Generating Functions and Networks Last updated: 2023/08/22, 11:48:21 EDT Principles of Complex Systems, Vols. 1, 2, & 3D CSYS/MATH 6701, 6713, & a pretend number, 2023-2024 | @pocsvox #### Prof. Peter Sheridan Dodds | @peterdodds Computational Story Lab | Vermont Complex Systems Center Santa Fe Institute | University of Vermont Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License #### Outline #### **Generating Functions** Definitions **Basic Properties** Giant Component Condition Component sizes Useful results Size of the Giant Component A few examples Average Component Size #### References ## Generatingfunctionology [1] - each element with a distinct function or other mathematical object. - & Well-chosen functions allow us to manipulate sequences and retrieve sequence elements. #### Definition: \clubsuit The generating function (g.f.) for a sequence $\{a_n\}$ is $$F(x) = \sum_{n=0}^{\infty} a_n x^n.$$ - & Roughly: transforms a vector in R^{∞} into a function defined on \mathbb{R}^1 . - Related to Fourier, Laplace, Mellin, ... # Generating Functions and Definitions Basic Properties Generating Functions and Functions and Generating Giant Componen Condition Component sizes Useful results Size of the Giant Component A few examples $\mathfrak{F}_{k}^{(\mathbf{O})} = \mathbf{Pr}(\text{throwing a } k) = 1/6 \text{ where } k = 1, 2, \dots, 6.$ $F^{(\textcircled{2})}(x) = \sum_{k=1}^{6} p_{k}^{(\textcircled{2})} x^{k} = \frac{1}{6} (x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6}).$ $\mathfrak{F}_0^{(\text{coin})} = \mathbf{Pr}(\text{head}) = 1/2, p_1^{(\text{coin})} = \mathbf{Pr}(\text{tail}) = 1/2.$ $$F^{({\rm coin})}(x) = p_0^{({\rm coin})} x^0 + p_1^{({\rm coin})} x^1 = \frac{1}{2} (1+x).$$ - A generating function for a probability distribution is called a Probability Generating Function (p.g.f.). - We'll come back to these simple examples as we derive various delicious properties of generating functions. ## Example Simple examples: Rolling dice and flipping coins: A Take a degree distribution with exponential decay: $$P_k = ce^{-\lambda k}$$ where geometric sumfully, we have $c = 1 - e^{-\lambda}$ The generating function for this distribution is $$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - xe^{-\lambda}}.$$ - Notice that $F(1) = c/(1 e^{-\lambda}) = 1$. - For probability distributions, we must always have F(1) = 1 since $$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1.$$ Check die and coin p.g.f.'s. ### Properties: 8 Average degree: $$\begin{split} \langle k \rangle &= \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \Bigg|_{x=1} \\ &= \frac{\mathrm{d}}{\mathrm{d}x} F(x) \Bigg|_{x=1} = \frac{F'(1)}{\mathrm{d}x} \end{split}$$ - A In general, many calculations become simple, if a little - For our exponential example: $$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$ So: $\langle k \rangle = F'(1) = \frac{e^{-\lambda}}{(1 - e^{-\lambda})}$ Check for die and coin p.g.f.'s. Generating Functions and Useful pieces for probability distributions: Normalization: Generating Generating Functions and F(1) = 1 First moment: $$\langle k \rangle = F'(1)$$ A Higher moments: $$\langle k^n \rangle = \left(x \frac{\mathsf{d}}{\mathsf{d}x} \right)^n F(x) \bigg|_{x=0}$$ & kth element of sequence (general): $$P_k = \frac{1}{k!