$$\begin{split} & \text{Finally: } \langle n \rangle = F_\pi'(1) = F_P\left(\frac{1}{3}\right) + \frac{13}{2}F_P'\left(\frac{1}{3}\right) \\ &= \frac{1}{2}\frac{1}{3} + \frac{1}{2}\frac{1}{3^3} + \frac{13}{2}\left(\frac{1}{2} + \frac{\cancel{3}}{2}\frac{1}{\cancel{3}^2}\right) = \frac{5}{27} + \frac{13}{3} = \frac{122}{27}. \end{split}$$



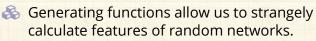
The PoCSverse Generating Functions and Networks 57 of 60

Generating

Basic Properties Giant Component

A few examples Average Component Size

Nutshell



They're a bit scary and magical.

Generating functions can be useful for contagion.

But: For the big results, more direct, physics-bearing calculations are possible. The PoCSverse Generating Functions and Networks 58 of 60

Generating Functions

Defin

Basic Properties Giant Component Condition

Component's

Size of the Gi

A few examples

Average Component Size

References I

[1] H. S. Wilf. Generatingfunctionology. A K Peters, Natick, MA, 3rd edition, 2006. pdf The PoCSverse Generating Functions and Networks 60 of 60

Generating Functions

Definitions

Basic Properties
Giant Component

Component sizes

Useful results

Component

A few examples
Average Component Size