} \frac{\operatorname{d}^k}{\operatorname{d} x^k} F(x) \Bigg|_{x=0}$$ ### A beautiful, fundamental thing: The generating function for the sum of two random variables $$W = U + V$$ $$F_{W}(x) = F_{U}(x)F_{V}(x). \label{eq:fw}$$ - Convolve yourself with Convolutions: Insert assignment question ☑. - A Try with die and coin p.g.f.'s. - 1. Add two coins (tail=0, head=1). - 2. Add two dice. - 3. Add a coin flip to one die roll. # Edge-degree distribution & Recall our condition for a giant component: $$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$ - Let's re-express our condition in terms of generating functions. - & We first need the g.f. for R_{b} . - We'll now use this notation: $$F_P(x)$$ is the g.f. for P_k . $F_R(x)$ is the g.f. for R_k . Giant component condition in terms of g.f. is: $$\langle k \rangle_R = F_R'(1) > 1.$$ \aleph Now find how F_R is related to F_P ... Generating Functions and 12 of 58 Generating Functions and Generating Basic Properties Functions and 14 of 58 Generating Giant Component Condition Component sizes Useful results Size of the Giant Component A few examples ## Edge-degree distribution We have $$F_R(x) = \sum_{k=0}^{\infty} {R_k x^k} = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$ Shift index to j = k + 1 and pull out $\frac{1}{(k)}$: $$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$ $$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-\frac{\mathbf{P_{0}}}{\mathbf{P_{0}}}\right)\\=\frac{1}{\langle k\rangle}F_{P}'(x).$$ Finally, since $\langle k \rangle = F_P'(1)$, $$F_R(x) = \frac{F_P'(x)}{F_P'(1)}$$ ## Edge-degree distribution - Recall giant component condition is $\langle k \rangle_R = F_R'(1) > 1.$ - \red Since we have $F_R(x) = F_P'(x)/F_P'(1)$, $$F'_{R}(x) = \frac{F''_{P}(x)}{F'_{P}(1)}$$ Setting x = 1, our condition becomes $$\boxed{\frac{F_P''(1)}{F_P'(1)} > 1}$$ #### Size distributions To figure out the size of the largest component (S_1) , we need more resolution on component sizes. #### **Definitions:** - \Re π_n = probability that a random node belongs to a finite component of size $n < \infty$. - $\underset{\sim}{\&} \rho_n$ = probability that a random end of a random link leads to a finite subcomponent of size $n < \infty$. #### Local-global connection: $$P_k, R_k \Leftrightarrow \pi_n, \rho_n$$ neighbors \Leftrightarrow components #### Connecting probabilities: Generating Functions and Generating Functions and Generating Functions and 18 of 58 Generating n nodes Markov property of random networks connects π_n , ρ_n , and P_k . # Connecting probabilities: & Markov property of random networks connects ρ_n and R_{ν} # G.f.'s for component size distributions: $$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n \text{ and } F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$$ #### The largest component: - \Re Subtle key: $F_{\pi}(1)$ is the probability that a node belongs to a finite component. - $\mathfrak{F}_1 = 1 F_{\pi}(1)$. #### Our mission, which we accept: Determine and connect the four generating functions $$F_P, F_R, F_\pi, \text{ and } F_\rho.$$ # Useful results we'll need for g.f.'s #### Sneaky Result 1: Generating Functions and Generating Component sizes Size of the Giant Component A few examples Generating Functions and - \triangle Consider two random variables U and V whose values may be 0, 1, 2, ... - \mathbb{R} Write probability distributions as U_k and V_k and g.f.'s as F_U and F_V . - SR1: If a third random variable is defined as $$W = \sum_{i=1}^{U} V^{(i)}$$ with each $V^{(i)} \stackrel{d}{=} V$ then $$F_W(x) = F_U(F_V(x))$$ #### Proof of SR1: Write probability that variable W has value k as W_k . $$W_k = \sum_{j=0}^{\infty} U_j \times \operatorname{Pr(sum\ of}\ j\ \operatorname{draws\ of\ variable}\ V = k)$$ $$= \sum_{j=0}^{\infty} U_j \sum_{\substack{\{i_1,i_2,\dots,i_j\}|\\ i_1+i_2+\dots+i_j=k}} V_{i_1} V_{i_2} \cdots V_{i_j}$$ $$\begin{split} : & F_W(x) = \sum_{k=0}^{\infty} W_k x^k = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} U_j \sum_{\substack{\{i_1, i_2, \dots, i_j\} \\ i_1 + i_2 + \dots + i_j = k}} V_{i_1} V_{i_2} \cdots V_{i_j} x^k \\ & = \sum_{k=0}^{\infty} U_k \sum_{j=0}^{\infty} V_{i_1} Y_{i_2} \cdots Y_{i_j} x^{i_j} \end{split}$$ #### Proof of SR1: With some concentration, observe: $$\begin{split} F_W(x) &= \sum_{j=0}^{\infty} U_j \sum_{k=0}^{\infty} \underbrace{\sum_{\substack{\{i_1,i_2,\dots,i_j\}\\i_1+i_2+\dots+i_j=k}}}_{\substack{\{i_1,i_2,\dots,i_j\}\\i_1+i_2+\dots+i_j=k}} V_{i_1} x^{i_1} V_{i_2} x^{i_2} \cdots V_{i_j} x^{i_j} \\ & x^k \text{ piece of } \left(\sum_{i'=0}^{\infty} V_{i'} x^{i'}\right)^j \\ & \left(\sum_{i'=0}^{\infty} V_{i'} x^{i'}\right)^j = \left(F_V(x)\right)^j \\ & = \sum_{j=0}^{\infty} \underbrace{U_j}_{i} \left(F_V(x)\right)^j \\ & = F_U \left(F_V(x)\right) \end{split}$$ Alternate, groovier proof in the accompanying assignment. Generating Functions and Generating Functions and Generating $= \sum_{j=0}^{\infty} \underbrace{V_j}_{k=0} \sum_{\substack{\{i_1,i_2,\dots,i_j\}|\\i_1+i_2+\dots+i_j=k}} V_{i_1} x^{i_1} V_{i_2} x^{i_2} \cdots V_{i_j} x^{i_j}$ ## Useful results we'll need for g.f.'s #### Sneaky Result 2: - Start with a random variable U with distribution U_k (k = 0, 1, 2, ...) - SR2: If a second random variable is defined as $$V = U + 1$$ then $F_V(x) = xF_U(x)$ Reason: $V_k = U_{k-1}$ for $k \ge 1$ and $V_0 = 0$. $$\begin{split} \dot{\cdot} F_V(x) &= \sum_{k=0}^\infty V_k x^k = \sum_{k=1}^\infty \underbrace{U_{k-1}} x^k \\ &= x \sum_{j=0}^\infty \underbrace{U_j} x^j = x F_U(x). \end{split}$$ #### Connecting generating functions: Generating Functions and $\underset{n}{\&} \pi_n$ = probability that a random node belongs to a finite component of size n $$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array} \right)$$ Generating Useful results Size of the Giant Component A few examples Generating Functions and Generating 30 of 58 References Functions and Therefore: $$\boxed{F_{\pi}(x) = \underbrace{x}_{\text{SR2}}\underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text{SR1}}}$$ & Extra factor of x accounts for random node itself. # Connecting generating functions: Generating Functions and Generating Size of the Giant Component A few examples Average Component Size Functions and Size of the Giant Component 33 of 58 32 of 58 We now have two functional equations connecting our generating functions: $$F_{\pi}(x) = xF_{P}\left(F_{o}(x)\right)$$ and $F_{o}(x) = xF_{R}\left(F_{o}(x)\right)$ - \mathbb{A} Taking stock: We know $F_{\mathcal{P}}(x)$ and $F_{P}(x) = F'_{P}(x)/F'_{P}(1)$. - & We first untangle the second equation to find F_{o} - \clubsuit We can do this because it only involves F_a and F_B . - \clubsuit The first equation then immediately gives us F_{π} in terms of F_o and F_R . # Generating Functions and Generating Generating 35 of 58 Functions and ## Useful results we'll need for g.f.'s #### Generalization of SR2: \clubsuit (1) If V = U + i then $$F_V(x) = x^i F_U(x).$$ \clubsuit (2) If V = U - i then $$F_V(x) = x^{-i} F_U(x)$$ $$= x^{-i} \sum_{k=0}^{\infty} U_k x^k$$ # Connecting generating functions: \mathbb{R} Relate ρ_n to R_k and ρ_n through one step of recursion. ### Component sizes - Remembering vaguely what we are doing: Finding F_{π} to obtain the fractional size of the largest component $S_1 = 1 - F_{\pi}(1)$. - \$ Set x = 1 in our two equations: $$F_{\pi}(1) = F_{P}\left(F_{\rho}(1)\right) \text{ and } F_{\rho}(1) = F_{R}\left(F_{\rho}(1)\right)$$ - \mathfrak{S} Solve second equation numerically for $F_{\mathfrak{o}}(1)$. - \Re Plug $F_o(1)$ into first equation to obtain $F_{\pi}(1)$. ## Connecting generating functions: & Goal: figure out forms of the component generating functions, F_{π} and F_{o} . \Re Relate π_n to P_k and ρ_n through one step of recursion. # Connecting generating functions: - ρ_n = probability that a random link leads to a finite subcomponent of size n. - Invoke one step of recursion: ρ_n = probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size n-1, $$= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array} \right)$$ 8 Therefore: itself. #### Component sizes Generating Functions and Example: Standard random graphs. \red{show} We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$ $$\Rightarrow F_R(x) = F_P'(x)/F_P'(1)$$ $$= \langle k \rangle e^{-\langle k \rangle (1-x)}/\langle k \rangle e^{-\langle k \rangle (1-x')}|_{x'=1}$$ $$=e^{-\langle k \rangle(1-x)}=F_P(x)$$...aha - RHS's of our two equations are the same. - $\Re So F_{\pi}(x) = F_{o}(x) = xF_{R}(F_{o}(x)) = xF_{R}(F_{\pi}(x))$ - Consistent with how our dirty (but wrong) trick worked earlier ... - $\Re \pi_n = \rho_n$ just as $P_k = R_k$. Functions and #### Component sizes We are down to $F_{\pi}(x) = xF_{R}(F_{\pi}(x))$ and $F_{R}(x) = e^{-\langle k \rangle(1-x)}$. $$..F_\pi(x) = x e^{-\langle k \rangle (1 - F_\pi(x))}$$ $\mbox{\&}\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\engen}}}}}}}}}}}}}}}} \end{substitute} $\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensurem$ replace $F_{\pi}(1)$ by $1 - S_1$: - Just as we found with our dirty trick ... - Again, we (usually) have to resort to numerics ... #### A few simple random networks to contemplate and play around with: if i = i and 0 otherwise. $$P_k = \delta_{k1}.$$ $$P_k = \delta_{k2}.$$ $$P_k = \delta_{k3}.$$ $P_k = \delta_{kk'}$ for some fixed $k' \geq 0$. $$P_k = a\delta_{k1} + (1-a)\delta_{k3}$$, with $0 \le a \le 1$. $$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{kk'}$$ for some fixed $k' \ge 2$. $P_k = a\delta_{k1} + (1-a)\delta_{kk'}$ for some fixed $k' \geq 2$ with 0 < a < 1. #### A joyful example □: $$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$ - \Re We find (two ways): $R_k = \frac{1}{4}\delta_{k0} + \frac{3}{4}\delta_{k2}$. - A giant component exists because: $\langle k \rangle_B = 0 \times 1/4 + 2 \times 3/4 = 3/2 > 1.$ - & Generating functions for P_k and R_k : $$F_P(x)=\frac{1}{2}x+\frac{1}{2}x^3$$ and $F_R(x)=\frac{1}{4}x^0+\frac{3}{4}x^2$ Check for goodness: A Things to figure out: Component size generating functions for π_n and ρ_n , and the size of the giant component. Generating Functions and Find $F_o(x)$ first: A We know: $$F_{\rho}(x) = x F_{R} \left(F_{\rho}(x) \right).$$ Generating Functions and Generating Functions Functions and Sticking things in things, we have: $$F_{\rho}(x) = x \left(\frac{1}{4} + \frac{3}{4} \left[F_{\rho}(x) \right]^2 \right).$$ Rearranging $$3x \left[F_{\rho}(x) \right]^2 - 4F_{\rho}(x) + x = 0.$$ Please and thank you: $$F_{\rho}(x)=\frac{2}{3x}\left(1\pm\sqrt{1-\frac{3}{4}x^2}\right)$$ - Time for a Taylor series expansion. - \clubsuit The promise: non-negative powers of x with non-negative coefficients. - First: which sign do we take? \Re Because ρ_n is a probability distribution, we know $F_o(1) \le 1$ and $F_o(x) \le 1$ for $0 \le x \le 1$. \clubsuit Thinking about the limit $x \to 0$ in $$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1 - \frac{3}{4}x^2} \right),$$ we see that the positive sign solution blows to smithereens, and the negative one is okay. So we must have: $$F_{\rho}(x)=\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right),$$ We can now deploy the Taylor expansion: $$(1+z)^\theta = {\theta \choose 0} z^0 + {\theta \choose 1} z^1 + {\theta \choose 2} z^2 + {\theta \choose 3} z^3 + \dots$$ Generating Functions and References Generating Functions and Let's define a binomial for arbitrary θ and k = 0, 1, 2, ...: $$\binom{\theta}{k} = \frac{\Gamma(\theta+1)}{\Gamma(k+1)\Gamma(\theta-k+1)}$$ \Re For $\theta = \frac{1}{2}$, we have: $$(1+z)^{\frac{1}{2}} = {\frac{1}{2} \choose 0} z^0 + {\frac{1}{2} \choose 1} z^1 + {\frac{1}{2} \choose 2} z^2 + \dots$$ $$\begin{split} &=\frac{\Gamma(\frac{3}{2})}{\Gamma(1)\Gamma(\frac{3}{2})}z^0+\frac{\Gamma(\frac{3}{2})}{\Gamma(2)\Gamma(\frac{1}{2})}z^1+\frac{\Gamma(\frac{3}{2})}{\Gamma(3)\Gamma(-\frac{1}{2})}z^2+\dots\\ &=1+\frac{1}{2}z-\frac{1}{8}z^2+\frac{1}{16}z^3-\dots \end{split}$$ where we've used $\Gamma(x+1)=x\Gamma(x)$ and noted that $\Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$. Note: $(1+z)^{\theta} \sim 1 + \theta z$ always. Totally psyched, we go back to here: $$F_{\rho}(x)=\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right).$$ Setting $z = -\frac{3}{4}x^2$ and expanding, we have: $$F_{\rho}(x)$$ = $$\frac{2}{3x} \left(1 - \left\lceil 1 + \frac{1}{2} \left(-\frac{3}{4} x^2\right)^1 - \frac{1}{8} \left(-\frac{3}{4} x^2\right)^2 + \frac{1}{16} \left(-\frac{3}{4} x^2\right)^3 \right\rceil + \ldots \right)$$ Giving: $$\begin{split} F_{\rho}(x) &= \sum_{n=0}^{\infty} \rho_n x^n = \\ &\frac{1}{4} x + \frac{3}{64} x^3 + \frac{9}{512} x^5 + \ldots + \frac{2}{3} \left(\frac{3}{4}\right)^k \frac{(-1)^{k+1} \Gamma(\frac{3}{2})}{\Gamma(k+1) \Gamma(\frac{3}{2}-k)} x^{2k-1} + \ldots \end{split}$$ Do odd powers make sense? Generating Functions and \mathfrak{S} We can now find $F_{\pi}(x)$ with: $$F_{\pi}(x) = x F_{P} \left(F_{\rho}(x) \right)$$ $$=x\frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)$$ $$=x\frac{1}{2}\left[\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right)+\frac{2^3}{(3x)^3}\left(1-\sqrt{1-\frac{3}{4}x^2}\right)^3\right]^{\frac{1}{\mathrm{Re}}}$$ Delicious. - & In principle, we can now extract all the π_m . - But let's just find the size of the giant component. Generating Functions and \Re First, we need $F_o(1)$: $$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$ - A This is the probability that a random edge leads to a sub-component of finite size. - A Next: $$F_{\pi}(1) = 1 \cdot F_{P} \left(F_{\rho}(1) \right) = F_{P} \left(\frac{1}{3} \right) = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \left(\frac{1}{3} \right)^{3} = \frac{5}{27}.$$ - This is the probability that a random chosen node belongs to a finite component. - Finally, we have $$S_1 = 1 - F_\pi(1) = 1 - \frac{5}{27} = \frac{22}{27}.$$ ### Average component size - & Next: find average size of finite components $\langle n \rangle$. - & Using standard G.F. result: $\langle n \rangle = F'_{-}(1)$. - \Re Try to avoid finding $F_{\pi}(x)$... - \Longrightarrow Starting from $F_{\pi}(x) = xF_{P}(F_{o}(x))$, we differentiate: $$F_{\pi}'(x) = F_P\left(F_o(x)\right) + xF_o'(x)F_P'\left(F_o(x)\right)$$ \Re While $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$ gives $$F_{\rho}'(x) = F_R \left(F_{\rho}(x) \right) + x F_{\rho}'(x) F_R' \left(F_{\rho}(x) \right)$$ - \$ Now set x=1 in both equations. - & We solve the second equation for $F'_{o}(1)$ (we must already have $F_o(1)$). - \Re Plug $F_o(1)$ and $F_o(1)$ into first equation to find $F'_{\pi}(1)$. Generating Functions and Component sizes Useful results Size of the Giant Component Generating Functions and 49 of 58 Generating Generating Functions and Rearrange: $F'_{\pi}(x) = \frac{F_P(F_{\pi}(x))}{1 - xF'_{\pi}(F_{\pi}(x))}$ $F'_{\pi}(x) = F_{P}(F_{\pi}(x)) + xF'_{\pi}(x)F'_{P}(F_{\pi}(x))$ Two differentiated equations reduce to only one: - & Simplify denominator using $F_P'(x) = \langle k \rangle F_P(x)$ - Replace $F_{\mathcal{P}}(F_{\pi}(x))$ using $F_{\pi}(x) = xF_{\mathcal{P}}(F_{\pi}(x))$. - \$ Set x=1 and replace $F_{\pi}(1)$ with $1-S_1$. End result: $$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$ ## Average component size Average component size Example: Standard random graphs. \clubsuit Use fact that $F_P = F_R$ and $F_\pi = F_\rho$. Our result for standard random networks: $$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$ - Recall that $\langle k \rangle = 1$ is the critical value of average degree for standard random networks. - & Look at what happens when we increase $\langle k \rangle$ to 1 from below. - \Re We have $S_1 = 0$ for all $\langle k \rangle < 1$ so $$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$ - \clubsuit This blows up as $\langle k \rangle \to 1$. - Reason: we have a power law distribution of component sizes at $\langle k \rangle = 1$. - Typical critical point behavior ... ### Average component size \clubsuit Limits of $\langle k \rangle = 0$ and ∞ make sense for $$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$ - $As \langle k \rangle \to 0$, $S_1 = 0$, and $\langle n \rangle \to 1$. - All nodes are isolated. - \clubsuit As $\langle k \rangle \to \infty$, $S_1 \to 1$ and $\langle n \rangle \to 0$. - No nodes are outside of the giant component. #### Extra on largest component size: \Leftrightarrow For $\langle k \rangle = 1$, $S_1 \sim N^{2/3}/N$. \Leftrightarrow For $\langle k \rangle < 1$, $S_1 \sim (\log N)/N$. Generating Functions and We're after: Generating Generating Functions and Let's return to our example: $P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}$. where we first need to compute $\langle n \rangle = F_{\pi}'(1) = F_{P}(F_{o}(1)) + F_{o}'(1)F_{P}'(F_{o}(1))$ $F_{\rho}'(1) = F_{R}\left(F_{\rho}(1)\right) + F_{\rho}'(1)F_{R}'\left(F_{\rho}(1)\right).$ Place stick between teeth, and recall that we have: $$F_P(x) = \frac{1}{2}x + \frac{1}{2}x^3 \text{ and } F_R(x) = \frac{1}{4}x^0 + \frac{3}{4}x^2.$$ Differentiation gives us: $$F_P'(x) = rac{1}{2} + rac{3}{2} x^2 ext{ and } F_R'(x) = rac{3}{2} x.$$ \Re We bite harder and use $F_o(1) = \frac{1}{3}$ to find: $$\begin{split} F_\rho'(1) &= F_R\left(F_\rho(1)\right) + F_\rho'(1)F_R'\left(F_\rho(1)\right) \\ &= F_R\left(\frac{1}{3}\right) + F_\rho'(1)F_R'\left(\frac{1}{3}\right) \\ &= \frac{1}{4} + \frac{\cancel{3}}{4}\frac{1}{\cancel{3}^2} + F_\rho'(1)\frac{\cancel{3}}{2}\frac{1}{\cancel{3}}. \end{split}$$ - After some reallocation of objects, we have $F'_{0}(1) = \frac{13}{2}$. - 8 Finally: $\langle n \rangle = F_{\pi}'(1) = F_{P}\left(\frac{1}{2}\right) + \frac{13}{2}F_{P}'\left(\frac{1}{2}\right)$ $=\frac{1}{2}\frac{1}{3}+\frac{1}{2}\frac{1}{3^3}+\frac{13}{2}\left(\frac{1}{2}+\frac{3}{2}\frac{1}{2^4}\right)=\frac{5}{27}+\frac{13}{3}=\frac{122}{27}.$ - So, kinda small. ## Nutshell Generating functions allow us to strangely calculate features of random networks. - They're a bit scary and magical. - Generating functions can be useful for contagion. - But: For the big results, more direct, physics-bearing calculations are possible. Generating Functions and Generating Functions and # References I [1] H. S. Wilf. The PoCSverse Generating Functions and Networks 58 of 58 58 of 58 Generating Functions Definitions Basic Properties Gient Component Condition Component sizes Useful results Size of the Giant Component A few examples Average Component Size Generatingfunctionology. A K Peters, Natick, MA, 3rd edition, 2006. pdf ☑ References